The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
class_0 <- sample(1:2^K, N, replace = L)
Alphas_0 <- matrix(0,N,K)
for(i in 1:N){
Alphas_0[i,] <- inv_bijectionvector(K,(class_0[i]-1))
}
thetas_true = rnorm(N)
lambdas_true = c(-1, 1.8, .277, .055)
Alphas <- sim_alphas(model="HO_sep",
lambdas=lambdas_true,
thetas=thetas_true,
Q_matrix=Q_matrix,
Design_array=Design_array)
table(rowSums(Alphas[,,5]) - rowSums(Alphas[,,1])) # used to see how much transition has taken place
#>
#> 0 1 2 3 4
#> 29 44 94 146 37
itempars_true <- matrix(runif(J*2,.1,.2), ncol=2)
Y_sim <- sim_hmcdm(model="DINA",Alphas,Q_matrix,Design_array,
itempars=itempars_true)output_HMDCM = hmcdm(Y_sim,Q_matrix,"DINA_HO",Test_order = Test_order, Test_versions = Test_versions,
chain_length=100,burn_in=30,
theta_propose = 2,deltas_propose = c(.45,.35,.25,.06))
#> 0
output_HMDCM = hmcdm(Y_sim,Q_matrix,"DINA_HO",Design_array,
chain_length=100,burn_in=30,
theta_propose = 2,deltas_propose = c(.45,.35,.25,.06))
#> 0
output_HMDCM
#>
#> Model: DINA_HO
#>
#> Sample Size: 350
#> Number of Items:
#> Number of Time Points:
#>
#> Chain Length: 100, burn-in: 30
summary(output_HMDCM)
#>
#> Model: DINA_HO
#>
#> Item Parameters:
#> ss_EAP gs_EAP
#> 0.2185 0.10447
#> 0.1509 0.13416
#> 0.1460 0.11755
#> 0.1109 0.13345
#> 0.1572 0.09776
#> ... 45 more items
#>
#> Transition Parameters:
#> lambdas_EAP
#> λ0 -2.4904
#> λ1 2.6343
#> λ2 0.1570
#> λ3 0.2787
#>
#> Class Probabilities:
#> pis_EAP
#> 0000 0.1662
#> 0001 0.1550
#> 0010 0.1321
#> 0011 0.2856
#> 0100 0.1660
#> ... 11 more classes
#>
#> Deviance Information Criterion (DIC): 18988.66
#>
#> Posterior Predictive P-value (PPP):
#> M1: 0.5091
#> M2: 0.49
#> total scores: 0.6293
a <- summary(output_HMDCM)
a$ss_EAP
#> [,1]
#> [1,] 0.2185359
#> [2,] 0.1508975
#> [3,] 0.1459935
#> [4,] 0.1109146
#> [5,] 0.1571771
#> [6,] 0.1235457
#> [7,] 0.1948160
#> [8,] 0.1361677
#> [9,] 0.1980192
#> [10,] 0.1456517
#> [11,] 0.1848870
#> [12,] 0.1110574
#> [13,] 0.1350646
#> [14,] 0.2528662
#> [15,] 0.1748883
#> [16,] 0.1655557
#> [17,] 0.1385431
#> [18,] 0.2223850
#> [19,] 0.2045615
#> [20,] 0.1695176
#> [21,] 0.1571944
#> [22,] 0.1124408
#> [23,] 0.1301153
#> [24,] 0.1855921
#> [25,] 0.2202243
#> [26,] 0.1525441
#> [27,] 0.1647866
#> [28,] 0.1680615
#> [29,] 0.1172905
#> [30,] 0.1777252
#> [31,] 0.1769316
#> [32,] 0.1109865
#> [33,] 0.1442771
#> [34,] 0.1556111
#> [35,] 0.1155413
#> [36,] 0.1378859
#> [37,] 0.1235549
#> [38,] 0.1348546
#> [39,] 0.1591436
#> [40,] 0.1086104
#> [41,] 0.2079835
#> [42,] 0.1215910
#> [43,] 0.1214257
#> [44,] 0.1450547
#> [45,] 0.1473684
#> [46,] 0.1487711
#> [47,] 0.1697238
#> [48,] 0.1425989
#> [49,] 0.1396481
#> [50,] 0.2310405
a$lambdas_EAP
#> [,1]
#> λ0 -2.4903700
#> λ1 2.6343340
#> λ2 0.1569946
#> λ3 0.2786637
mean(a$PPP_total_scores)
#> [1] 0.6291429
mean(upper.tri(a$PPP_item_ORs))
#> [1] 0.49
mean(a$PPP_item_means)
#> [1] 0.5071429a$DIC
#> Transition Response_Time Response Joint Total
#> D_bar 2010.410 NA 14851.39 1274.630 18136.42
#> D(theta_bar) 1714.288 NA 14343.59 1226.313 17284.19
#> DIC 2306.531 NA 15359.18 1322.946 18988.66
head(a$PPP_total_scores)
#> [,1] [,2] [,3] [,4] [,5]
#> [1,] 0.4571429 0.8142857 1.0000000 0.8857143 0.5142857
#> [2,] 0.2571429 0.9142857 1.0000000 0.2714286 0.5142857
#> [3,] 0.4571429 0.6000000 0.5571429 0.6571429 0.6000000
#> [4,] 0.6000000 0.7142857 0.5428571 1.0000000 0.2428571
#> [5,] 0.6714286 0.3142857 1.0000000 0.4000000 0.1285714
#> [6,] 0.9428571 0.3857143 0.2142857 0.5428571 0.5142857
head(a$PPP_item_means)
#> [1] 0.5000000 0.5000000 0.4857143 0.5857143 0.4714286 0.5857143
head(a$PPP_item_ORs)
#> [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
#> [1,] NA 0.6285714 0.8714286 0.5000000 0.6571429 0.5571429 0.5714286 0.4714286
#> [2,] NA NA 0.8142857 0.9142857 0.2000000 0.4571429 0.2571429 0.2857143
#> [3,] NA NA NA 0.4000000 0.9428571 0.8857143 0.7857143 0.9285714
#> [4,] NA NA NA NA 0.7714286 0.4142857 0.9428571 0.9000000
#> [5,] NA NA NA NA NA 0.8000000 0.6428571 0.6428571
#> [6,] NA NA NA NA NA NA 0.5571429 0.6857143
#> [,9] [,10] [,11] [,12] [,13] [,14] [,15]
#> [1,] 0.3142857 0.02857143 0.1714286 0.38571429 0.4428571 0.5857143 0.5428571
#> [2,] 0.6571429 0.77142857 0.5142857 0.87142857 0.3000000 0.4428571 0.9428571
#> [3,] 0.9142857 0.50000000 0.3428571 0.31428571 0.8428571 0.9571429 0.9714286
#> [4,] 0.6571429 0.72857143 0.6142857 0.08571429 0.4714286 0.8714286 0.4714286
#> [5,] 0.3428571 0.67142857 0.1571429 0.70000000 0.2000000 0.7142857 0.8142857
#> [6,] 0.3857143 0.78571429 0.2857143 0.68571429 0.2857143 0.8428571 0.5428571
#> [,16] [,17] [,18] [,19] [,20] [,21] [,22]
#> [1,] 0.07142857 0.3714286 0.1285714 0.2142857 0.5142857 0.2857143 0.5142857
#> [2,] 0.54285714 0.4714286 0.4714286 0.7571429 0.8714286 0.5000000 0.7857143
#> [3,] 0.20000000 0.6142857 0.8714286 0.6714286 0.4857143 0.2428571 0.4285714
#> [4,] 0.05714286 0.3571429 0.1857143 0.4428571 0.5285714 0.6714286 0.4285714
#> [5,] 0.42857143 0.4857143 0.4142857 0.5714286 0.8142857 0.5285714 0.6428571
#> [6,] 0.61428571 0.9428571 0.6285714 0.3714286 0.8571429 0.8000000 0.6857143
#> [,23] [,24] [,25] [,26] [,27] [,28] [,29]
#> [1,] 0.37142857 0.1857143 0.50000000 0.10000000 0.6142857 0.3714286 0.3571429
#> [2,] 0.68571429 0.7857143 0.88571429 0.98571429 0.9142857 0.8428571 0.7428571
#> [3,] 0.30000000 0.7000000 0.75714286 0.78571429 0.3714286 0.8857143 0.3428571
#> [4,] 0.04285714 0.4428571 0.07142857 0.04285714 0.9142857 0.8428571 0.4428571
#> [5,] 0.42857143 0.7428571 0.47142857 0.27142857 0.7714286 0.8285714 0.5571429
#> [6,] 0.10000000 0.8285714 0.25714286 0.61428571 0.5857143 0.5000000 0.8142857
#> [,30] [,31] [,32] [,33] [,34] [,35] [,36]
#> [1,] 0.3857143 0.2000000 0.2428571 0.3714286 0.4000000 0.34285714 0.6571429
#> [2,] 0.5571429 0.6285714 0.3857143 0.5000000 0.1285714 0.35714286 0.2571429
#> [3,] 0.7857143 0.5142857 0.2142857 0.8571429 0.7428571 0.84285714 0.9857143
#> [4,] 0.3714286 0.8857143 0.3857143 0.2714286 0.6428571 0.07142857 0.7714286
#> [5,] 0.5714286 0.2571429 0.1857143 0.8285714 0.3571429 0.25714286 0.3428571
#> [6,] 0.2285714 0.6714286 0.6857143 0.7571429 0.5571429 0.61428571 0.9571429
#> [,37] [,38] [,39] [,40] [,41] [,42] [,43]
#> [1,] 0.4571429 0.4428571 0.9714286 0.4428571 0.9142857 0.1285714 0.5571429
#> [2,] 0.5428571 0.4571429 0.8000000 0.5000000 0.8857143 0.4428571 0.2142857
#> [3,] 0.2142857 0.8714286 0.6000000 0.9428571 0.7285714 0.3000000 0.3142857
#> [4,] 0.3000000 0.0000000 0.4285714 0.4857143 0.5714286 0.5428571 0.1000000
#> [5,] 0.1571429 0.6714286 0.7714286 0.5714286 0.9285714 0.7857143 0.8571429
#> [6,] 0.5571429 0.9000000 0.7142857 0.9714286 0.9428571 0.3857143 0.1000000
#> [,44] [,45] [,46] [,47] [,48] [,49] [,50]
#> [1,] 0.6428571 0.74285714 0.07142857 0.9714286 0.3571429 0.2857143 0.62857143
#> [2,] 0.3428571 0.42857143 0.60000000 0.9285714 0.1571429 0.4857143 0.51428571
#> [3,] 0.4285714 0.77142857 0.81428571 0.9714286 0.2428571 0.4714286 0.21428571
#> [4,] 0.1428571 0.87142857 0.15714286 0.9000000 0.2571429 0.3000000 0.08571429
#> [5,] 0.7714286 0.84285714 0.44285714 0.8428571 0.4714286 0.5714286 0.30000000
#> [6,] 0.5285714 0.08571429 0.11428571 0.4428571 0.1857143 0.5000000 0.00000000
library(bayesplot)
pp_check(output_HMDCM)pp_check(output_HMDCM, plotfun="hist", type="item_OR")
#> Note: in most cases the default test statistic 'mean' is too weak to detect anything of interest.
#> `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.pp_check(output_HMDCM, plotfun="stat_2d", type="item_mean")
#> Note: in most cases the default test statistic 'mean' is too weak to detect anything of interest.Checking convergence of the two independent MCMC chains with
different initial values using coda package.
# output_HMDCM1 = hmcdm(Y_sim, Q_matrix, "DINA_HO", Design_array,
# chain_length=100, burn_in=30,
# theta_propose = 2, deltas_propose = c(.45,.35,.25,.06))
# output_HMDCM2 = hmcdm(Y_sim, Q_matrix, "DINA_HO", Design_array,
# chain_length=100, burn_in=30,
# theta_propose = 2, deltas_propose = c(.45,.35,.25,.06))
#
# library(coda)
#
# x <- mcmc.list(mcmc(t(rbind(output_HMDCM1$ss, output_HMDCM1$gs, output_HMDCM1$lambdas))),
# mcmc(t(rbind(output_HMDCM2$ss, output_HMDCM2$gs, output_HMDCM2$lambdas))))
#
# gelman.diag(x, autoburnin=F)These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.