The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
class_0 <- sample(1:2^K, N, replace = L)
Alphas_0 <- matrix(0,N,K)
for(i in 1:N){
Alphas_0[i,] <- inv_bijectionvector(K,(class_0[i]-1))
}
thetas_true = rnorm(N,0,1)
tausd_true=0.5
taus_true = rnorm(N,0,tausd_true)
G_version = 3
phi_true = 0.8
lambdas_true <- c(-2, 1.6, .4, .055) # empirical from Wang 2017
Alphas <- sim_alphas(model="HO_sep",
lambdas=lambdas_true,
thetas=thetas_true,
Q_matrix=Q_matrix,
Design_array=Design_array)
table(rowSums(Alphas[,,5]) - rowSums(Alphas[,,1])) # used to see how much transition has taken place
#>
#> 0 1 2 3 4
#> 66 52 80 121 31
itempars_true <- matrix(runif(J*2,.1,.2), ncol=2)
RT_itempars_true <- matrix(NA, nrow=J, ncol=2)
RT_itempars_true[,2] <- rnorm(J,3.45,.5)
RT_itempars_true[,1] <- runif(J,1.5,2)
Y_sim <- sim_hmcdm(model="DINA",Alphas,Q_matrix,Design_array,
itempars=itempars_true)
L_sim <- sim_RT(Alphas,Q_matrix,Design_array,RT_itempars_true,taus_true,phi_true,G_version)output_HMDCM_RT_sep = hmcdm(Y_sim,Q_matrix,"DINA_HO_RT_sep",Design_array,
100, 30,
Latency_array = L_sim, G_version = G_version,
theta_propose = 2,deltas_propose = c(.45,.35,.25,.06))
#> 0
output_HMDCM_RT_sep
#>
#> Model: DINA_HO_RT_sep
#>
#> Sample Size: 350
#> Number of Items:
#> Number of Time Points:
#>
#> Chain Length: 100, burn-in: 50
summary(output_HMDCM_RT_sep)
#>
#> Model: DINA_HO_RT_sep
#>
#> Item Parameters:
#> ss_EAP gs_EAP
#> 0.16149 0.19939
#> 0.09851 0.08643
#> 0.21014 0.17458
#> 0.18473 0.23380
#> 0.11463 0.20836
#> ... 45 more items
#>
#> Transition Parameters:
#> lambdas_EAP
#> λ0 -1.85612
#> λ1 1.80213
#> λ2 0.23449
#> λ3 0.08619
#>
#> Class Probabilities:
#> pis_EAP
#> 0000 0.1441
#> 0001 0.1981
#> 0010 0.1769
#> 0011 0.2421
#> 0100 0.1737
#> ... 11 more classes
#>
#> Deviance Information Criterion (DIC): 157110.6
#>
#> Posterior Predictive P-value (PPP):
#> M1: 0.5172
#> M2: 0.49
#> total scores: 0.6265
a <- summary(output_HMDCM_RT_sep)
head(a$ss_EAP)
#> [,1]
#> [1,] 0.16149025
#> [2,] 0.09850913
#> [3,] 0.21013584
#> [4,] 0.18473048
#> [5,] 0.11463297
#> [6,] 0.12763509(cor_thetas <- cor(thetas_true,a$thetas_EAP))
#> [,1]
#> [1,] 0.8073238
(cor_taus <- cor(taus_true,a$response_times_coefficients$taus_EAP))
#> [,1]
#> [1,] 0.9869721
(cor_ss <- cor(as.vector(itempars_true[,1]),a$ss_EAP))
#> [,1]
#> [1,] 0.5477734
(cor_gs <- cor(as.vector(itempars_true[,2]),a$gs_EAP))
#> [,1]
#> [1,] 0.7695372
AAR_vec <- numeric(L)
for(t in 1:L){
AAR_vec[t] <- mean(Alphas[,,t]==a$Alphas_est[,,t])
}
AAR_vec
#> [1] 0.9221429 0.9435714 0.9592857 0.9685714 0.9614286
PAR_vec <- numeric(L)
for(t in 1:L){
PAR_vec[t] <- mean(rowSums((Alphas[,,t]-a$Alphas_est[,,t])^2)==0)
}
PAR_vec
#> [1] 0.7485714 0.8085714 0.8514286 0.8857143 0.8628571a$DIC
#> Transition Response_Time Response Joint Total
#> D_bar 2205.921 135843.4 15042.20 3067.784 156159.4
#> D(theta_bar) 1905.363 135402.1 14870.05 3030.558 155208.1
#> DIC 2506.479 136284.8 15214.35 3105.011 157110.6
head(a$PPP_total_scores)
#> [,1] [,2] [,3] [,4] [,5]
#> [1,] 0.82 0.16 0.08 0.94 1.00
#> [2,] 0.54 0.78 0.10 0.96 0.78
#> [3,] 0.76 0.42 0.38 0.58 0.86
#> [4,] 0.48 0.76 0.08 1.00 1.00
#> [5,] 0.66 0.74 0.68 0.78 0.96
#> [6,] 0.50 0.70 0.80 0.98 0.12
head(a$PPP_item_means)
#> [1] 0.50 0.38 0.56 0.46 0.42 0.32
head(a$PPP_item_ORs)
#> [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [,14]
#> [1,] NA 0.22 0.96 0.94 0.48 0.26 0.36 0.38 0.82 0.36 0.14 0.18 0.68 0.20
#> [2,] NA NA 0.60 0.82 0.24 0.64 0.18 0.72 0.82 0.44 0.44 0.68 1.00 0.58
#> [3,] NA NA NA 0.64 0.82 0.92 0.72 0.94 0.78 0.22 0.70 0.02 0.64 0.86
#> [4,] NA NA NA NA 1.00 0.46 0.66 0.90 0.78 0.92 0.66 0.60 0.84 0.68
#> [5,] NA NA NA NA NA 0.12 0.40 0.62 0.84 0.68 0.96 0.28 1.00 0.12
#> [6,] NA NA NA NA NA NA 0.50 0.86 0.74 0.60 0.58 0.32 0.86 0.80
#> [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25] [,26]
#> [1,] 0.08 0.06 0.16 0.42 0.16 0.72 0.10 0.64 0.42 0.48 0.68 0.30
#> [2,] 0.80 0.54 0.46 0.54 0.72 0.84 0.62 0.76 0.82 0.54 0.44 0.24
#> [3,] 0.50 0.16 0.16 0.56 0.46 0.90 0.22 0.94 0.48 0.70 0.56 0.42
#> [4,] 0.78 0.64 0.22 0.32 0.52 0.56 0.92 0.82 0.78 0.62 0.96 0.00
#> [5,] 0.40 0.24 0.16 0.36 0.76 0.78 0.72 0.40 0.08 0.98 0.90 0.62
#> [6,] 0.22 0.62 0.02 0.86 0.78 0.78 0.76 0.60 0.94 0.16 0.94 0.84
#> [,27] [,28] [,29] [,30] [,31] [,32] [,33] [,34] [,35] [,36] [,37] [,38]
#> [1,] 1.00 0.04 0.02 0.34 0.12 0.00 0.40 0.50 0.12 0.20 0.16 0.18
#> [2,] 0.36 0.54 0.68 0.16 0.96 0.42 0.70 0.34 0.44 0.04 0.48 0.68
#> [3,] 0.74 0.48 0.54 0.68 0.38 0.48 0.50 0.80 0.98 0.58 0.98 0.40
#> [4,] 0.58 0.18 0.82 0.76 0.48 0.56 0.38 0.24 0.10 0.54 0.96 0.58
#> [5,] 0.56 0.48 0.14 0.76 0.98 0.78 0.56 0.46 0.82 0.86 0.66 0.96
#> [6,] 0.64 0.92 0.66 0.64 0.42 0.16 0.54 0.62 0.14 0.04 0.68 0.64
#> [,39] [,40] [,41] [,42] [,43] [,44] [,45] [,46] [,47] [,48] [,49] [,50]
#> [1,] 0.48 0.10 0.26 1.00 0.72 0.10 0.26 0.24 0.54 0.44 0.84 0.12
#> [2,] 0.72 0.50 0.76 0.62 0.12 0.80 0.76 0.86 0.24 0.92 0.50 0.54
#> [3,] 0.76 0.28 0.78 0.86 0.96 0.20 0.68 0.96 0.12 0.38 0.80 0.84
#> [4,] 0.22 0.70 0.60 0.66 0.78 0.96 0.68 0.54 0.56 0.22 0.66 0.48
#> [5,] 0.26 0.62 0.98 0.90 0.44 0.66 0.68 0.42 0.36 0.62 0.80 0.48
#> [6,] 0.64 0.22 0.82 0.56 0.26 0.36 0.90 0.70 0.32 0.04 0.64 0.68
library(bayesplot)
#> This is bayesplot version 1.14.0
#> - Online documentation and vignettes at mc-stan.org/bayesplot
#> - bayesplot theme set to bayesplot::theme_default()
#> * Does _not_ affect other ggplot2 plots
#> * See ?bayesplot_theme_set for details on theme setting
pp_check(output_HMDCM_RT_sep, type="total_latency")These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.