The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

IAT-example

Ottavia M. Epifania

2022-02-15

library(implicitMeasures)

This vignette illustrates how to use the implicitMeasures package for computing the IAT D score. The illustration is based on the data set raw_data that comes with the package.

First thing first: Import and explore data

Labels containing specification .iat in variable blockcode identify IAT blocks.

data("raw_data")
# explore the dataframe
str(raw_data)
#> 'data.frame':    84726 obs. of  6 variables:
#>  $ Participant: int  4 4 4 4 4 4 4 4 4 4 ...
#>  $ latency    : int  2592 628 808 783 2059 1114 608 663 771 676 ...
#>  $ correct    : int  1 1 1 1 1 1 1 1 1 1 ...
#>  $ trialcode  : Factor w/ 32 levels "age","alert",..: 31 5 3 20 3 20 5 3 20 3 ...
#>  $ blockcode  : Factor w/ 13 levels "demo","practice.iat.Milkbad",..: 4 4 4 4 4 4 4 4 4 4 ...
#>  $ response   : Factor w/ 46 levels "","0","1","19",..: 43 43 43 43 43 43 43 43 43 43 ...
# explore the levels of the blockcode variable to identify the IAT blocks
levels(raw_data$blockcode)
#>  [1] "demo"                      "practice.iat.Milkbad"     
#>  [3] "practice.iat.Milkgood"     "practice.sc_dark.Darkbad" 
#>  [5] "practice.sc_dark.Darkgood" "practice.sc_milk.Milkbad" 
#>  [7] "practice.sc_milk.Milkgood" "test.iat.Milkbad"         
#>  [9] "test.iat.Milkgood"         "test.sc_dark.Darkbad"     
#> [11] "test.sc_dark.Darkgood"     "test.sc_milk.Milkbad"     
#> [13] "test.sc_milk.Milkgood"

Once the IAT blocks have been identified, it is possible to clean the IAT data by using the clean_iat() function. Since the data set also includes respondents’ demographic information (demo in the blockcode variable), it is possible to extract and store these information in a separate data frame:

iat_cleandata <- clean_iat(raw_data, sbj_id = "Participant",
                          block_id = "blockcode",
                          mapA_practice = "practice.iat.Milkbad",
                          mapA_test = "test.iat.Milkbad",
                          mapB_practice = "practice.iat.Milkgood",
                          mapB_test = "test.iat.Milkgood",
                          latency_id = "latency",
                          accuracy_id = "correct",
                          trial_id = "trialcode",
                          trial_eliminate = c("reminder", "reminder1"),
                          demo_id = "blockcode",
                          trial_demo = "demo")

Since also the demographic data has been specified, clean_iat() results in a list of 3 elements:

str(iat_cleandata)
#> List of 3
#>  $ data_keep     :Classes 'iat_clean' and 'data.frame':  19440 obs. of  8 variables:
#>   ..$ participant   : int [1:19440] 4 4 4 4 4 4 4 4 4 4 ...
#>   ..$ latency       : int [1:19440] 1282 1299 1435 1089 967 648 967 615 729 642 ...
#>   ..$ correct       : int [1:19440] 1 1 1 1 1 1 1 1 1 1 ...
#>   ..$ block_original: chr [1:19440] "practice.iat.Milkbad" "practice.iat.Milkbad" "practice.iat.Milkbad" "practice.iat.Milkbad" ...
#>   ..$ condition     : chr [1:19440] "MappingA" "MappingA" "MappingA" "MappingA" ...
#>   ..$ block_pool    : chr [1:19440] "practice" "practice" "practice" "practice" ...
#>   ..$ block         : chr [1:19440] "practice_MappingA" "practice_MappingA" "practice_MappingA" "practice_MappingA" ...
#>   ..$ trial_id      : Factor w/ 32 levels "age","alert",..: 20 6 20 6 20 6 20 6 20 23 ...
#>  $ data_eliminate:'data.frame':  64638 obs. of  6 variables:
#>   ..$ Participant: int [1:64638] 4 4 4 4 4 4 4 4 4 4 ...
#>   ..$ latency    : int [1:64638] 2592 628 808 783 2059 1114 608 663 771 676 ...
#>   ..$ correct    : int [1:64638] 1 1 1 1 1 1 1 1 1 1 ...
#>   ..$ trialcode  : Factor w/ 32 levels "age","alert",..: 31 5 3 20 3 20 5 3 20 3 ...
#>   ..$ blockcode  : Factor w/ 13 levels "demo","practice.iat.Milkbad",..: 4 4 4 4 4 4 4 4 4 4 ...
#>   ..$ response   : Factor w/ 46 levels "","0","1","19",..: 43 43 43 43 43 43 43 43 43 43 ...
#>  $ demo          :'data.frame':  3726 obs. of  6 variables:
#>   ..$ participant: int [1:3726] 4 4 4 4 4 4 4 4 4 4 ...
#>   ..$ latency    : int [1:3726] 53047 53047 53047 53047 21554 21554 11266 11266 11266 11266 ...
#>   ..$ correct    : int [1:3726] 1 1 1 1 1 1 1 1 1 1 ...
#>   ..$ trialcode  : Factor w/ 32 levels "age","alert",..: 19 1 21 8 22 4 10 11 12 13 ...
#>   ..$ blockcode  : Factor w/ 13 levels "demo","practice.iat.Milkbad",..: 1 1 1 1 1 1 1 1 1 1 ...
#>   ..$ response   : Factor w/ 46 levels "","0","1","19",..: 33 15 41 34 16 20 1 1 1 1 ...

data_keep is a data.frame with class iat_clean. It contains the data set for the compute_iat() function.

data_eliminate is a data.frame that contains all the discarded blocks and trials.

demo is a data.frame that contains all the trials identified as demo in the blockcode variable.

Store the first data_keep element in a data frame for the compute_iat() function.

iat_data <- iat_cleandata[[1]]
head(iat_data)
#>       participant latency correct       block_original condition block_pool
#> 60914           4    1282       1 practice.iat.Milkbad  MappingA   practice
#> 60915           4    1299       1 practice.iat.Milkbad  MappingA   practice
#> 60916           4    1435       1 practice.iat.Milkbad  MappingA   practice
#> 60917           4    1089       1 practice.iat.Milkbad  MappingA   practice
#> 60918           4     967       1 practice.iat.Milkbad  MappingA   practice
#> 60919           4     648       1 practice.iat.Milkbad  MappingA   practice
#>                   block  trial_id
#> 60914 practice_MappingA goodright
#> 60915 practice_MappingA darkright
#> 60916 practice_MappingA goodright
#> 60917 practice_MappingA darkright
#> 60918 practice_MappingA goodright
#> 60919 practice_MappingA darkright

Compute IAT D score

Once that IAT data have been cleaned with the clean_iat() function, it is possible to compute the D score by using the compute_iat() function.

This function only takes two arguments. The first argument is the data frame with class iat_clean, the second argument is a character specifying the D score algorithm for the computation. To compute multiple D score algorithms at the same time, use themulti_dscore() function.

dscore <- compute_iat(iat_data, Dscore = "d3")
str(dscore)
#> Classes 'dscore' and 'data.frame':   162 obs. of  23 variables:
#>  $ participant               : int  4 6 8 11 14 17 18 19 20 21 ...
#>  $ n_trial                   : int  120 120 120 120 120 120 120 120 120 120 ...
#>  $ nslow10000                : num  0 0 0 0 0 0 0 0 0 0 ...
#>  $ nfast400                  : num  0 0 0 0.01 0.07 0.04 0 0.05 0 0 ...
#>  $ nfast300                  : num  0 0 0 0 0 0 0 0 0 0 ...
#>  $ accuracy.practice_MappingA: num  1 0.95 0.7 0.9 0.95 0.9 0.95 0.95 0.85 0.9 ...
#>  $ accuracy.practice_MappingB: num  1 1 0.85 0.95 1 1 1 0.85 1 0.85 ...
#>  $ accuracy.test_MappingA    : num  1 0.9 1 0.95 0.9 0.925 0.95 0.95 0.8 0.9 ...
#>  $ accuracy.test_MappingB    : num  1 1 0.85 0.95 1 0.95 1 0.975 0.975 0.9 ...
#>  $ accuracy.MappingA         : num  1 0.917 0.9 0.933 0.917 ...
#>  $ accuracy.MappingB         : num  1 1 0.85 0.95 1 ...
#>  $ RT_mean.MappingA          : num  1037 1179 954 1297 852 ...
#>  $ RT_mean.MappingB          : num  788 596 926 731 604 ...
#>  $ mean_practice_MappingA    : num  1070 1224 1504 1608 821 ...
#>  $ mean_test_MappingA        : num  1021 1157 679 1141 867 ...
#>  $ mean_practice_MappingB    : num  889 611 1108 702 637 ...
#>  $ mean_test_MappingB        : num  737 589 836 745 587 ...
#>  $ d_practice_d3             : num  -0.647 -1.274 -0.584 -1.114 -0.514 ...
#>  $ d_test_d3                 : num  -0.878 -1.226 0.508 -0.816 -0.672 ...
#>  $ dscore_d3                 : num  -0.762 -1.25 -0.038 -0.965 -0.593 ...
#>  $ cond_ord                  : chr  "MappingA_First" "MappingB_First" "MappingB_First" "MappingA_First" ...
#>  $ legendMappingA            : chr  "practice.iat.Milkbad_and_test.iat.Milkbad" "practice.iat.Milkbad_and_test.iat.Milkbad" "practice.iat.Milkbad_and_test.iat.Milkbad" "practice.iat.Milkbad_and_test.iat.Milkbad" ...
#>  $ legendMappingB            : chr  "practice.iat.Milkgood_and_test.iat.Milkgood" "practice.iat.Milkgood_and_test.iat.Milkgood" "practice.iat.Milkgood_and_test.iat.Milkgood" "practice.iat.Milkgood_and_test.iat.Milkgood" ...

The compute_iat() function results in a data.frame with class dscore containing a number of rows equal to the number of participants. The columns contain the D score and otehr useful information on the performance of each respondent (see the documentation of the compute_iat() function for further details). The IAT_rel(), descript_d(), d_point(), and d_density() functions require the object resulting from function compute_iat().

IAT descriptive statistics and reliability

The descriptive statistics of the D scores computed on the practice and test blocks, and the actual D scores can be easily obtained with the descript_d() function:

descript_d(dscore) # Data frame containing IAT D-scores
#>             Mean   SD   Min  Max
#> D-score    -0.56 0.54 -1.59 1.29
#> D-practice -0.59 0.64 -1.59 1.26
#> D-test     -0.54 0.56 -1.59 1.32

By specifying latex = TRUE, function descript_d() print the results in LaTeX code:

descript_d(dscore, # Data frame containing IAT D-scores
           latex = TRUE) # obtain the code for latex tables
#> % latex table generated in R 4.1.2 by xtable 1.8-4 package
#> % Tue Feb 15 18:40:38 2022
#> \begin{table}[ht]
#> \centering
#> \begin{tabular}{rrrrr}
#>   \hline
#>  & Mean & SD & Min & Max \\ 
#>   \hline
#> D-score & -0.56 & 0.54 & -1.59 & 1.29 \\ 
#>   D-practice & -0.59 & 0.64 & -1.59 & 1.26 \\ 
#>   D-test & -0.54 & 0.56 & -1.59 & 1.32 \\ 
#>    \hline
#> \end{tabular}
#> \end{table}

The IAT_rel() function computes the reliability of the IAT by correlating the D score obtained from practice blocks with the D score obtained from test blocks (see Gawronski et al. 2017 for further details):

IAT_rel(dscore)
#> $`Test-pratice Reliability`
#> [1] 0.65
#> 
#> $`Number of participants`
#> [1] 162
#> 
#> attr(,"class")
#> [1] "IAT_rel"

Plotting the results

The implicitMeasures package comes with several functions for obtaining clear representations of the results at both individual respondent and sample levels. Additionally, it includes a function for computing and plotting multiple IAT D score algorithms at the same time.

Individual respondent plot

The d_point() function plots the IAT D score for each respondent.

d_point(dscore) # Data frame containing IAT D scores
d_point() function with default settings

d_point() function with default settings

In case of large sample size, the label identifying each respondent is difficult to read. It can be eliminated by setting x_values = FALSE.

Respondents can be arranged by increasing or decreasing D scores by setting argument order_sbj equal to "D-increasing" or "D-decreasing", respectively. Descriptive statistics (\(M_{\text{D-score}}\pm 2sd\)) can be added by setting include_stats = TRUE. Finally, the color of the points can be changed by using argument col_point.

d_point(dscore, # dataframe containing IAT D-scores
       order_sbj = "D-decreasing", # change respondents order
       x_values = FALSE, # remove respodents' labels
       include_stats = TRUE, # include descriptive statistics
       col_point = "lightskyblue") # change points color
d_point() function with   settings change

d_point() function with settings change

Sample level plot

The d_density() function plots the distribution of the IAT D scores. It allows for choosing the most appropriate representation.

d_density(dscore) # dataframe containing IAT Dscores
d_density() function with default settings

d_density() function with default settings

The number of bins can be changed with argument n_bin. Argument graph can be used for changing the graphical representation of the data. It is possible to choose an histogram representation (graph = "histogram", default), a representation of the density distribution (graph = "density"), or a violin plot (graph = "violin"). Argument col_fill can be used to change the color of the points representing each respondent’s score in the violin plot. Descriptive statistics (i.e., \(M_{\text{D-score}} \pm 2sd\)) can be added to the graph by setting argument include_stats = TRUE.

d_density(dscore, # dataframe containing IAT Dscores
        graph = "violin", # change graphical representation
        include_stats = TRUE) # include descriptive statistics
\label{fig:sampleSettings}d_density() function with settings change

d_density() function with settings change

Multiple D scores

The multi_dscore() function computes and plot multiple D score algorithms. The D score algorithms that can be computed depend on the IAT administration. If the IAT administration included a feedback strategy (i.e., built-in correction), only D1 and D2 algorithms should be computed. If the IAT administration did not include a feedback strategy, then algorithms D3, D4, D5, and D6 should be computed. An exhaustive and detailed illustration of the D score algorithms is provided in the “Implicit Measures” vignette. To specify the algorithms that can be computed, argument ds must be set equal to either "built-in" (for the computation of D1 and D2) or error-inflation (for the computation of all other algorithms).

multi_scores <- multi_dscore(iat_data, # object with class "iat_clean"
                             ds = "error-inflation") # string specifying the 
                                            # algorithms to compute

The multi_dscore() function results in a list containing two objects. The first object is a data.frame that contains all the computed algorithms and the respondent IDs.

multi_d <- multi_scores[[1]]
head(multi_d)
#>   participant   dscore_d3   dscore_d4   dscore_d5   dscore_d6
#> 1           4 -0.76242699 -0.76242699 -0.76242699 -0.76242699
#> 2           6 -1.24976744 -1.26905702 -1.24976744 -1.26905702
#> 3           8 -0.03801459  0.02021915 -0.03801459  0.02021915
#> 4          11 -0.96488057 -0.97207623 -0.95538961 -0.96294963
#> 5          14 -0.59341709 -0.57385144 -0.59236921 -0.57213017
#> 6          17 -1.30474798 -1.27140694 -1.27997040 -1.26676628
str(multi_d)
#> 'data.frame':    162 obs. of  5 variables:
#>  $ participant: int  4 6 8 11 14 17 18 19 20 21 ...
#>  $ dscore_d3  : num  -0.762 -1.25 -0.038 -0.965 -0.593 ...
#>  $ dscore_d4  : num  -0.7624 -1.2691 0.0202 -0.9721 -0.5739 ...
#>  $ dscore_d5  : num  -0.762 -1.25 -0.038 -0.955 -0.592 ...
#>  $ dscore_d6  : num  -0.7624 -1.2691 0.0202 -0.9629 -0.5721 ...

The second object is a ggplot graph displaying the distribution of the D scores computed with each algorithm in violin plots.

multi_scores[[2]]
Multiple D-scores representation

Multiple D-scores representation

References

Gawronski, Bertram, Mike Morrison, Curtis E Phills, and Silvia Galdi. 2017. “Temporal Stability of Implicit and Explicit Measures: A Longitudinal Analysis.” Personality and Social Psychology Bulletin 43 (3): 300–312. https://doi.org/10.1177/0146167216684131.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.