The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
holodeck
To simulate co-varying multivariate normal data one can use the
mvrnorm()
function from the MASS
package.
However, this requires input of a covariance matrix and returns a
matrix. The holodeck
package provides functions that are
“tidy” in the sense that they work with dataframes and the pipe operator
(%>%
). It also includes some functions that provide an
interface between the Bioconductor package ropls
and the
tidyverse.
sim_*()
holodeck
provides functions to simulate different kinds
of data as columns in a tibble:
sim_cat()
for categorical variablessim_covar()
for multivariate normal numeric datasim_discr()
for multivariate normal data with different
means for levels of some grouping variablesim_missing()
for randomly introducing
NA
sTo simulate multivariate data you need to start with a dataframe or a
tibble. Once you have a dataframe or tibble, the sim_*()
functions add columns onto it.
df <- tibble(Y = rep(c("a", "b"), each = 5))
df %>% sim_covar(n_vars = 5, var = 1, cov = 0.5)
#> # A tibble: 10 × 6
#> Y V1 V2 V3 V4 V5
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 a 1.32 0.338 -0.281 0.0491 1.49
#> 2 a -0.305 1.18 -0.405 1.25 1.67
#> 3 a 0.498 0.510 1.06 0.215 0.169
#> 4 a 0.155 -0.946 0.569 -0.814 -0.808
#> 5 a 2.16 0.752 0.811 1.48 0.964
#> 6 b -0.710 -1.30 -0.705 -0.264 -1.51
#> 7 b -0.290 -0.618 0.597 1.11 -1.11
#> 8 b -0.276 -0.611 -0.0108 -0.295 -0.226
#> 9 b -0.697 -0.360 -1.72 0.0576 -1.24
#> 10 b -2.19 -0.926 -0.945 -0.305 0.0470
Optionally you can create a tibble with the sim_covar()
or sim_cat()
functions by providing them with the
N
argument instead of .data
.
sim_covar(n_obs = 10, n_vars = 5, var = 1, cov = 0.5)
#> # A tibble: 10 × 5
#> V1 V2 V3 V4 V5
#> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 -0.629 -0.801 0.631 -0.0779 0.0657
#> 2 0.310 2.31 1.00 -0.150 -1.18
#> 3 -0.979 -0.312 -1.85 0.232 -1.68
#> 4 1.59 0.670 0.123 -0.290 -0.397
#> 5 1.86 0.888 1.75 0.546 1.15
#> 6 -0.687 -0.826 -0.884 -1.28 -0.427
#> 7 -0.191 0.0295 -1.09 -1.43 -1.09
#> 8 0.620 0.680 1.98 1.53 -0.189
#> 9 -1.34 -0.477 -1.68 -0.531 0.451
#> 10 -0.505 0.194 0.235 0.0377 0.742
sim_cat()
is a rather simple wrapper that just creates a
column of categorical data. Eventually, it will be expanded to allow
creation of crossed and nested factors.
sim_cat(n_obs = 10, n_groups = 2)
#> # A tibble: 10 × 1
#> group
#> <chr>
#> 1 a
#> 2 a
#> 3 a
#> 4 a
#> 5 a
#> 6 b
#> 7 b
#> 8 b
#> 9 b
#> 10 b
sim_discr()
simulates covarying data that differs in
means between levels of some grouping variable.
df %>%
group_by(Y) %>%
sim_discr(n_vars = 5, var = 1, cov = 0.1, group_means = c(1, -1))
#> # A tibble: 10 × 6
#> # Groups: Y [2]
#> Y V1 V2 V3 V4 V5
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 a 3.32 2.51 1.04 1.31 1.21
#> 2 a 2.01 0.0511 2.08 1.44 0.143
#> 3 a 0.607 1.94 1.73 0.182 0.967
#> 4 a 1.35 1.56 1.84 0.119 1.71
#> 5 a 1.82 0.0868 1.05 -0.146 1.55
#> 6 b -0.783 -0.696 -1.33 -1.09 -1.20
#> 7 b -3.17 -1.35 -1.99 -1.82 -2.53
#> 8 b -1.20 -0.340 0.157 0.00756 -1.00
#> 9 b -0.873 -0.626 0.468 -1.69 -2.20
#> 10 b 0.381 -1.17 -0.823 -0.461 -0.879
%>%
One advantage of the holodeck
package is the ability to
chain functions together to create complex data covariance structures.
You can chain functions together in any order, although the
sim_discr()
function requires a grouping variable.
All of the sim_*
functions (besides
sim_missing()
) take an optional name argument which names
the variables created.
df <-
sim_covar(n_obs = 20, n_vars = 5, var = 1, cov = 0.1, name = "low") %>% #5 variables with low covariance
sim_covar(n_vars = 5, var = 1, cov = 0.8, name = "high") #5 variables with high covariance
Now we could add a categorical variable, and some variables that discriminate between levels of our categorical variable
df1 <-
df %>%
sim_cat(n_groups = 2, name = "factor") %>%
group_by(factor) %>%
sim_discr(n_vars = 5, var = 1, cov = 0.1, group_means = c(-1, 1), name = "discr") %>%
ungroup()
Finally, if you want to simulate missing values, you can use
sim_missing()
to randomly introduce NAs.
df2 <-
df1 %>%
sim_missing(prop = 0.1)
df2
#> # A tibble: 20 × 16
#> factor low_1 low_2 low_3 low_4 low_5 high_1 high_2 high_3
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 a 1.15 -0.179 -0.380 -0.844 -0.0127 1.35 1.34 1.66
#> 2 a 1.23 -0.0830 -0.747 -0.330 -0.760 -1.76 -1.45 -0.765
#> 3 a -0.761 0.931 0.0640 -0.334 NA -0.0859 0.679 NA
#> 4 a 1.52 1.12 0.0114 -0.948 0.809 NA -0.0167 0.961
#> 5 a -1.73 -0.452 0.230 -0.968 NA -0.847 -1.30 NA
#> 6 a 0.227 -0.510 -0.159 0.381 -0.160 0.607 0.367 -0.209
#> 7 a 0.308 0.324 -0.469 -0.0127 0.260 -1.01 0.245 0.218
#> 8 a 1.91 0.882 0.525 -0.213 -0.414 0.167 -0.305 -0.701
#> 9 a 1.54 NA 1.66 -0.597 -0.315 -0.732 0.564 0.561
#> 10 a -1.35 -0.333 -1.78 0.402 0.996 -0.807 NA 0.269
#> 11 b -0.807 1.07 -1.01 NA 0.519 0.944 1.37 NA
#> 12 b 0.624 0.443 1.16 0.959 -0.520 -0.359 -0.214 1.06
#> 13 b -1.16 0.937 -1.80 0.893 1.25 -0.887 -0.202 -1.05
#> 14 b 0.644 -0.449 0.518 0.930 0.783 -1.36 -0.314 0.272
#> 15 b -1.35 0.412 -1.11 -0.225 -0.00819 0.0182 0.372 -0.457
#> 16 b -2.73 0.648 0.560 1.01 -0.228 NA -0.245 NA
#> 17 b -2.04 0.476 -0.334 -0.495 0.303 -0.888 -1.15 -0.704
#> 18 b 0.318 -0.292 1.36 NA -0.130 -0.634 0.0614 -0.740
#> 19 b -1.38 0.207 -0.468 NA -1.04 0.765 0.495 0.931
#> 20 b 0.584 1.21 0.00916 0.982 -1.10 1.40 0.979 0.934
#> # ℹ 7 more variables: high_4 <dbl>, high_5 <dbl>, discr_1 <dbl>, discr_2 <dbl>,
#> # discr_3 <dbl>, discr_4 <dbl>, discr_5 <dbl>
cov()
creates a covariance matrix with variance on the
diagonal. We can visualize it as a heatmap.
Values are higher for the discriminating variables because the
cov
and var
arguments to
sim_discr()
only control the covariance and variance
within groups.
One reason to simulate multivariate data is to test the effects of
different properties of datasets on analysis results. For example,
what’s the effect of missing data on a statistical analysis? The
sim_missing()
function replaces a proportion of values with
NA. Let’s see how it affects a PLS-DA analysis.
We can chain several sim_*
functions to quickly create a
dataframe.
df2 <-
sim_cat(n_obs = 40, n_groups = 3, name = "factor") %>%
sim_covar(n_vars = 3, var = 1, cov = 0.0, name = "noise") %>%
group_by(factor) %>%
sim_discr(n_vars = 5, var = 1, cov = 0, group_means = c(-1, 0, 1), name = "signal") %>%
sim_discr(n_vars = 5, var = 1, cov = 0, group_means = c(0, 0.5, 1), name = "signal2") %>%
ungroup()
df2
#> # A tibble: 40 × 14
#> factor noise_1 noise_2 noise_3 signal_1 signal_2 signal_3 signal_4 signal_5
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 a 0.0121 -2.17 0.275 -1.27 -1.76 -0.0391 -2.64 -1.80
#> 2 a -0.376 0.895 -0.714 -1.16 -1.44 -1.48 -2.49 -2.44
#> 3 a 2.01 -0.446 -0.00426 -0.406 -1.43 -1.67 -3.04 -0.804
#> 4 a 0.607 -2.79 -0.388 -1.08 -1.28 -2.34 -0.681 0.565
#> 5 a 0.693 1.42 -0.796 -0.153 -1.21 0.377 -1.59 -0.968
#> 6 a -1.72 -1.51 0.968 -1.34 -0.510 -1.29 0.347 -1.65
#> 7 a -0.430 -1.53 0.940 -1.94 -1.19 -0.589 -3.32 -0.333
#> 8 a -0.569 0.329 -1.16 -2.06 -1.24 0.0146 -2.18 -0.673
#> 9 a 0.925 -0.507 -0.834 0.0797 -0.132 0.344 -1.56 -1.72
#> 10 a -0.399 -0.676 -0.518 -1.09 0.486 0.337 -0.560 -2.02
#> # ℹ 30 more rows
#> # ℹ 5 more variables: signal2_1 <dbl>, signal2_2 <dbl>, signal2_3 <dbl>,
#> # signal2_4 <dbl>, signal2_5 <dbl>
We can then use map()
from the purrr
package to create many randomly generated datasets using the same
specifications, with and without missing values.
set.seed(100)
dfs <-
map(1:20,
~sim_cat(n_obs = 40, n_groups = 3, name = "factor") %>%
sim_covar(n_vars = 3, var = 1, cov = 0.0, name = "noise") %>%
group_by(factor) %>%
sim_discr(n_vars = 5, var = 1, cov = 0, group_means = c(-1, 0, 1), name = "signal") %>%
sim_discr(n_vars = 5, var = 1, cov = 0, group_means = c(0, 0.5, 1), name = "signal2") %>%
ungroup())
Alternatively, you could generate one large dataframe (many rows) and take subsets. Either way, you know the “true” properties of the data and can compare to the results of the analyses you test.
We can now map the sim_missing()
function to randomly
introduce NAs to the datasets.
And finally, deal with those NAs with multiple imputation with the
mice
package.
# this might take a few seconds
dfs.imputed <-
map(dfs.missing, ~mice(., printFlag = FALSE) %>% complete())
Here, we can compare an example dataset as original, with NAs, and imputed:
head(dfs[[1]])
#> # A tibble: 6 × 14
#> factor noise_1 noise_2 noise_3 signal_1 signal_2 signal_3 signal_4 signal_5
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 a 1.07 -0.00916 -0.493 -0.953 -1.29 0.952 -0.651 -1.23
#> 2 a -0.0134 -1.85 -0.292 -0.849 -1.87 0.311 0.856 -0.785
#> 3 a -0.401 -1.28 -1.48 -0.432 -1.66 -0.458 0.873 -0.748
#> 4 a -1.82 2.01 -1.12 0.298 -1.18 -1.05 -0.331 -0.514
#> 5 a 1.71 0.597 -0.0753 -1.00 1.04 -2.65 -0.442 -0.836
#> 6 a 0.848 1.13 0.0428 -1.60 -1.37 -3.24 -0.888 -1.41
#> # ℹ 5 more variables: signal2_1 <dbl>, signal2_2 <dbl>, signal2_3 <dbl>,
#> # signal2_4 <dbl>, signal2_5 <dbl>
head(dfs.missing[[1]])
#> # A tibble: 6 × 14
#> factor noise_1 noise_2 noise_3 signal_1 signal_2 signal_3 signal_4 signal_5
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 a 1.07 -0.00916 NA -0.953 -1.29 0.952 -0.651 -1.23
#> 2 a -0.0134 -1.85 -0.292 NA -1.87 0.311 0.856 -0.785
#> 3 a NA -1.28 -1.48 -0.432 -1.66 -0.458 0.873 -0.748
#> 4 a -1.82 2.01 -1.12 0.298 NA -1.05 -0.331 -0.514
#> 5 a 1.71 0.597 -0.0753 -1.00 1.04 -2.65 -0.442 -0.836
#> 6 a 0.848 1.13 0.0428 -1.60 -1.37 -3.24 -0.888 -1.41
#> # ℹ 5 more variables: signal2_1 <dbl>, signal2_2 <dbl>, signal2_3 <dbl>,
#> # signal2_4 <dbl>, signal2_5 <dbl>
head(dfs.imputed[[1]])
#> factor noise_1 noise_2 noise_3 signal_1 signal_2 signal_3
#> 1 a 1.0738532 -0.009162203 -0.07529851 -0.9525532 -1.289870 0.9523219
#> 2 a -0.0134100 -1.851241745 -0.29246857 0.4403128 -1.873263 0.3114562
#> 3 a -0.7215366 -1.284047854 -1.48162821 -0.4322049 -1.656319 -0.4583891
#> 4 a -1.8176185 2.014018985 -1.11967562 0.2977722 -1.394962 -1.0478207
#> 5 a 1.7095029 0.596707289 -0.07529851 -0.9996540 1.039059 -2.6513107
#> 6 a 0.8475474 1.130402793 0.04280330 -1.6014609 -1.370313 -3.2403584
#> signal_4 signal_5 signal2_1 signal2_2 signal2_3 signal2_4 signal2_5
#> 1 -0.6506898 -1.2266449 -0.9398164 0.7444634 -1.4554263 -0.06208422 -1.0852542
#> 2 0.8561365 -0.7850617 0.2655353 -0.1112986 0.9284334 1.70032445 -0.9680104
#> 3 0.8725502 -0.7483738 2.4863183 0.8013671 0.0386806 -1.23665052 0.9490844
#> 4 -0.3310259 -0.5142761 -0.2309898 0.7444634 0.3386661 1.58683283 -2.8872108
#> 5 -0.4418016 -0.8359875 1.0516597 -0.2346468 0.9491426 -0.14501237 -2.8872108
#> 6 -0.8882406 -1.4122971 1.5272074 1.7493532 2.0554579 -0.13655839 -1.8517622
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.