The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
library(hmcdm)
= length(Test_versions)
N = nrow(Q_matrix)
J = ncol(Q_matrix)
K = nrow(Test_order) L
<- sample(1:2^K, N, replace = L)
class_0 <- matrix(0,N,K)
Alphas_0 for(i in 1:N){
<- inv_bijectionvector(K,(class_0[i]-1))
Alphas_0[i,]
}= rnorm(N,0,1)
thetas_true =0.5
tausd_true= rnorm(N,0,tausd_true)
taus_true = 3
G_version = 0.8
phi_true <- c(-2, 1.6, .4, .055) # empirical from Wang 2017
lambdas_true <- sim_alphas(model="HO_sep",
Alphas lambdas=lambdas_true,
thetas=thetas_true,
Q_matrix=Q_matrix,
Design_array=Design_array)
table(rowSums(Alphas[,,5]) - rowSums(Alphas[,,1])) # used to see how much transition has taken place
#>
#> 0 1 2 3 4
#> 52 65 88 113 32
<- matrix(runif(J*2,.1,.2), ncol=2)
itempars_true <- matrix(NA, nrow=J, ncol=2)
RT_itempars_true 2] <- rnorm(J,3.45,.5)
RT_itempars_true[,1] <- runif(J,1.5,2)
RT_itempars_true[,
<- sim_hmcdm(model="DINA",Alphas,Q_matrix,Design_array,
Y_sim itempars=itempars_true)
<- sim_RT(Alphas,Q_matrix,Design_array,RT_itempars_true,taus_true,phi_true,G_version) L_sim
= hmcdm(Y_sim,Q_matrix,"DINA_HO_RT_sep",Design_array,
output_HMDCM_RT_sep 100, 30,
Latency_array = L_sim, G_version = G_version,
theta_propose = 2,deltas_propose = c(.45,.35,.25,.06))
#> 0
output_HMDCM_RT_sep#>
#> Model: DINA_HO_RT_sep
#>
#> Sample Size: 350
#> Number of Items:
#> Number of Time Points:
#>
#> Chain Length: 100, burn-in: 50
summary(output_HMDCM_RT_sep)
#>
#> Model: DINA_HO_RT_sep
#>
#> Item Parameters:
#> ss_EAP gs_EAP
#> 0.1400 0.13213
#> 0.2031 0.08849
#> 0.1328 0.12207
#> 0.2102 0.07193
#> 0.2203 0.14342
#> ... 45 more items
#>
#> Transition Parameters:
#> lambdas_EAP
#> λ0 -1.52323
#> λ1 1.41001
#> λ2 0.25574
#> λ3 0.04317
#>
#> Class Probabilities:
#> pis_EAP
#> 0000 0.1431
#> 0001 0.1845
#> 0010 0.1878
#> 0011 0.2328
#> 0100 0.1852
#> ... 11 more classes
#>
#> Deviance Information Criterion (DIC): 156614.7
#>
#> Posterior Predictive P-value (PPP):
#> M1: 0.4996
#> M2: 0.49
#> total scores: 0.6217
<- summary(output_HMDCM_RT_sep)
a head(a$ss_EAP)
#> [,1]
#> [1,] 0.1399525
#> [2,] 0.2030880
#> [3,] 0.1328132
#> [4,] 0.2101552
#> [5,] 0.2202825
#> [6,] 0.1843547
<- cor(thetas_true,a$thetas_EAP))
(cor_thetas #> [,1]
#> [1,] 0.7820421
<- cor(taus_true,a$response_times_coefficients$taus_EAP))
(cor_taus #> [,1]
#> [1,] 0.9878827
<- cor(as.vector(itempars_true[,1]),a$ss_EAP))
(cor_ss #> [,1]
#> [1,] 0.6958719
<- cor(as.vector(itempars_true[,2]),a$gs_EAP))
(cor_gs #> [,1]
#> [1,] 0.7267447
<- numeric(L)
AAR_vec for(t in 1:L){
<- mean(Alphas[,,t]==a$Alphas_est[,,t])
AAR_vec[t]
}
AAR_vec#> [1] 0.9342857 0.9342857 0.9428571 0.9550000 0.9657143
<- numeric(L)
PAR_vec for(t in 1:L){
<- mean(rowSums((Alphas[,,t]-a$Alphas_est[,,t])^2)==0)
PAR_vec[t]
}
PAR_vec#> [1] 0.7600000 0.7742857 0.8057143 0.8400000 0.8800000
$DIC
a#> Transition Response_Time Response Joint Total
#> D_bar 2405.175 135259.3 14972.49 3116.401 155753.4
#> D(theta_bar) 2166.328 134818.5 14842.73 3064.516 154892.1
#> DIC 2644.021 135700.2 15102.25 3168.286 156614.7
head(a$PPP_total_scores)
#> [,1] [,2] [,3] [,4] [,5]
#> [1,] 0.48 0.18 0.94 0.64 0.44
#> [2,] 0.86 0.86 1.00 0.74 0.42
#> [3,] 0.70 0.48 1.00 0.50 0.64
#> [4,] 0.62 0.56 0.86 0.82 0.88
#> [5,] 0.76 0.96 0.58 0.72 0.84
#> [6,] 0.56 0.74 0.80 0.92 0.32
head(a$PPP_item_means)
#> [1] 0.48 0.50 0.48 0.52 0.46 0.54
head(a$PPP_item_ORs)
#> [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [,14]
#> [1,] NA 0.16 0.08 0.68 0.54 0.42 0.30 0.32 0.92 0.42 0.90 0.76 0.72 0.62
#> [2,] NA NA 0.42 0.34 0.50 0.18 0.60 0.68 0.22 0.14 0.30 0.64 0.98 0.00
#> [3,] NA NA NA 0.92 0.74 0.64 0.84 0.88 1.00 0.74 0.22 0.44 0.36 0.30
#> [4,] NA NA NA NA 0.22 0.46 0.34 0.90 0.96 0.64 0.24 0.04 0.38 0.50
#> [5,] NA NA NA NA NA 0.40 0.74 0.50 0.80 0.22 0.36 0.62 0.92 0.04
#> [6,] NA NA NA NA NA NA 0.32 0.52 0.84 0.18 0.22 0.72 0.88 0.04
#> [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25] [,26]
#> [1,] 0.74 0.32 0.54 0.18 0.90 0.54 0.48 0.80 0.22 0.44 0.22 0.52
#> [2,] 0.28 0.12 0.88 0.58 0.28 0.20 0.58 0.88 0.86 0.98 0.64 0.98
#> [3,] 0.92 0.56 0.66 0.58 0.36 0.30 0.54 0.04 0.36 0.90 0.60 0.56
#> [4,] 0.54 0.74 0.54 0.82 0.30 0.26 0.84 0.58 0.82 0.94 0.92 0.36
#> [5,] 0.92 0.22 0.56 0.90 0.26 0.22 0.58 0.98 0.44 1.00 0.46 0.94
#> [6,] 0.62 0.10 0.52 0.64 0.10 0.92 0.40 0.50 0.36 0.98 0.26 0.14
#> [,27] [,28] [,29] [,30] [,31] [,32] [,33] [,34] [,35] [,36] [,37] [,38]
#> [1,] 0.64 0.78 0.18 0.20 0.60 0.76 0.94 0.96 0.86 0.32 0.86 0.30
#> [2,] 1.00 0.72 0.74 0.68 0.92 0.64 0.70 0.98 0.36 0.28 0.26 0.60
#> [3,] 0.16 0.40 0.24 0.64 0.06 0.14 0.54 0.90 0.94 0.50 0.50 0.76
#> [4,] 0.88 0.60 0.82 0.50 0.42 0.34 0.98 0.98 0.66 0.84 0.62 0.56
#> [5,] 1.00 0.46 0.46 0.98 0.76 0.86 0.58 0.90 0.82 0.68 0.72 0.28
#> [6,] 0.16 0.84 0.16 0.50 0.96 0.88 0.48 0.46 0.22 1.00 0.20 0.58
#> [,39] [,40] [,41] [,42] [,43] [,44] [,45] [,46] [,47] [,48] [,49] [,50]
#> [1,] 0.66 0.92 0.84 0.74 0.74 0.66 0.52 0.30 0.16 0.46 0.56 0.58
#> [2,] 0.64 0.36 0.24 0.02 0.06 0.10 0.32 0.44 0.14 0.16 0.52 0.60
#> [3,] 0.44 0.04 0.48 0.96 0.36 0.18 0.42 0.66 0.78 0.66 0.78 0.04
#> [4,] 0.82 0.14 0.34 0.84 0.28 0.32 0.50 0.72 0.24 0.62 0.24 0.22
#> [5,] 0.40 0.68 0.42 0.18 0.64 0.40 0.54 0.84 0.50 0.56 0.48 0.34
#> [6,] 0.70 0.04 0.26 0.70 1.00 0.20 0.94 0.82 0.60 0.72 0.12 0.82
library(bayesplot)
#> This is bayesplot version 1.9.0
#> - Online documentation and vignettes at mc-stan.org/bayesplot
#> - bayesplot theme set to bayesplot::theme_default()
#> * Does _not_ affect other ggplot2 plots
#> * See ?bayesplot_theme_set for details on theme setting
pp_check(output_HMDCM_RT_sep, type="total_latency")
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.