The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

ife

S7 class (with Ops) for influence function based estimands

Installation

You can install the development version of ife from GitHub with:

# install.packages("pak")
pak::pak("nt-williams/ife")
library(ife)

n <- 500
w <- runif(n)
a <- rbinom(n, 1, 0.5)
y <- rbinom(n, 1, plogis(-0.75 + a + w))

foo <- data.frame(w, a, y)
foo1 <- foo0 <- foo
foo1$a <- 1
foo0$a <- 0

pi <- 0.5
m <- glm(y ~ a + w, data = foo, family = binomial())

Qa <- predict(m, type = "response")
Q1 <- predict(m, newdata = foo1, type = "response")
Q0 <- predict(m, newdata = foo0, type = "response")

if1 <- a / pi * (y - Qa) + Q1
if0 <- (1 - a) / pi * (y - Qa) + Q0

ife1 <- influence_func_estimand(mean(if1), if1)
ife0 <- influence_func_estimand(mean(if0), if0)

ife1 - ife0
#> • Estimand: 0.17
#> • Std. error: 0.04
#> • 95% Conf. int.: 0.08, 0.25
ife1 / ife0
#> • Estimand: 1.35
#> • Std. error: 0.11
#> • 95% Conf. int.: 1.14, 1.56

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.