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Abstract
This brief document details the algorithm implemented in the ifit package and provides

an overview of the optional arguments for the ifit::ifit function.

Keywords: Indirect inference based on intermediate statistics; Generalized method of mo-
ments; Parametric estimation; Simulation-based model fitting.

Package ifit addresses the problem of fitting a parametric model {py: ¢ € RP}, to some data
Yobs- 1t operates under the following assumptions:

1. It is not possible to analytically compute the likelihood function, moments, or other
quantities typically used for statistical inference. However, for any given 1, it is possible
to simulate pseudo-data y ~ pyg.

2. The only prior information available on the parameters are boundary constraints where
each parameter ¢J; is known to lie within a specific interval [l;, u;], i.e., it is possible to
assume that ¥ belongs to the hypercube © = {(91,...,9,) € RP : l; < 9; < u;}.

The implemented estimator is a special case of the class of methods that Jiang and Turnbull
(2004) term indirect inference based on intermediate statistics. It can also be viewed as
an application of the simulated generalized method of moments (McFadden 1989; Pakes and
Pollard 1989). Additionally, it is closely related to the work of Cox and Kartsonaki (2012) on
fitting complex parametric models.

We start defining the score
u(yobs; 79) = tobs — 7—(79)7

where tops = U(yops) is a vector of ¢, ¢ > p, features intended to summarize the evidence from
the data, and 7(9) = Ey(¥(y)) is its expected value. The package then aims to find

- arg %1613 ' (Yobs; ﬁ)vilu(yobs; )

where V is positive-definite weighting matrix.

Assuming the model is well specified (i.e., there exists Jg such that y.ps ~ py,), it can be shown
that, under the usual regularity and identifiability conditions, the estimates is consistent for
every positive-definite matrix V. However, the efficiency depends on V and the most efficient
choice for the weighting matrix is V' = X(9y), where X () = vary(¥(y)). Since ¥ is unknown,
this choice of weighting matrix is not directly possible. However, it is easy to proof under
the usual assumptions that an asymptotically equivalent estimator to the optimal one can be
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obtained by solving the quasi-likelihood equation
9(0) = J' (D)5 (D)ulyons; D) = 0, (1)

where J(9) denotes the Jacobian matrix J () = d7(¢9)/99. In addition, continuing to assume
that the model is well-specified and that all necessary regularity conditions hold, the dispersion
matrix of 9 can be estimated by var (1) = 9(19)_1 where Q(9)= J' (9)X~ (19)J(29).

The implemented algorithm first performs a global search to find a promising starting point.
This is followed by a local search, which refines the solution using a trust-region version of
the Fisher scoring iteration for solving (1). This basic iteration is defined as

ﬁnew = ﬁold + Q(ﬁ)—lg(ﬁold)-

Because 7(0), J(0) and Q(9) are unknown, they are approximated through simulations. The
approach is sequential. In particular, after step k of the algorithm, Ny pairs [J;;¢;], where
ti = ¥(y;) with y; ~ py,, are available. These simulated values are then used to decide the
location of the next set of simulations, i.e., to choose Uy, 41,...,Un, ;- When needed, the
approximations of 7 (1), J(¢9), and Q(9) are computed from these simulated pairs using local
regression techniques. Specifically, a simple kNN average is used to compute the necessary
quantities during the global search. In contrast, during the local search, they are obtained
by fitting linear models neighborhoods of the current guess including a progressively larger
number of points.

The details are as follows.
1: Input (default values in brackets): Nj,i (1000), Nejize (100), Agite (0.5), ToLgiopar (0.1),

NAdd jiobai (100), NTot giobai (20000), Rhogpq, (0.1), Lambda (0.1), Toljpeq (1), NFitjoea
(4000), NAdd;ocar (10), Tolodel (15)

2: Set k < 0.
3: Start Global Search
Initialization. Set Ny < Njpie and draw 9q,...,0y, in © using Latin hypercube

sampling. Simulate the corresponding summary statistics ¢1,...,tn,-
5: Estimation of 7(¥) and V. Estimate 7() using kNN regression. Specifically, for

1 =1,..., N, calculate

de(0r,09)\°]
{rida(9r,9;)<dy,;} i
where dg (¢, 9") = \/Z —9")/(u; — ;)]? and dy,; is determined such that the size

of the neighbourhood {r : (ﬁr,ﬁi) < di;} is equal to floor (v/Ni). In addition, set
Vi < SpRiSy where Si is the ¢ x ¢ diagonal matrix containing the Median Absolute
Deviations (MADs) of the elements of the vector ¢, — 71, (specifically, one MAD for
each summary statistic), and Ry is the correlation matrix among the Gaussian scores (or
normal scores) of the same elements of t; — 73 ; (Boudt, Cornelissen, and Croux 2012).

6: Elite sample. Determine the indexes iy 1, ..., ik g, of the

Nk Ninit)?
Ey, = floor [Nelite + (Ninie — Nelite)Aglig/ g }
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couples (¢;,t;) with the smallest Mahalanobis distances (fops —?k,i)/Vk_l (tobs —7k,i). Then,

compute
My, < sample mean of 291-,@71, .. ,ﬂik’Ek
Cy < sample covariance matrix of s, ..., ¥
and denote with sy 1,. .., sg, the corresponding sample standard deviation, i.e., the square
root of the diagonal of Cj.
7 Convergenge? 1If either
(1) sk, < max(1,|My,|)Tolgopa Vr =1,...,p, or
(11) Nk = NTOtglobala
exit from the global search and go to 11.
8: Elite sample reproduction. Set Nyyi min(Nk + NAddglobal,NTotglobal) and sample
UNg+1,-++,UN,,, from a mixture of Ej multivariate normal distributions (truncated to

©) with means ¥;, ., ..
sponding summary statistics tn, 41, .-, N, -

9: Set k < k+ 1 and go to 5.

10: End Global Search

11: Set Ly < Nejite, pr < Rhopmas/10 and 7§k < Dpest Where Uyt is the “best point” sampled
during the previous phase, i.e., it satisfies

-, Vi, p, and the same dispersion matrix Cj. Simulate the corre-

(tobs - %k,best),vkil (tobs - 7A_k:,best) = i:minNk (tobs - 7A_k,i),‘/kil (tobs - 7A_k,z) .

12: Start Local Search

13: Estimation of g(0x), J(9;) and Q(J;). Fit to the Lj couples (9;,;) closest to O, as
measured by the distance dr, (49, 9%)) = Y2 (9 —@Ek))/ max(1, |19£k) bl ?, the multivariate
linear regression model t; = 7 + B(d; — ﬁ‘k) + Err;. Denote with 73, By, Wi, Hy, the least
squares estimates of 7, B, var(Err;) and var(7%), respectively. Further, set

o B, if Ly = Negite
(1 — Lambda)Ji_1 + LambdaBj, otherwise

Vi o {Wk if Ly, = Negite
(1 — Lambda)Vj_; + LambdaW}, otherwise
Qe < LV g,
Gk TRV (tobs — 7).
var (gr) < Jp Vi L HR VN

14: New guess. Compute U < Ui + 85, where 8, is the solution of the linear programming
problem
P
min Tk (0
pin 3 )

where 74(0) = Q6 — g and A, = {6 € RP: Jp + 6 € © and 10;] < max(1, |1§;“\)pk}
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15: Convergence? If L = NFitj,.q and g;cVa\r(gk)_lgk < pToljyeq exit from the local
search and go to 20.

16: Sampling near the new guess. Set Npi1 <= Ni + NAddjocq; and draw U, 41,..., 9N,
uniformily in {9 € © : (¥ — J3)'Q(9 — Jx) < 1}. Simulate the corresponding summary
statistics tn +1,- -+ Ny, -

17: Accept/reject the guess. Adjust the size of the trust region. Compute the differences
between the last sampled summary statistics and their predictions obtained from the
current linear model D; = t; — 7, — B(9; — Uy) for i = Ny + 1,..., Npgq. If

N1
Z D,/L»VkilDi < q(Nk+1 — Nk)MOdok
i=Np+1

aAccept tl}e proposal and set 'lgk+1 — ﬁk and pri1 < min(2pg, Rho,.,). Otherwise, set
Vpy1 < Up and pryy — pr/4.

18: Set k < k+ 1, L < min(NFitjpear, Lx—1 + NAddjeeq;) and go to 13.

19: End Local Search

20: Set ¥ + U, and var(d) = (O

References

Boudt K, Cornelissen J, Croux C (2012). “The Gaussian Rank Correlation Estimator: Ro-
bustness Properties.” Statistics and Computing, 22(2), 471-483. ISSN 1573-1375. doi:
10.1007/s11222-011-9237-0.

Cox DR, Kartsonaki C (2012). “The Fitting of Complex Parametric Models.” Biometrika,
99(3), 741-747. doi:10.1093/biomet/ass030.

Jiang W, Turnbull B (2004). “The Indirect Method: Inference Based on Intermedi-
ate Statistics: A Synthesis and Examples.” Statistical Science, 19(2), 239-263. doi:
10.1214/088342304000000152.

McFadden D (1989). “A Method of Simulated Moments for Estimation of Discrete Response
Models Without Numerical Integration.” Econometrica, 57(5), 995-1026. doi:10.2307/
1913621.

Pakes A, Pollard D (1989). “Simulation and the Asymptotics of Optimization Estimators.”
Econometrica, 57(5), 1027-1057. doi:10.2307/1913622.

Affiliation:

Guido Masarotto

Department of Statistical Sciences
University of Padova, Italy

Email: guido.masarotto@unipd.it


https://doi.org/10.1007/s11222-011-9237-0
https://doi.org/10.1007/s11222-011-9237-0
https://doi.org/10.1093/biomet/ass030
https://doi.org/10.1214/088342304000000152
https://doi.org/10.1214/088342304000000152
https://doi.org/10.2307/1913621
https://doi.org/10.2307/1913621
https://doi.org/10.2307/1913622
mailto:guido.masarotto@unipd.it

