The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

DINA_HO_RT_sep

library(hmcdm)

Load the spatial rotation data

N = length(Test_versions)
J = nrow(Q_matrix)
K = ncol(Q_matrix)
L = nrow(Test_order)

(1) Simulate responses and response times based on the HMDCM model with response times (no covariance between speed and learning ability)

class_0 <- sample(1:2^K, N, replace = L)
Alphas_0 <- matrix(0,N,K)
for(i in 1:N){
  Alphas_0[i,] <- inv_bijectionvector(K,(class_0[i]-1))
}
thetas_true = rnorm(N,0,1)
tausd_true=0.5
taus_true = rnorm(N,0,tausd_true)
G_version = 3
phi_true = 0.8
lambdas_true <- c(-2, 1.6, .4, .055)       # empirical from Wang 2017
Alphas <- sim_alphas(model="HO_sep", 
                    lambdas=lambdas_true, 
                    thetas=thetas_true, 
                    Q_matrix=Q_matrix, 
                    Design_array=Design_array)
table(rowSums(Alphas[,,5]) - rowSums(Alphas[,,1])) # used to see how much transition has taken place
#> 
#>   0   1   2   3   4 
#>  52  65  88 113  32
itempars_true <- matrix(runif(J*2,.1,.2), ncol=2)
RT_itempars_true <- matrix(NA, nrow=J, ncol=2)
RT_itempars_true[,2] <- rnorm(J,3.45,.5)
RT_itempars_true[,1] <- runif(J,1.5,2)

Y_sim <- sim_hmcdm(model="DINA",Alphas,Q_matrix,Design_array,
                   itempars=itempars_true)
L_sim <- sim_RT(Alphas,Q_matrix,Design_array,RT_itempars_true,taus_true,phi_true,G_version)

(2) Run the MCMC to sample parameters from the posterior distribution

output_HMDCM_RT_sep = hmcdm(Y_sim,Q_matrix,"DINA_HO_RT_sep",Design_array,
                            100, 30,
                            Latency_array = L_sim, G_version = G_version,
                            theta_propose = 2,deltas_propose = c(.45,.35,.25,.06))
#> 0
output_HMDCM_RT_sep
#> 
#> Model: DINA_HO_RT_sep 
#> 
#> Sample Size: 350
#> Number of Items: 
#> Number of Time Points: 
#> 
#> Chain Length: 100, burn-in: 50
summary(output_HMDCM_RT_sep)
#> 
#> Model: DINA_HO_RT_sep 
#> 
#> Item Parameters:
#>  ss_EAP  gs_EAP
#>  0.1400 0.13213
#>  0.2031 0.08849
#>  0.1328 0.12207
#>  0.2102 0.07193
#>  0.2203 0.14342
#>    ... 45 more items
#> 
#> Transition Parameters:
#>    lambdas_EAP
#> λ0    -1.52323
#> λ1     1.41001
#> λ2     0.25574
#> λ3     0.04317
#> 
#> Class Probabilities:
#>      pis_EAP
#> 0000  0.1431
#> 0001  0.1845
#> 0010  0.1878
#> 0011  0.2328
#> 0100  0.1852
#>    ... 11 more classes
#> 
#> Deviance Information Criterion (DIC): 156614.7 
#> 
#> Posterior Predictive P-value (PPP):
#> M1: 0.4996
#> M2:  0.49
#> total scores:  0.6217
a <- summary(output_HMDCM_RT_sep)
head(a$ss_EAP)
#>           [,1]
#> [1,] 0.1399525
#> [2,] 0.2030880
#> [3,] 0.1328132
#> [4,] 0.2101552
#> [5,] 0.2202825
#> [6,] 0.1843547

(3) Check for parameter estimation accuracy

(cor_thetas <- cor(thetas_true,a$thetas_EAP))
#>           [,1]
#> [1,] 0.7820421
(cor_taus <- cor(taus_true,a$response_times_coefficients$taus_EAP))
#>           [,1]
#> [1,] 0.9878827

(cor_ss <- cor(as.vector(itempars_true[,1]),a$ss_EAP))
#>           [,1]
#> [1,] 0.6958719
(cor_gs <- cor(as.vector(itempars_true[,2]),a$gs_EAP))
#>           [,1]
#> [1,] 0.7267447

AAR_vec <- numeric(L)
for(t in 1:L){
  AAR_vec[t] <- mean(Alphas[,,t]==a$Alphas_est[,,t])
}
AAR_vec
#> [1] 0.9342857 0.9342857 0.9428571 0.9550000 0.9657143

PAR_vec <- numeric(L)
for(t in 1:L){
  PAR_vec[t] <- mean(rowSums((Alphas[,,t]-a$Alphas_est[,,t])^2)==0)
}
PAR_vec
#> [1] 0.7600000 0.7742857 0.8057143 0.8400000 0.8800000

(4) Evaluate the fit of the model to the observed response and response times data (here, Y_sim and R_sim)

a$DIC
#>              Transition Response_Time Response    Joint    Total
#> D_bar          2405.175      135259.3 14972.49 3116.401 155753.4
#> D(theta_bar)   2166.328      134818.5 14842.73 3064.516 154892.1
#> DIC            2644.021      135700.2 15102.25 3168.286 156614.7
head(a$PPP_total_scores)
#>      [,1] [,2] [,3] [,4] [,5]
#> [1,] 0.48 0.18 0.94 0.64 0.44
#> [2,] 0.86 0.86 1.00 0.74 0.42
#> [3,] 0.70 0.48 1.00 0.50 0.64
#> [4,] 0.62 0.56 0.86 0.82 0.88
#> [5,] 0.76 0.96 0.58 0.72 0.84
#> [6,] 0.56 0.74 0.80 0.92 0.32
head(a$PPP_item_means)
#> [1] 0.48 0.50 0.48 0.52 0.46 0.54
head(a$PPP_item_ORs)
#>      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [,14]
#> [1,]   NA 0.16 0.08 0.68 0.54 0.42 0.30 0.32 0.92  0.42  0.90  0.76  0.72  0.62
#> [2,]   NA   NA 0.42 0.34 0.50 0.18 0.60 0.68 0.22  0.14  0.30  0.64  0.98  0.00
#> [3,]   NA   NA   NA 0.92 0.74 0.64 0.84 0.88 1.00  0.74  0.22  0.44  0.36  0.30
#> [4,]   NA   NA   NA   NA 0.22 0.46 0.34 0.90 0.96  0.64  0.24  0.04  0.38  0.50
#> [5,]   NA   NA   NA   NA   NA 0.40 0.74 0.50 0.80  0.22  0.36  0.62  0.92  0.04
#> [6,]   NA   NA   NA   NA   NA   NA 0.32 0.52 0.84  0.18  0.22  0.72  0.88  0.04
#>      [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25] [,26]
#> [1,]  0.74  0.32  0.54  0.18  0.90  0.54  0.48  0.80  0.22  0.44  0.22  0.52
#> [2,]  0.28  0.12  0.88  0.58  0.28  0.20  0.58  0.88  0.86  0.98  0.64  0.98
#> [3,]  0.92  0.56  0.66  0.58  0.36  0.30  0.54  0.04  0.36  0.90  0.60  0.56
#> [4,]  0.54  0.74  0.54  0.82  0.30  0.26  0.84  0.58  0.82  0.94  0.92  0.36
#> [5,]  0.92  0.22  0.56  0.90  0.26  0.22  0.58  0.98  0.44  1.00  0.46  0.94
#> [6,]  0.62  0.10  0.52  0.64  0.10  0.92  0.40  0.50  0.36  0.98  0.26  0.14
#>      [,27] [,28] [,29] [,30] [,31] [,32] [,33] [,34] [,35] [,36] [,37] [,38]
#> [1,]  0.64  0.78  0.18  0.20  0.60  0.76  0.94  0.96  0.86  0.32  0.86  0.30
#> [2,]  1.00  0.72  0.74  0.68  0.92  0.64  0.70  0.98  0.36  0.28  0.26  0.60
#> [3,]  0.16  0.40  0.24  0.64  0.06  0.14  0.54  0.90  0.94  0.50  0.50  0.76
#> [4,]  0.88  0.60  0.82  0.50  0.42  0.34  0.98  0.98  0.66  0.84  0.62  0.56
#> [5,]  1.00  0.46  0.46  0.98  0.76  0.86  0.58  0.90  0.82  0.68  0.72  0.28
#> [6,]  0.16  0.84  0.16  0.50  0.96  0.88  0.48  0.46  0.22  1.00  0.20  0.58
#>      [,39] [,40] [,41] [,42] [,43] [,44] [,45] [,46] [,47] [,48] [,49] [,50]
#> [1,]  0.66  0.92  0.84  0.74  0.74  0.66  0.52  0.30  0.16  0.46  0.56  0.58
#> [2,]  0.64  0.36  0.24  0.02  0.06  0.10  0.32  0.44  0.14  0.16  0.52  0.60
#> [3,]  0.44  0.04  0.48  0.96  0.36  0.18  0.42  0.66  0.78  0.66  0.78  0.04
#> [4,]  0.82  0.14  0.34  0.84  0.28  0.32  0.50  0.72  0.24  0.62  0.24  0.22
#> [5,]  0.40  0.68  0.42  0.18  0.64  0.40  0.54  0.84  0.50  0.56  0.48  0.34
#> [6,]  0.70  0.04  0.26  0.70  1.00  0.20  0.94  0.82  0.60  0.72  0.12  0.82
library(bayesplot)
#> This is bayesplot version 1.9.0
#> - Online documentation and vignettes at mc-stan.org/bayesplot
#> - bayesplot theme set to bayesplot::theme_default()
#>    * Does _not_ affect other ggplot2 plots
#>    * See ?bayesplot_theme_set for details on theme setting
pp_check(output_HMDCM_RT_sep, type="total_latency")

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.