The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

DINA_HO_RT_sep

library(hmcdm)

Load the spatial rotation data

N = length(Test_versions)
J = nrow(Q_matrix)
K = ncol(Q_matrix)
L = nrow(Test_order)

(1) Simulate responses and response times based on the HMDCM model with response times (no covariance between speed and learning ability)

class_0 <- sample(1:2^K, N, replace = L)
Alphas_0 <- matrix(0,N,K)
for(i in 1:N){
  Alphas_0[i,] <- inv_bijectionvector(K,(class_0[i]-1))
}
thetas_true = rnorm(N,0,1)
tausd_true=0.5
taus_true = rnorm(N,0,tausd_true)
G_version = 3
phi_true = 0.8
lambdas_true <- c(-2, 1.6, .4, .055)       # empirical from Wang 2017
Alphas <- sim_alphas(model="HO_sep", 
                    lambdas=lambdas_true, 
                    thetas=thetas_true, 
                    Q_matrix=Q_matrix, 
                    Design_array=Design_array)
table(rowSums(Alphas[,,5]) - rowSums(Alphas[,,1])) # used to see how much transition has taken place
#> 
#>   0   1   2   3   4 
#>  58  48  94 118  32
itempars_true <- matrix(runif(J*2,.1,.2), ncol=2)
RT_itempars_true <- matrix(NA, nrow=J, ncol=2)
RT_itempars_true[,2] <- rnorm(J,3.45,.5)
RT_itempars_true[,1] <- runif(J,1.5,2)

Y_sim <- sim_hmcdm(model="DINA",Alphas,Q_matrix,Design_array,
                   itempars=itempars_true)
L_sim <- sim_RT(Alphas,Q_matrix,Design_array,RT_itempars_true,taus_true,phi_true,G_version)

(2) Run the MCMC to sample parameters from the posterior distribution

output_HMDCM_RT_sep = hmcdm(Y_sim,Q_matrix,"DINA_HO_RT_sep",Design_array,
                            100, 30,
                            Latency_array = L_sim, G_version = G_version,
                            theta_propose = 2,deltas_propose = c(.45,.35,.25,.06))
#> 0
output_HMDCM_RT_sep
#> 
#> Model: DINA_HO_RT_sep 
#> 
#> Sample Size: 350
#> Number of Items: 
#> Number of Time Points: 
#> 
#> Chain Length: 100, burn-in: 50
summary(output_HMDCM_RT_sep)
#> 
#> Model: DINA_HO_RT_sep 
#> 
#> Item Parameters:
#>  ss_EAP gs_EAP
#>  0.1689 0.1990
#>  0.1956 0.1301
#>  0.2301 0.2492
#>  0.1918 0.2010
#>  0.1541 0.1024
#>    ... 45 more items
#> 
#> Transition Parameters:
#>    lambdas_EAP
#> λ0     -2.2152
#> λ1      2.7005
#> λ2      0.1436
#> λ3      0.2048
#> 
#> Class Probabilities:
#>      pis_EAP
#> 0000  0.1133
#> 0001  0.2259
#> 0010  0.1568
#> 0011  0.2376
#> 0100  0.1500
#>    ... 11 more classes
#> 
#> Deviance Information Criterion (DIC): 156396.6 
#> 
#> Posterior Predictive P-value (PPP):
#> M1: 0.5084
#> M2:  0.49
#> total scores:  0.6234
a <- summary(output_HMDCM_RT_sep)
head(a$ss_EAP)
#>           [,1]
#> [1,] 0.1688630
#> [2,] 0.1956231
#> [3,] 0.2300799
#> [4,] 0.1918051
#> [5,] 0.1540848
#> [6,] 0.1943653

(3) Check for parameter estimation accuracy

(cor_thetas <- cor(thetas_true,a$thetas_EAP))
#>           [,1]
#> [1,] 0.7847377
(cor_taus <- cor(taus_true,a$response_times_coefficients$taus_EAP))
#>           [,1]
#> [1,] 0.9870796

(cor_ss <- cor(as.vector(itempars_true[,1]),a$ss_EAP))
#>           [,1]
#> [1,] 0.6864551
(cor_gs <- cor(as.vector(itempars_true[,2]),a$gs_EAP))
#>           [,1]
#> [1,] 0.7291134

AAR_vec <- numeric(L)
for(t in 1:L){
  AAR_vec[t] <- mean(Alphas[,,t]==a$Alphas_est[,,t])
}
AAR_vec
#> [1] 0.9042857 0.9214286 0.9485714 0.9478571 0.9514286

PAR_vec <- numeric(L)
for(t in 1:L){
  PAR_vec[t] <- mean(rowSums((Alphas[,,t]-a$Alphas_est[,,t])^2)==0)
}
PAR_vec
#> [1] 0.6885714 0.7485714 0.8228571 0.8228571 0.8400000

(4) Evaluate the fit of the model to the observed response and response times data (here, Y_sim and R_sim)

a$DIC
#>              Transition Response_Time Response    Joint    Total
#> D_bar          1943.428      134775.4 15319.89 3204.199 155242.9
#> D(theta_bar)   1690.220      134340.2 14895.43 3163.330 154089.2
#> DIC            2196.636      135210.6 15744.35 3245.067 156396.6
head(a$PPP_total_scores)
#>      [,1] [,2] [,3] [,4] [,5]
#> [1,] 0.44 0.76 0.18 0.42 0.86
#> [2,] 0.70 0.40 0.86 0.66 0.22
#> [3,] 0.94 0.54 0.94 0.70 0.68
#> [4,] 0.90 0.04 0.06 0.20 0.04
#> [5,] 0.28 0.78 0.20 0.78 0.84
#> [6,] 0.66 0.68 0.78 0.88 0.66
head(a$PPP_item_means)
#> [1] 0.52 0.38 0.56 0.44 0.46 0.52
head(a$PPP_item_ORs)
#>      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [,14]
#> [1,]   NA 0.76 0.56 0.62 0.76 0.60 0.48 0.98 0.14  0.92  0.82  0.62  0.72  0.12
#> [2,]   NA   NA 0.74 0.98 0.82 0.58 0.94 0.56 0.26  0.58  0.74  0.30  0.34  0.94
#> [3,]   NA   NA   NA 0.98 0.80 0.90 0.92 0.78 0.96  0.30  0.88  0.84  0.90  0.62
#> [4,]   NA   NA   NA   NA 0.92 0.22 0.80 0.68 0.92  0.66  0.62  0.98  0.28  0.48
#> [5,]   NA   NA   NA   NA   NA 0.80 0.46 0.74 0.46  0.78  0.98  0.76  0.24  0.42
#> [6,]   NA   NA   NA   NA   NA   NA 0.74 0.96 0.68  0.56  0.00  0.56  0.96  0.62
#>      [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25] [,26]
#> [1,]  0.16  0.76  0.54  0.88  0.62  0.26  0.80  0.12  0.84  0.24  0.62  0.64
#> [2,]  0.88  0.94  0.66  0.70  0.78  0.92  0.38  0.10  0.66  0.56  0.32  0.72
#> [3,]  0.46  0.84  0.34  0.48  0.70  0.84  0.80  0.88  0.94  0.50  0.28  0.52
#> [4,]  0.48  0.44  0.88  0.50  0.58  0.76  0.98  0.34  0.98  0.80  0.88  1.00
#> [5,]  0.70  0.94  0.36  0.60  0.74  0.54  0.92  0.46  0.74  0.52  0.58  1.00
#> [6,]  0.44  0.32  0.46  0.10  0.36  0.46  0.96  0.66  0.16  0.46  0.16  0.28
#>      [,27] [,28] [,29] [,30] [,31] [,32] [,33] [,34] [,35] [,36] [,37] [,38]
#> [1,]  0.02  0.40  0.40  0.94  0.44  0.60  0.42  0.32  0.76  1.00  0.72  0.98
#> [2,]  0.18  0.18  0.28  0.44  0.70  0.28  0.96  0.56  0.68  0.60  0.76  0.44
#> [3,]  0.76  0.64  0.52  0.52  0.32  0.26  0.76  0.82  0.24  0.60  0.54  0.66
#> [4,]  0.60  0.20  0.76  1.00  0.66  0.86  1.00  0.36  1.00  0.90  1.00  1.00
#> [5,]  0.32  0.64  0.46  1.00  0.62  0.14  0.26  0.54  0.82  0.88  0.78  0.80
#> [6,]  0.52  0.50  0.44  0.80  0.82  0.16  0.12  0.58  0.96  0.30  0.72  0.50
#>      [,39] [,40] [,41] [,42] [,43] [,44] [,45] [,46] [,47] [,48] [,49] [,50]
#> [1,]  0.98  0.86  0.94  0.82  0.08  0.72  0.94  0.64  0.80  0.80  0.06  0.76
#> [2,]  0.78  0.28  0.06  0.74  0.46  0.48  0.84  0.22  0.70  0.42  0.76  0.54
#> [3,]  0.42  0.58  0.76  0.70  0.68  0.04  0.80  0.72  0.30  0.80  0.14  0.76
#> [4,]  0.22  0.84  0.70  0.60  0.00  0.64  0.72  1.00  0.08  1.00  0.78  0.72
#> [5,]  0.32  0.24  0.52  1.00  0.78  0.92  1.00  0.94  0.62  1.00  0.78  1.00
#> [6,]  0.70  0.68  0.94  0.26  0.70  0.78  0.90  0.44  0.48  1.00  0.94  0.82
library(bayesplot)
#> This is bayesplot version 1.14.0
#> - Online documentation and vignettes at mc-stan.org/bayesplot
#> - bayesplot theme set to bayesplot::theme_default()
#>    * Does _not_ affect other ggplot2 plots
#>    * See ?bayesplot_theme_set for details on theme setting
pp_check(output_HMDCM_RT_sep, type="total_latency")

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.