The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

NIDA_indept

library(hmcdm)

Load the spatial rotation data

N = dim(Design_array)[1]
J = nrow(Q_matrix)
K = ncol(Q_matrix)
L = dim(Design_array)[3]

(1) Simulate responses and response times based on the NIDA model

tau <- numeric(K)
for(k in 1:K){
  tau[k] <- runif(1,.2,.6)
}
R = matrix(0,K,K)
# Initial alphas
p_mastery <- c(.5,.5,.4,.4)
Alphas_0 <- matrix(0,N,K)
for(i in 1:N){
  for(k in 1:K){
    prereqs <- which(R[k,]==1)
    if(length(prereqs)==0){
      Alphas_0[i,k] <- rbinom(1,1,p_mastery[k])
    }
    if(length(prereqs)>0){
      Alphas_0[i,k] <- prod(Alphas_0[i,prereqs])*rbinom(1,1,p_mastery)
    }
  }
}
Alphas <- sim_alphas(model="indept",taus=tau,N=N,L=L,R=R,alpha0=Alphas_0)
table(rowSums(Alphas[,,5]) - rowSums(Alphas[,,1])) # used to see how much transition has taken place
#> 
#>   0   1   2   3   4 
#>  27 109 123  71  20
Svec <- runif(K,.1,.3)
Gvec <- runif(K,.1,.3)

Y_sim <- sim_hmcdm(model="NIDA",Alphas,Q_matrix,Design_array,
                   Svec=Svec,Gvec=Gvec)

(2) Run the MCMC to sample parameters from the posterior distribution

output_NIDA_indept = hmcdm(Y_sim, Q_matrix, "NIDA_indept", Design_array,
                           100, 30, R = R)
#> 0
output_NIDA_indept
#> 
#> Model: NIDA_indept 
#> 
#> Sample Size: 350
#> Number of Items: 
#> Number of Time Points: 
#> 
#> Chain Length: 100, burn-in: 50
summary(output_NIDA_indept)
#> 
#> Model: NIDA_indept 
#> 
#> Item Parameters:
#>   ss_EAP gs_EAP
#>  0.23889 0.2224
#>  0.16800 0.1611
#>  0.09922 0.2134
#>  0.16128 0.2410
#> 
#> Transition Parameters:
#>    taus_EAP
#> τ1   0.3675
#> τ2   0.5436
#> τ3   0.4105
#> τ4   0.4078
#> 
#> Class Probabilities:
#>      pis_EAP
#> 0000 0.07521
#> 0001 0.06104
#> 0010 0.05408
#> 0011 0.01081
#> 0100 0.06758
#>    ... 11 more classes
#> 
#> Deviance Information Criterion (DIC): 21653.93 
#> 
#> Posterior Predictive P-value (PPP):
#> M1: 0.4844
#> M2:  0.49
#> total scores:  0.6075
a <- summary(output_NIDA_indept)
head(a$ss_EAP)
#>            [,1]
#> [1,] 0.23888870
#> [2,] 0.16800476
#> [3,] 0.09922179
#> [4,] 0.16128011

(3) Check for parameter estimation accuracy

AAR_vec <- numeric(L)
for(t in 1:L){
  AAR_vec[t] <- mean(Alphas[,,t]==a$Alphas_est[,,t])
}
AAR_vec
#> [1] 0.8750000 0.9092857 0.9514286 0.9728571 0.9792857

PAR_vec <- numeric(L)
for(t in 1:L){
  PAR_vec[t] <- mean(rowSums((Alphas[,,t]-a$Alphas_est[,,t])^2)==0)
}
PAR_vec
#> [1] 0.5914286 0.6942857 0.8342857 0.8914286 0.9200000

(4) Evaluate the fit of the model to the observed response

a$DIC
#>              Transition Response_Time Response    Joint    Total
#> D_bar          1972.354            NA 17195.46 1856.479 21024.29
#> D(theta_bar)   1887.976            NA 16664.74 1841.940 20394.66
#> DIC            2056.733            NA 17726.18 1871.017 21653.93
head(a$PPP_total_scores)
#>      [,1] [,2] [,3] [,4] [,5]
#> [1,] 0.98 0.56 0.12 0.16 0.16
#> [2,] 0.24 0.94 0.84 0.98 0.20
#> [3,] 0.74 0.64 1.00 0.40 0.42
#> [4,] 0.90 0.34 0.30 0.82 0.96
#> [5,] 1.00 0.48 0.78 0.64 0.78
#> [6,] 0.90 0.42 0.20 0.50 0.72
head(a$PPP_item_means)
#> [1] 0.86 0.78 0.42 0.56 0.20 0.34
head(a$PPP_item_ORs)
#>      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [,14]
#> [1,]   NA  0.9 0.88 0.52 1.00 0.78 0.64 0.98 0.92  0.06  0.06  0.44  0.46  0.34
#> [2,]   NA   NA 0.62 0.60 0.82 0.86 0.18 0.74 0.38  0.74  0.90  0.38  0.04  0.08
#> [3,]   NA   NA   NA 0.62 0.80 0.36 0.24 0.68 0.62  0.36  0.22  0.34  0.18  0.46
#> [4,]   NA   NA   NA   NA 0.72 0.70 0.72 0.96 0.74  0.86  0.72  0.72  0.06  0.74
#> [5,]   NA   NA   NA   NA   NA 0.72 0.06 0.16 0.64  0.18  0.06  0.06  0.64  0.16
#> [6,]   NA   NA   NA   NA   NA   NA 0.12 0.08 0.34  0.10  0.44  1.00  0.54  0.54
#>      [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25] [,26]
#> [1,]  0.54  0.88  0.48  0.86  0.08  0.78  0.40  0.86  0.98  0.58  0.76  0.42
#> [2,]  0.68  0.82  0.20  0.26  0.14  0.50  0.38  0.16  0.70  0.32  0.10  0.88
#> [3,]  0.38  0.90  0.90  0.42  0.98  1.00  0.10  0.42  0.84  0.06  0.46  0.44
#> [4,]  0.72  0.66  0.32  0.46  0.44  0.38  0.16  0.40  0.56  0.26  0.30  0.22
#> [5,]  0.08  0.60  0.08  0.48  0.00  0.40  0.14  0.70  0.58  0.26  0.62  0.68
#> [6,]  0.86  0.42  0.22  0.06  0.36  0.62  0.40  0.96  0.42  0.60  0.26  0.04
#>      [,27] [,28] [,29] [,30] [,31] [,32] [,33] [,34] [,35] [,36] [,37] [,38]
#> [1,]  0.82  0.68  0.00  0.88  0.72  0.54  0.20  0.76  0.52  0.44  0.16  0.54
#> [2,]  0.20  0.70  0.74  0.54  0.18  0.98  0.38  0.76  0.84  0.66  0.76  0.06
#> [3,]  0.14  0.18  0.14  0.88  0.24  0.14  0.14  0.70  0.34  0.58  0.16  0.18
#> [4,]  0.58  0.54  0.48  0.48  0.44  0.26  0.24  0.82  0.34  0.56  0.64  0.50
#> [5,]  0.68  0.00  0.72  0.78  0.38  1.00  0.22  0.76  0.62  0.74  0.46  0.08
#> [6,]  0.26  0.20  0.14  0.74  0.72  0.68  0.52  0.62  1.00  0.22  0.20  0.04
#>      [,39] [,40] [,41] [,42] [,43] [,44] [,45] [,46] [,47] [,48] [,49] [,50]
#> [1,]  0.52  0.72  0.64  0.30  0.90  0.54  0.44  0.60  0.06  0.76  0.40  0.78
#> [2,]  0.38  0.60  0.28  0.94  0.82  0.42  0.82  0.46  0.56  0.66  0.02  0.56
#> [3,]  0.82  0.42  0.40  0.46  0.90  0.66  0.56  0.64  0.26  0.36  0.12  0.60
#> [4,]  0.36  0.72  0.54  0.74  0.98  0.56  0.50  0.78  0.58  0.44  0.72  0.90
#> [5,]  0.40  0.42  0.82  0.90  0.98  0.22  0.42  0.34  0.18  0.66  0.22  0.58
#> [6,]  0.04  0.28  0.74  0.98  0.98  0.64  0.88  0.76  0.76  0.46  0.32  0.50

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.