The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
S7 class (with Ops) for influence function based estimands
You can install the development version of ife from GitHub with:
# install.packages("pak")
::pak("nt-williams/ife") pak
library(ife)
<- 500
n <- runif(n)
w <- rbinom(n, 1, 0.5)
a <- rbinom(n, 1, plogis(-0.75 + a + w))
y
<- data.frame(w, a, y)
foo <- foo0 <- foo
foo1 $a <- 1
foo1$a <- 0
foo0
<- 0.5
pi <- glm(y ~ a + w, data = foo, family = binomial())
m
<- predict(m, type = "response")
Qa <- predict(m, newdata = foo1, type = "response")
Q1 <- predict(m, newdata = foo0, type = "response")
Q0
<- a / pi * (y - Qa) + Q1
if1 <- (1 - a) / pi * (y - Qa) + Q0
if0
<- influence_func_estimand(mean(if1), if1)
ife1 <- influence_func_estimand(mean(if0), if0)
ife0
- ife0
ife1 #> • Estimand: 0.17
#> • Std. error: 0.04
#> • 95% Conf. int.: 0.08, 0.25
/ ife0
ife1 #> • Estimand: 1.35
#> • Std. error: 0.11
#> • 95% Conf. int.: 1.14, 1.56
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.