The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
library(imprecise101)
This example is taken from Peter Walley (1996).
For \(s=2\), \(\overline{P}(R|n)=0.375\) and \(\underline{P}(R|n)=0.125\).
<- idm(nj=1, s=2, N=6, k=4)
op c(op$p.lower, op$p.upper)
#> [1] 0.125 0.375
For \(s=1\), \(\overline{P}(R|n)=0.286\) and \(\underline{P}(R|n)=0.143\).
<- idm(nj=1, s=1, N=6, k=4)
op round(c(op$p.lower, op$p.upper),3)
#> [1] 0.143 0.286
For \(s=0\), \(P(R|n)=0.167\) irrespective of \(\Omega\).
<- idm(nj=1, s=0, N=6, k=4)
op round(c(op$p.lower, op$p.upper),3)
#> [1] 0.167 0.167
Table 1. \(P(R|n)\) for different choices of \(\Omega\) and \(s\) (on page 20)
<- c(idm(nj=1, s=1, N=6, k=4)$p,
r1 idm(nj=1, s=2, N=6, k=4)$p,
idm(nj=1, s=4/2, N=6, k=4)$p,
idm(nj=1, s=4, N=6, k=4)$p) # Omega 1
<- c(idm(nj=1, s=1, N=6, k=2)$p,
r2 idm(nj=1, s=2, N=6, k=2)$p,
idm(nj=1, s=2/2, N=6, k=2)$p,
idm(nj=1, s=2, N=6, k=2)$p) # Omega 2
<- c(idm(nj=1, s=1, N=6, k=3, cA=2)$p,
r3 idm(nj=1, s=2, N=6, k=3, cA=2)$p,
idm(nj=1, s=3/2, N=6, k=3, cA=2)$p,
idm(nj=1, s=3, N=6, k=3, cA=2)$p) # Omega 3
<- rbind(r1, r2, r3)
tb1 rownames(tb1) <- c("Omega1", "Omega2", "Omega3")
colnames(tb1) <- c("s=1", "s=2", "s=k/2", "s=k")
round(tb1,3)
#> s=1 s=2 s=k/2 s=k
#> Omega1 0.179 0.188 0.188 0.200
#> Omega2 0.214 0.250 0.214 0.250
#> Omega3 0.238 0.292 0.267 0.333
For \(M=6\) and \(s=1\), the CDF are:
<- cbind(
mat unlist(pbetabinom(M=6, x=1, s=1, N=6, y=0)),
unlist(pbetabinom(M=6, x=1, s=1, N=6, y=1)),
unlist(pbetabinom(M=6, x=1, s=1, N=6, y=2)),
unlist(pbetabinom(M=6, x=1, s=1, N=6, y=3)),
unlist(pbetabinom(M=6, x=1, s=1, N=6, y=4)),
unlist(pbetabinom(M=6, x=1, s=1, N=6, y=5)),
unlist(pbetabinom(M=6, x=1, s=1, N=6, y=6))
)colnames(mat) <- c("y=0", "y=1", "y=2", "y=3", "y=4", "y=5", "y=6")
round(mat, 3)
#> y=0 y=1 y=2 y=3 y=4 y=5 y=6
#> p.l 0.227 0.500 0.727 0.879 0.960 0.992 1
#> p.u 0.500 0.773 0.909 0.970 0.992 0.999 1
For \(s=2\), \(\overline{E}(\theta_R|n) = 0.375\), \(\underline{E}(\theta_R|n)=0.125\), \(\overline{\sigma}(\theta_R|n)=0.188\), and \(\underline{\sigma}(\theta_R|n)=0.110\).
For \(s=1\), \(\overline{E}(\theta_R|n) = 0.286\), \(\underline{E}(\theta_R|n)=0.143\), \(\overline{\sigma}(\theta_R|n)=0.164\), and \(\underline{\sigma}(\theta_R|n)=0.124\).
<- idm(nj=1, s=2, N=6, k=4)
op round(c(op$p.upper, op$p.lower, op$s.upper, op$s.lower),3)
#> [1] 0.375 0.125 0.188 0.110
<- idm(nj=1, s=1, N=6, k=4)
op round(c(op$p.upper, op$p.lower, op$s.upper, op$s.lower),3)
#> [1] 0.286 0.143 0.164 0.124
For \(s=2\), 95%, 90%, and 50% credible intervals are \([0.0031, 0.6587]\), \([0.0066, 0.5962]\), and \([0.0481, 0.3656]\), respectively.
For \(s=1\), 95%, 90%, and 50% credible intervals are \([0.0076, 0.5834]\), \([0.0150, 0.5141]\), \([0.0761, 0.2958]\), respectively.
round(hpd(alpha=3, beta=5, p=0.95),4) # s=2
#> a b
#> 0.0031 0.6588
round(hpd(alpha=3, beta=5, p=0.90),4) # s=2
#> a b
#> 0.0066 0.5962
round(hpd(alpha=3, beta=5, p=0.50),4) # s=2 (required for message of failure)
#> a b
#> 0.3641 0.9048
round(hpd(alpha=2, beta=5, p=0.95),4) # s=1
#> a b
#> 0.0076 0.5834
round(hpd(alpha=2, beta=5, p=0.90),4) # s=1
#> a b
#> 0.015 0.514
round(hpd(alpha=2, beta=5, p=0.50),4) # s=1
#> a b
#> 0.0760 0.2957
HPD interval, uniform prior \((s=2) [0.0133, 0.5273]\).
<- pscl::betaHPD(alpha=2, beta=6, p=0.95, plot=FALSE)
x round(x,4)
#> [1] 0.0133 0.5273
Test \(H_0: \theta_R \ge 1/2\) against \(H_a: \theta_R < 1/2\). The posterior lower and upper probabilities of \(H_0\) are \(\underline{P}(H_0|n)=0.00781\) and \(\overline{P}(H_0|n)=0.227\).
<- function(x) choose(7,1)*(1-x)^6
fn integrate(f=fn, lower=1/2, upper=1)$value
#> [1] 0.0078125
<- function(x) dbeta(x, 3, 5)
fn integrate(f=fn, lower=1/2, upper=1)$value
#> [1] 0.2265625
This example is taken from Peter Walley (1996).
<- seq(-0.99, 0.99, 0.02)
x <- ymin <- numeric(length(x))
ymax for(i in 1:length(x)) ymin[i] <- dbetadif(x=x[i], a1=9,b1=2,a2=8,b2=4)
for(i in 1:length(x)) ymax[i] <- dbetadif(x=x[i], a1=11,b1=0.01,a2=6,b2=6)
plot(x=x, y=cumsum(ymin)/sum(ymin), type="l", ylab="F(z)", xlab="z",
main=expression(paste("Fig 1. Posterior upper and lower CDFs for ", psi,
"=", theta[e]-theta[c])))
points(x=x, y=cumsum(ymax)/sum(ymax), type="l")
This example is taken from Peter Walley (1996).
Since the imprecision is the area between lower and upper probabilities, \(A = \overline{E} - \underline{E}\) =0.3475766
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.