The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
The goal of holi is to provide web applications for higher order likelihood inference.
You can install the released version of ‘holi’ from CRAN:
install.packages("holi")
You can install the development version of holi from GitHub with:
# install.packages("devtools")
::install_github("mightymetrika/holi") devtools
This is a basic example which shows you how to compare the p-value from stats::glm() and the r* p-value from holi::rstar_glm() when analyzing ‘mtcars’. The holi::rstar_glm() function relies on likelihoodAsy::rstar().
library(holi)
# Fit model
<- rstar_glm(mpg ~ wt + hp, .data = mtcars, .model = "linear")
rs_linear #> get mle .... get mle under the null....
#> start Monte Carlo computation
#> | | | 0% | |======= | 10% | |============== | 20% | |===================== | 30% | |============================ | 40% | |=================================== | 50% | |========================================== | 60% | |================================================= | 70% | |======================================================== | 80% | |=============================================================== | 90% | |======================================================================| 100%
# See results from stats::glm()
$fit_glm |> summary()
rs_linear#>
#> Call:
#> stats::glm(formula = .formula, family = stats::gaussian, data = .data)
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 37.22727 1.59879 23.285 < 2e-16 ***
#> wt -3.87783 0.63273 -6.129 1.12e-06 ***
#> hp -0.03177 0.00903 -3.519 0.00145 **
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> (Dispersion parameter for gaussian family taken to be 6.725785)
#>
#> Null deviance: 1126.05 on 31 degrees of freedom
#> Residual deviance: 195.05 on 29 degrees of freedom
#> AIC: 156.65
#>
#> Number of Fisher Scoring iterations: 2
# See r* results
$fit_glm |> summary()
rs_linear#>
#> Call:
#> stats::glm(formula = .formula, family = stats::gaussian, data = .data)
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 37.22727 1.59879 23.285 < 2e-16 ***
#> wt -3.87783 0.63273 -6.129 1.12e-06 ***
#> hp -0.03177 0.00903 -3.519 0.00145 **
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> (Dispersion parameter for gaussian family taken to be 6.725785)
#>
#> Null deviance: 1126.05 on 31 degrees of freedom
#> Residual deviance: 195.05 on 29 degrees of freedom
#> AIC: 156.65
#>
#> Number of Fisher Scoring iterations: 2
In this example, the p-value for r* (5.556e-07) is smaller than the p-value for stats::glm() (1.12e-06).
Pierce, D. A., & Bellio, R. (2017). Modern Likelihood-Frequentist Inference. International Statistical Review / Revue Internationale de Statistique, 85(3), 519–541. doi:10.1111/insr.12232
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.