The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
tau <- numeric(K)
for(k in 1:K){
tau[k] <- runif(1,.2,.6)
}
R = matrix(0,K,K)
# Initial alphas
p_mastery <- c(.5,.5,.4,.4)
Alphas_0 <- matrix(0,N,K)
for(i in 1:N){
for(k in 1:K){
prereqs <- which(R[k,]==1)
if(length(prereqs)==0){
Alphas_0[i,k] <- rbinom(1,1,p_mastery[k])
}
if(length(prereqs)>0){
Alphas_0[i,k] <- prod(Alphas_0[i,prereqs])*rbinom(1,1,p_mastery)
}
}
}
Alphas <- sim_alphas(model="indept",taus=tau,N=N,L=L,R=R,alpha0=Alphas_0)
table(rowSums(Alphas[,,5]) - rowSums(Alphas[,,1])) # used to see how much transition has taken place
#>
#> 0 1 2 3 4
#> 20 96 156 65 13
Svec <- runif(K,.1,.3)
Gvec <- runif(K,.1,.3)
Y_sim <- sim_hmcdm(model="NIDA",Alphas,Q_matrix,Design_array,
Svec=Svec,Gvec=Gvec)output_NIDA_indept = hmcdm(Y_sim, Q_matrix, "NIDA_indept", Design_array,
100, 30, R = R)
#> 0
output_NIDA_indept
#>
#> Model: NIDA_indept
#>
#> Sample Size: 350
#> Number of Items:
#> Number of Time Points:
#>
#> Chain Length: 100, burn-in: 50
summary(output_NIDA_indept)
#>
#> Model: NIDA_indept
#>
#> Item Parameters:
#> ss_EAP gs_EAP
#> 0.2655 0.2242
#> 0.2151 0.2383
#> 0.1901 0.2788
#> 0.1296 0.3105
#>
#> Transition Parameters:
#> taus_EAP
#> τ1 0.4003
#> τ2 0.3330
#> τ3 0.5419
#> τ4 0.4910
#>
#> Class Probabilities:
#> pis_EAP
#> 0000 0.07875
#> 0001 0.11993
#> 0010 0.06023
#> 0011 0.01711
#> 0100 0.06114
#> ... 11 more classes
#>
#> Deviance Information Criterion (DIC): 23468.5
#>
#> Posterior Predictive P-value (PPP):
#> M1: 0.478
#> M2: 0.49
#> total scores: 0.6039
a <- summary(output_NIDA_indept)
head(a$ss_EAP)
#> [,1]
#> [1,] 0.2655415
#> [2,] 0.2151101
#> [3,] 0.1900912
#> [4,] 0.1295927AAR_vec <- numeric(L)
for(t in 1:L){
AAR_vec[t] <- mean(Alphas[,,t]==a$Alphas_est[,,t])
}
AAR_vec
#> [1] 0.8178571 0.8892857 0.9257143 0.9535714 0.9628571
PAR_vec <- numeric(L)
for(t in 1:L){
PAR_vec[t] <- mean(rowSums((Alphas[,,t]-a$Alphas_est[,,t])^2)==0)
}
PAR_vec
#> [1] 0.4657143 0.6371429 0.7400000 0.8314286 0.8628571a$DIC
#> Transition Response_Time Response Joint Total
#> D_bar 2148.809 NA 18730.15 1826.258 22705.21
#> D(theta_bar) 2065.348 NA 18071.92 1804.659 21941.93
#> DIC 2232.271 NA 19388.37 1847.857 23468.50
head(a$PPP_total_scores)
#> [,1] [,2] [,3] [,4] [,5]
#> [1,] 0.00 0.72 0.02 0.48 0.64
#> [2,] 0.86 0.72 0.56 0.96 0.12
#> [3,] 0.98 0.42 0.56 0.40 0.40
#> [4,] 0.52 0.44 0.50 0.88 0.04
#> [5,] 0.92 0.54 0.56 0.70 0.60
#> [6,] 0.56 0.84 0.48 1.00 0.66
head(a$PPP_item_means)
#> [1] 0.72 0.70 0.46 0.62 0.52 0.54
head(a$PPP_item_ORs)
#> [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [,14]
#> [1,] NA 0.42 0.82 0.66 0.64 0.10 0.92 0.94 0.18 0.36 0.52 0.44 0.32 0.74
#> [2,] NA NA 0.20 0.24 0.72 0.64 0.40 0.84 0.36 0.10 0.74 0.68 0.98 0.70
#> [3,] NA NA NA 0.26 0.14 0.26 0.36 0.82 0.20 0.36 0.22 0.68 0.92 0.18
#> [4,] NA NA NA NA 0.58 0.64 0.56 0.48 0.54 0.26 0.16 0.40 0.74 0.06
#> [5,] NA NA NA NA NA 0.32 0.26 0.26 0.86 0.40 0.66 0.22 0.46 0.44
#> [6,] NA NA NA NA NA NA 0.06 0.06 0.64 0.12 0.24 0.30 0.52 0.62
#> [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25] [,26]
#> [1,] 0.28 0.18 0.18 0.86 0.60 0.70 0.12 0.16 0.74 0.90 0.44 0.48
#> [2,] 0.96 0.50 0.78 0.20 0.36 0.96 0.34 0.52 0.32 0.72 0.50 0.20
#> [3,] 0.30 0.22 0.08 0.96 0.62 0.54 0.74 0.34 0.92 0.72 0.14 0.42
#> [4,] 0.70 0.34 0.08 0.92 0.40 0.14 0.06 0.62 0.98 0.92 0.88 0.40
#> [5,] 0.62 0.18 0.94 0.02 0.98 0.84 0.46 0.58 0.56 0.80 0.90 0.62
#> [6,] 0.84 0.60 0.30 0.86 0.98 0.22 0.82 0.94 0.82 0.80 0.74 0.92
#> [,27] [,28] [,29] [,30] [,31] [,32] [,33] [,34] [,35] [,36] [,37] [,38]
#> [1,] 0.90 0.58 0.12 0.24 0.36 0.74 0.12 0.76 0.38 0.00 1.00 0.42
#> [2,] 0.74 0.58 0.30 0.58 0.36 0.74 0.80 1.00 0.00 0.54 0.94 0.50
#> [3,] 0.38 0.46 0.32 0.96 0.02 0.76 0.48 0.84 0.58 0.50 0.20 0.42
#> [4,] 0.56 0.18 0.90 0.02 0.00 0.98 0.78 0.42 0.70 0.18 0.98 0.36
#> [5,] 0.20 1.00 0.80 0.90 1.00 0.40 0.04 0.98 0.52 0.90 0.88 0.26
#> [6,] 0.72 0.50 0.46 0.36 0.14 0.78 0.06 0.76 0.70 0.62 0.54 0.14
#> [,39] [,40] [,41] [,42] [,43] [,44] [,45] [,46] [,47] [,48] [,49] [,50]
#> [1,] 1.00 0.70 0.24 0.32 0.94 0.90 0.20 0.94 0.36 0.88 0.94 0.68
#> [2,] 0.88 0.34 0.92 0.42 0.54 0.26 0.84 0.96 0.48 0.62 0.20 0.78
#> [3,] 0.42 0.86 0.88 0.82 0.84 0.46 0.78 0.34 0.06 0.68 0.36 0.64
#> [4,] 0.76 0.50 0.22 0.94 0.96 0.34 0.90 0.20 0.78 1.00 1.00 0.68
#> [5,] 0.88 0.40 0.88 0.42 0.34 0.40 0.72 0.32 0.96 0.30 0.60 0.54
#> [6,] 0.02 0.18 0.98 0.30 0.02 0.04 0.72 0.86 0.48 0.82 0.26 0.82These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.