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Abstract

This brief document details the algorithm implemented in the ifit package and provides
an overview of the optional arguments for the ifit::ifit function.
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Package ifit addresses the problem of fitting a parametric model
{
pϑ: ϑ ∈ Rp

}
, to some data

yobs. It operates under the following assumptions:

1. It is not possible to analytically compute the likelihood function, moments, or other
quantities typically used for statistical inference. However, for any given ϑ, it is possible
to simulate pseudo-data y ∼ pϑ.

2. The only prior information available on the parameters are boundary constraints where
each parameter ϑi is known to lie within a specific interval [li, ui], i.e., it is possible to
assume that ϑ belongs to the hypercube Θ = {(ϑ1, . . . , ϑp) ∈ Rp : li ≤ ϑi ≤ ui}.

The implemented estimator is a special case of the class of methods that Jiang and Turnbull
(2004) term indirect inference based on intermediate statistics. It can also be viewed as
an application of the simulated generalized method of moments (McFadden 1989; Pakes and
Pollard 1989). Additionally, it is closely related to the work of Cox and Kartsonaki (2012) on
fitting complex parametric models.

We start defining the score

u
(
yobs; ϑ

)
= tobs − τ

(
ϑ
)
,

where tobs = Ψ(yobs) is a vector of q, q ≥ p, features intended to summarize the evidence from
the data, and τ(ϑ) = Eϑ

(
Ψ(y)

)
is its expected value. The package then aims to find

ϑ̂ = arg min
ϑ∈Θ

u′(yobs; ϑ
)
V −1u

(
yobs; ϑ

)

where V is positive-definite weighting matrix.

Assuming the model is well specified (i.e., there exists ϑ0 such that yobs ∼ pϑ0
), it can be shown

that, under the usual regularity and identifiability conditions, the estimates is consistent for
every positive-definite matrix V . However, the efficiency depends on V and the most efficient
choice for the weighting matrix is V = Σ

(
ϑ0
)
, where Σ

(
ϑ
)

= varϑ

(
Ψ(y)

)
. Since ϑ0 is unknown,

this choice of weighting matrix is not directly possible. However, it is easy to proof under
the usual assumptions that an asymptotically equivalent estimator to the optimal one can be
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obtained by solving the quasi-likelihood equation

g(ϑ̂) = J ′(ϑ̂
)
Σ−1(ϑ̂

)
u
(
yobs; ϑ̂

)
= 0p (1)

where J
(
ϑ
)

denotes the Jacobian matrix J
(
ϑ
)

= ∂τ(ϑ)/∂ϑ. In addition, continuing to assume
that the model is well-specified and that all necessary regularity conditions hold, the dispersion
matrix of ϑ̂ can be estimated by v̂ar

(
ϑ̂
)

= Ω
(
ϑ̂
)−1

where Ω
(
ϑ
)
= J ′

(
ϑ
)
Σ−1

(
ϑ
)
J
(
ϑ
)
.

The implemented algorithm first performs a global search to find a promising starting point.
This is followed by a local search, which refines the solution using a trust-region version of
the Fisher scoring iteration for solving (1). This basic iteration is defined as

ϑnew = ϑold + Ω
(
ϑ
)−1

g
(
ϑold

)
.

Because τ
(
ϑ
)
, J
(
ϑ
)

and Ω
(
ϑ
)

are unknown, they are approximated through simulations. The
approach is sequential. In particular, after step k of the algorithm, Nk pairs [ϑi; ti], where
ti = Ψ(yi) with yi ∼ pϑi

, are available. These simulated values are then used to decide the
location of the next set of simulations, i.e., to choose ϑNk+1, . . . , ϑNk+1

. When needed, the
approximations of τ

(
ϑ
)
, J
(
ϑ
)
, and Ω

(
ϑ
)

are computed from these simulated pairs using local
regression techniques. Specifically, a simple kNN average is used to compute the necessary
quantities during the global search. In contrast, during the local search, they are obtained
by fitting linear models neighborhoods of the current guess including a progressively larger
number of points.

The details are as follows.

1: Input (default values in brackets): Ninit (1000), Nelite (100), Aelite (0.5), Tolglobal (0.1),
NAddglobal (100), NTotglobal (20000), Rhomax (0.1), Lambda (0.1), Tollocal (1), NFitlocal

(4000), NAddlocal (10), Tolmodel (1.5).
2: Set k ← 0.
3: Start Global Search

4: Initialization. Set N0 ← Ninit and draw ϑ1, . . . , ϑN0
in Θ using Latin hypercube

sampling. Simulate the corresponding summary statistics t1, . . . , tN0
.

5: Estimation of τ(ϑ) and V . Estimate τ(ϑ) using kNN regression. Specifically, for
i = 1, . . . , Nk, calculate

τ̂k,i =
∑

{r:dG(ϑr,ϑi)≤dk,i}


1−

(
dG(ϑr, ϑi)

dk,i

)3



3

tr

where dG(ϑ′, ϑ′′) =
√∑p

i=1[(ϑ′
i − ϑ′′

i )/(ui − li)]2 and dk,i is determined such that the size

of the neighbourhood {r : d(ϑr, ϑi) ≤ dk,i} is equal to floor
(√

Nk

)
. In addition, set

Vk ← SkRkSk where Sk is the q × q diagonal matrix containing the Median Absolute
Deviations (MADs) of the elements of the vector tk − τ̂k,i (specifically, one MAD for
each summary statistic), and Rk is the correlation matrix among the Gaussian scores (or
normal scores) of the same elements of ti − τ̂k,i (Boudt, Cornelissen, and Croux 2012).

6: Elite sample. Determine the indexes ik,1, . . . , ik,Ek
of the

Ek = floor
[
Nelite + (Ninit − Nelite)A

(NK/Ninit)2

elite

]
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couples (ϑi, ti) with the smallest Mahalanobis distances
(
tobs− τ̂k,i

)′
V −1

k

(
tobs− τ̂k,i

)
. Then,

compute

Mk ← sample mean of ϑik,1
, . . . , ϑik,Ek

Ck ← sample covariance matrix of ϑik,1
, . . . , ϑik,Ek

and denote with sk,1, . . . , sk,p the corresponding sample standard deviation, i.e., the square
root of the diagonal of Ck.

7: Convergenge? If either

(i) sk,r < max
(
1, |Mk,r|

)
Tolglobal ∀r = 1, . . . , p, or

(ii) Nk = NTotglobal,

exit from the global search and go to 11.
8: Elite sample reproduction. Set Nk+1 ← min

(
Nk + NAddglobal, NTotglobal

)
and sample

ϑNK+1, . . . , ϑNk+1
from a mixture of Ek multivariate normal distributions (truncated to

Θ) with means ϑik,1
, . . . , ϑik,Ek

and the same dispersion matrix Ck. Simulate the corre-
sponding summary statistics tNk+1, . . . , tNk+1

.
9: Set k ← k + 1 and go to 5.

10: End Global Search

11: Set Lk ← Nelite, ρk ← Rhomax/10 and ϑ̂k ← ϑbest where ϑbest is the “best point” sampled
during the previous phase, i.e., it satisfies

(
tobs − τ̂k,best

)′
V −1

k

(
tobs − τ̂k,best

)
= min

i=1,...,Nk

(
tobs − τ̂k,i

)′
V −1

k

(
tobs − τ̂k,i

)
.

12: Start Local Search

13: Estimation of g(ϑ̂k), J(ϑ̂k) and Ω(ϑ̂k). Fit to the Lk couples (ϑi, ti) closest to ϑ̂k, as

measured by the distance dL(ϑ, ϑ̂(k)) =
∑p

i=1

[
(ϑi−ϑ̂

(k)
i )/ max(1, |ϑ(k)

i |)
]2

, the multivariate

linear regression model ti = τ + B(ϑi − ϑ̂k) + Erri. Denote with τ̂k, Bk, Wk, Hk the least
squares estimates of τ , B, var(Erri) and var(τ̂k), respectively. Further, set

Jk ←
{

Bk if Lk = Nelite

(1− Lambda)Jk−1 + LambdaBk otherwise
,

Vk ←
{

Wk if Lk = Nelite

(1− Lambda)Vk−1 + LambdaWk otherwise
,

Ωk ← J ′
kV −1

k Jk,

ĝk ← J ′
kV −1

k

(
tobs − τ̂k

)
,

v̂ar
(
ĝk

)
← J ′

kV −1
k HkV −1

k Jk.

14: New guess. Compute ϑ̃k ← ϑ̂k + δk where δk is the solution of the linear programming
problem

min
δ∈∆k

p∑

i=1

|rk,i(δ)|

where rk(δ) = Ωkδ − ĝk and ∆k =
{
δ ∈ Rp : ϑ̂k + δ ∈ Θ and |δi| ≤ max(1, |ϑ̂k,i|)ρk

}
.
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15: Convergence? If Lk = NFitlocal and ĝ′
kv̂ar

(
ĝk

)−1
ĝk < pTollocal exit from the local

search and go to 20.
16: Sampling near the new guess. Set Nk+1 ← Nk + NAddlocal and draw ϑNk+1, . . . , ϑNk+1

uniformily in
{
ϑ ∈ Θ : (ϑ − ϑ̃k)′Ωk(ϑ − ϑ̃k) ≤ 1

}
. Simulate the corresponding summary

statistics tNk+1, . . . , tNk+1
.

17: Accept/reject the guess. Adjust the size of the trust region. Compute the differences
between the last sampled summary statistics and their predictions obtained from the
current linear model Di = ti − τ̂k −Bk(ϑi − ϑ̃k) for i = Nk + 1, . . . , Nk+1. If

Nk+1∑

i=Nk+1

D′
iV

−1
k Di < q(Nk+1 −Nk)Modok

accept the proposal and set ϑ̂k+1 ← ϑ̃k and ρk+1 ← min(2ρk, Rhomax). Otherwise, set
ϑ̂k+1 ← ϑ̂k and ρk+1 ← ρk/4.

18: Set k ← k + 1, Lk ← min(NFitlocal, Lk−1 + NAddlocal) and go to 13.
19: End Local Search

20: Set ϑ̂← ϑ̃k and v̂ar(ϑ̂) = Ω−1
k .

References

Boudt K, Cornelissen J, Croux C (2012). “The Gaussian Rank Correlation Estimator: Ro-
bustness Properties.” Statistics and Computing, 22(2), 471–483. ISSN 1573-1375. doi:

10.1007/s11222-011-9237-0.

Cox DR, Kartsonaki C (2012). “The Fitting of Complex Parametric Models.” Biometrika,
99(3), 741–747. doi:10.1093/biomet/ass030.

Jiang W, Turnbull B (2004). “The Indirect Method: Inference Based on Intermedi-
ate Statistics: A Synthesis and Examples.” Statistical Science, 19(2), 239–263. doi:

10.1214/088342304000000152.

McFadden D (1989). “A Method of Simulated Moments for Estimation of Discrete Response
Models Without Numerical Integration.” Econometrica, 57(5), 995–1026. doi:10.2307/

1913621.

Pakes A, Pollard D (1989). “Simulation and the Asymptotics of Optimization Estimators.”
Econometrica, 57(5), 1027–1057. doi:10.2307/1913622.

Affiliation:

Guido Masarotto
Department of Statistical Sciences
University of Padova, Italy
Email: guido.masarotto@unipd.it

https://doi.org/10.1007/s11222-011-9237-0
https://doi.org/10.1007/s11222-011-9237-0
https://doi.org/10.1093/biomet/ass030
https://doi.org/10.1214/088342304000000152
https://doi.org/10.1214/088342304000000152
https://doi.org/10.2307/1913621
https://doi.org/10.2307/1913621
https://doi.org/10.2307/1913622
mailto:guido.masarotto@unipd.it

