The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
tau <- numeric(K)
for(k in 1:K){
tau[k] <- runif(1,.2,.6)
}
R = matrix(0,K,K)
# Initial alphas
p_mastery <- c(.5,.5,.4,.4)
Alphas_0 <- matrix(0,N,K)
for(i in 1:N){
for(k in 1:K){
prereqs <- which(R[k,]==1)
if(length(prereqs)==0){
Alphas_0[i,k] <- rbinom(1,1,p_mastery[k])
}
if(length(prereqs)>0){
Alphas_0[i,k] <- prod(Alphas_0[i,prereqs])*rbinom(1,1,p_mastery)
}
}
}
Alphas <- sim_alphas(model="indept",taus=tau,N=N,L=L,R=R,alpha0=Alphas_0)
table(rowSums(Alphas[,,5]) - rowSums(Alphas[,,1])) # used to see how much transition has taken place
#>
#> 0 1 2 3 4
#> 27 109 123 71 20
Svec <- runif(K,.1,.3)
Gvec <- runif(K,.1,.3)
Y_sim <- sim_hmcdm(model="NIDA",Alphas,Q_matrix,Design_array,
Svec=Svec,Gvec=Gvec)output_NIDA_indept = hmcdm(Y_sim, Q_matrix, "NIDA_indept", Design_array,
100, 30, R = R)
#> 0
output_NIDA_indept
#>
#> Model: NIDA_indept
#>
#> Sample Size: 350
#> Number of Items:
#> Number of Time Points:
#>
#> Chain Length: 100, burn-in: 50
summary(output_NIDA_indept)
#>
#> Model: NIDA_indept
#>
#> Item Parameters:
#> ss_EAP gs_EAP
#> 0.23889 0.2224
#> 0.16800 0.1611
#> 0.09922 0.2134
#> 0.16128 0.2410
#>
#> Transition Parameters:
#> taus_EAP
#> τ1 0.3675
#> τ2 0.5436
#> τ3 0.4105
#> τ4 0.4078
#>
#> Class Probabilities:
#> pis_EAP
#> 0000 0.07521
#> 0001 0.06104
#> 0010 0.05408
#> 0011 0.01081
#> 0100 0.06758
#> ... 11 more classes
#>
#> Deviance Information Criterion (DIC): 21653.93
#>
#> Posterior Predictive P-value (PPP):
#> M1: 0.4844
#> M2: 0.49
#> total scores: 0.6075
a <- summary(output_NIDA_indept)
head(a$ss_EAP)
#> [,1]
#> [1,] 0.23888870
#> [2,] 0.16800476
#> [3,] 0.09922179
#> [4,] 0.16128011AAR_vec <- numeric(L)
for(t in 1:L){
AAR_vec[t] <- mean(Alphas[,,t]==a$Alphas_est[,,t])
}
AAR_vec
#> [1] 0.8750000 0.9092857 0.9514286 0.9728571 0.9792857
PAR_vec <- numeric(L)
for(t in 1:L){
PAR_vec[t] <- mean(rowSums((Alphas[,,t]-a$Alphas_est[,,t])^2)==0)
}
PAR_vec
#> [1] 0.5914286 0.6942857 0.8342857 0.8914286 0.9200000a$DIC
#> Transition Response_Time Response Joint Total
#> D_bar 1972.354 NA 17195.46 1856.479 21024.29
#> D(theta_bar) 1887.976 NA 16664.74 1841.940 20394.66
#> DIC 2056.733 NA 17726.18 1871.017 21653.93
head(a$PPP_total_scores)
#> [,1] [,2] [,3] [,4] [,5]
#> [1,] 0.98 0.56 0.12 0.16 0.16
#> [2,] 0.24 0.94 0.84 0.98 0.20
#> [3,] 0.74 0.64 1.00 0.40 0.42
#> [4,] 0.90 0.34 0.30 0.82 0.96
#> [5,] 1.00 0.48 0.78 0.64 0.78
#> [6,] 0.90 0.42 0.20 0.50 0.72
head(a$PPP_item_means)
#> [1] 0.86 0.78 0.42 0.56 0.20 0.34
head(a$PPP_item_ORs)
#> [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [,14]
#> [1,] NA 0.9 0.88 0.52 1.00 0.78 0.64 0.98 0.92 0.06 0.06 0.44 0.46 0.34
#> [2,] NA NA 0.62 0.60 0.82 0.86 0.18 0.74 0.38 0.74 0.90 0.38 0.04 0.08
#> [3,] NA NA NA 0.62 0.80 0.36 0.24 0.68 0.62 0.36 0.22 0.34 0.18 0.46
#> [4,] NA NA NA NA 0.72 0.70 0.72 0.96 0.74 0.86 0.72 0.72 0.06 0.74
#> [5,] NA NA NA NA NA 0.72 0.06 0.16 0.64 0.18 0.06 0.06 0.64 0.16
#> [6,] NA NA NA NA NA NA 0.12 0.08 0.34 0.10 0.44 1.00 0.54 0.54
#> [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25] [,26]
#> [1,] 0.54 0.88 0.48 0.86 0.08 0.78 0.40 0.86 0.98 0.58 0.76 0.42
#> [2,] 0.68 0.82 0.20 0.26 0.14 0.50 0.38 0.16 0.70 0.32 0.10 0.88
#> [3,] 0.38 0.90 0.90 0.42 0.98 1.00 0.10 0.42 0.84 0.06 0.46 0.44
#> [4,] 0.72 0.66 0.32 0.46 0.44 0.38 0.16 0.40 0.56 0.26 0.30 0.22
#> [5,] 0.08 0.60 0.08 0.48 0.00 0.40 0.14 0.70 0.58 0.26 0.62 0.68
#> [6,] 0.86 0.42 0.22 0.06 0.36 0.62 0.40 0.96 0.42 0.60 0.26 0.04
#> [,27] [,28] [,29] [,30] [,31] [,32] [,33] [,34] [,35] [,36] [,37] [,38]
#> [1,] 0.82 0.68 0.00 0.88 0.72 0.54 0.20 0.76 0.52 0.44 0.16 0.54
#> [2,] 0.20 0.70 0.74 0.54 0.18 0.98 0.38 0.76 0.84 0.66 0.76 0.06
#> [3,] 0.14 0.18 0.14 0.88 0.24 0.14 0.14 0.70 0.34 0.58 0.16 0.18
#> [4,] 0.58 0.54 0.48 0.48 0.44 0.26 0.24 0.82 0.34 0.56 0.64 0.50
#> [5,] 0.68 0.00 0.72 0.78 0.38 1.00 0.22 0.76 0.62 0.74 0.46 0.08
#> [6,] 0.26 0.20 0.14 0.74 0.72 0.68 0.52 0.62 1.00 0.22 0.20 0.04
#> [,39] [,40] [,41] [,42] [,43] [,44] [,45] [,46] [,47] [,48] [,49] [,50]
#> [1,] 0.52 0.72 0.64 0.30 0.90 0.54 0.44 0.60 0.06 0.76 0.40 0.78
#> [2,] 0.38 0.60 0.28 0.94 0.82 0.42 0.82 0.46 0.56 0.66 0.02 0.56
#> [3,] 0.82 0.42 0.40 0.46 0.90 0.66 0.56 0.64 0.26 0.36 0.12 0.60
#> [4,] 0.36 0.72 0.54 0.74 0.98 0.56 0.50 0.78 0.58 0.44 0.72 0.90
#> [5,] 0.40 0.42 0.82 0.90 0.98 0.22 0.42 0.34 0.18 0.66 0.22 0.58
#> [6,] 0.04 0.28 0.74 0.98 0.98 0.64 0.88 0.76 0.76 0.46 0.32 0.50These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.