The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
library(hmcdm)
= dim(Design_array)[1]
N = nrow(Q_matrix)
J = ncol(Q_matrix)
K = dim(Design_array)[3] L
<- numeric(K)
tau for(k in 1:K){
<- runif(1,.2,.6)
tau[k]
}= matrix(0,K,K)
R # Initial alphas
<- c(.5,.5,.4,.4)
p_mastery <- matrix(0,N,K)
Alphas_0 for(i in 1:N){
for(k in 1:K){
<- which(R[k,]==1)
prereqs if(length(prereqs)==0){
<- rbinom(1,1,p_mastery[k])
Alphas_0[i,k]
}if(length(prereqs)>0){
<- prod(Alphas_0[i,prereqs])*rbinom(1,1,p_mastery)
Alphas_0[i,k]
}
}
}<- sim_alphas(model="indept",taus=tau,N=N,L=L,R=R,alpha0=Alphas_0)
Alphas table(rowSums(Alphas[,,5]) - rowSums(Alphas[,,1])) # used to see how much transition has taken place
#>
#> 0 1 2 3 4
#> 35 107 126 68 14
<- runif(K,.1,.3)
Svec <- runif(K,.1,.3)
Gvec
<- sim_hmcdm(model="NIDA",Alphas,Q_matrix,Design_array,
Y_sim Svec=Svec,Gvec=Gvec)
= hmcdm(Y_sim, Q_matrix, "NIDA_indept", Design_array,
output_NIDA_indept 100, 30, R = R)
#> 0
output_NIDA_indept#>
#> Model: NIDA_indept
#>
#> Sample Size: 350
#> Number of Items:
#> Number of Time Points:
#>
#> Chain Length: 100, burn-in: 50
summary(output_NIDA_indept)
#>
#> Model: NIDA_indept
#>
#> Item Parameters:
#> ss_EAP gs_EAP
#> 0.1819 0.2478
#> 0.2579 0.2439
#> 0.1818 0.1654
#> 0.2220 0.2238
#>
#> Transition Parameters:
#> taus_EAP
#> τ1 0.3727
#> τ2 0.4323
#> τ3 0.2930
#> τ4 0.3812
#>
#> Class Probabilities:
#> pis_EAP
#> 0000 0.12792
#> 0001 0.04752
#> 0010 0.06378
#> 0011 0.06141
#> 0100 0.07061
#> ... 11 more classes
#>
#> Deviance Information Criterion (DIC): 23555.74
#>
#> Posterior Predictive P-value (PPP):
#> M1: 0.4924
#> M2: 0.49
#> total scores: 0.6036
<- summary(output_NIDA_indept)
a head(a$ss_EAP)
#> [,1]
#> [1,] 0.1819058
#> [2,] 0.2578910
#> [3,] 0.1817671
#> [4,] 0.2220104
<- numeric(L)
AAR_vec for(t in 1:L){
<- mean(Alphas[,,t]==a$Alphas_est[,,t])
AAR_vec[t]
}
AAR_vec#> [1] 0.8728571 0.8971429 0.9292857 0.9621429 0.9678571
<- numeric(L)
PAR_vec for(t in 1:L){
<- mean(rowSums((Alphas[,,t]-a$Alphas_est[,,t])^2)==0)
PAR_vec[t]
}
PAR_vec#> [1] 0.5914286 0.6485714 0.7314286 0.8628571 0.8800000
$DIC
a#> Transition Response_Time Response Joint Total
#> D_bar 2270.643 NA 18680.39 1866.094 22817.13
#> D(theta_bar) 2165.676 NA 18052.03 1860.802 22078.51
#> DIC 2375.610 NA 19308.74 1871.385 23555.74
head(a$PPP_total_scores)
#> [,1] [,2] [,3] [,4] [,5]
#> [1,] 0.94 0.74 0.90 0.74 0.42
#> [2,] 0.68 0.52 0.48 0.38 0.18
#> [3,] 1.00 0.56 0.52 0.50 0.34
#> [4,] 0.32 0.28 0.96 0.76 0.34
#> [5,] 0.50 0.44 0.26 0.68 0.88
#> [6,] 0.28 0.74 0.58 0.84 0.32
head(a$PPP_item_means)
#> [1] 0.90 0.78 0.64 0.14 0.26 0.28
head(a$PPP_item_ORs)
#> [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [,14]
#> [1,] NA 0.14 0.04 0.60 0.54 0.72 0.74 0.36 0.90 0.50 0.12 0.22 0.00 0.94
#> [2,] NA NA 0.52 0.28 0.24 0.44 0.88 0.88 0.32 0.96 0.92 0.66 0.72 0.90
#> [3,] NA NA NA 0.50 0.28 0.72 1.00 0.70 0.66 0.06 0.94 0.86 0.36 0.18
#> [4,] NA NA NA NA 0.06 0.88 0.66 0.70 0.68 0.72 0.44 0.54 0.48 0.20
#> [5,] NA NA NA NA NA 0.28 0.76 0.00 0.22 0.12 0.46 0.48 0.16 0.94
#> [6,] NA NA NA NA NA NA 0.20 0.38 0.94 0.26 0.96 0.74 0.38 0.40
#> [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25] [,26]
#> [1,] 0.84 0.18 0.36 0.32 0.32 0.48 0.56 0.64 0.74 0.12 0.64 0.54
#> [2,] 0.54 0.64 1.00 0.48 0.14 0.80 0.60 0.18 0.76 0.78 0.58 0.10
#> [3,] 0.78 0.82 0.24 0.76 0.22 0.76 0.38 0.42 0.76 0.34 0.50 0.58
#> [4,] 0.56 0.50 0.14 0.82 0.68 0.76 0.30 0.76 0.62 0.86 0.56 0.28
#> [5,] 0.82 0.82 0.56 0.94 0.32 0.84 0.72 0.04 0.66 0.26 0.62 0.74
#> [6,] 0.26 0.12 0.62 0.38 0.88 0.54 0.04 0.40 0.78 0.42 0.56 0.48
#> [,27] [,28] [,29] [,30] [,31] [,32] [,33] [,34] [,35] [,36] [,37] [,38]
#> [1,] 0.00 0.14 0.86 0.66 0.84 0.32 0.64 0.44 0.88 0.20 0.84 0.52
#> [2,] 0.74 0.32 0.50 0.86 0.30 0.20 0.22 0.90 0.40 0.02 0.52 0.90
#> [3,] 0.68 0.28 0.02 0.04 0.92 0.84 0.42 0.82 0.36 0.60 0.84 0.30
#> [4,] 0.74 0.84 0.16 0.02 0.88 0.34 0.88 0.62 0.32 0.46 0.88 0.44
#> [5,] 0.32 0.28 0.74 0.44 0.90 0.70 0.38 0.08 0.52 0.22 0.38 0.96
#> [6,] 0.02 0.70 0.04 0.08 0.36 0.96 0.60 0.02 0.44 0.66 0.30 0.60
#> [,39] [,40] [,41] [,42] [,43] [,44] [,45] [,46] [,47] [,48] [,49] [,50]
#> [1,] 0.64 0.02 0.12 0.40 0.78 0.16 0.14 0.62 0.40 0.94 0.00 0.44
#> [2,] 0.12 0.60 0.90 0.22 0.12 0.66 1.00 0.34 0.06 0.64 1.00 0.78
#> [3,] 0.26 0.90 0.70 0.64 0.18 0.62 0.06 0.26 0.54 0.32 0.76 0.36
#> [4,] 0.70 0.56 0.18 0.62 0.58 0.42 0.22 0.00 0.64 1.00 0.18 0.48
#> [5,] 0.38 0.36 0.28 0.54 0.76 0.52 0.76 0.50 0.46 0.30 0.36 0.80
#> [6,] 0.20 0.04 0.42 0.88 0.04 0.22 0.96 0.30 0.70 0.14 0.24 0.40
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.