The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
library(hmcdm)
= length(Test_versions)
N = nrow(Q_matrix)
J = ncol(Q_matrix)
K = nrow(Test_order) L
<- ETAmat(K, J, Q_matrix)
ETAs <- sample(1:2^K, N, replace = L)
class_0 <- matrix(0,N,K)
Alphas_0 = c(0,0)
mu_thetatau = rbind(c(1.8^2,.4*.5*1.8),c(.4*.5*1.8,.25))
Sig_thetatau = matrix(rnorm(N*2),N,2)
Z = Z%*%chol(Sig_thetatau)
thetatau_true = thetatau_true[,1]
thetas_true = thetatau_true[,2]
taus_true = 3
G_version = 0.8
phi_true for(i in 1:N){
<- inv_bijectionvector(K,(class_0[i]-1))
Alphas_0[i,]
}<- c(-2, .4, .055) # empirical from Wang 2017
lambdas_true <- sim_alphas(model="HO_joint",
Alphas lambdas=lambdas_true,
thetas=thetas_true,
Q_matrix=Q_matrix,
Design_array=Design_array)
table(rowSums(Alphas[,,5]) - rowSums(Alphas[,,1])) # used to see how much transition has taken place
#>
#> 0 1 2 3 4
#> 61 67 78 119 25
<- matrix(runif(J*2,.1,.2), ncol=2)
itempars_true <- matrix(NA, nrow=J, ncol=2)
RT_itempars_true 2] <- rnorm(J,3.45,.5)
RT_itempars_true[,1] <- runif(J,1.5,2)
RT_itempars_true[,
<- sim_hmcdm(model="DINA",Alphas,Q_matrix,Design_array,
Y_sim itempars=itempars_true)
<- sim_RT(Alphas,Q_matrix,Design_array,
L_sim RT_itempars_true,taus_true,phi_true,G_version)
= hmcdm(Y_sim,Q_matrix,"DINA_HO_RT_joint",Design_array,100,30,
output_HMDCM_RT_joint Latency_array = L_sim, G_version = G_version,
theta_propose = 2,deltas_propose = c(.45,.25,.06))
#> 0
output_HMDCM_RT_joint#>
#> Model: DINA_HO_RT_joint
#>
#> Sample Size: 350
#> Number of Items:
#> Number of Time Points:
#>
#> Chain Length: 100, burn-in: 50
summary(output_HMDCM_RT_joint)
#>
#> Model: DINA_HO_RT_joint
#>
#> Item Parameters:
#> ss_EAP gs_EAP
#> 0.1453 0.16476
#> 0.2235 0.18512
#> 0.2326 0.04447
#> 0.1232 0.15566
#> 0.1367 0.20499
#> ... 45 more items
#>
#> Transition Parameters:
#> lambdas_EAP
#> λ0 -1.87169
#> λ1 0.09275
#> λ2 0.12180
#>
#> Class Probabilities:
#> pis_EAP
#> 0000 0.1069
#> 0001 0.1718
#> 0010 0.1717
#> 0011 0.2851
#> 0100 0.1919
#> ... 11 more classes
#>
#> Deviance Information Criterion (DIC): 154397.3
#>
#> Posterior Predictive P-value (PPP):
#> M1: 0.5024
#> M2: 0.49
#> total scores: 0.6229
<- summary(output_HMDCM_RT_joint)
a
a#>
#> Model: DINA_HO_RT_joint
#>
#> Item Parameters:
#> ss_EAP gs_EAP
#> 0.1453 0.16476
#> 0.2235 0.18512
#> 0.2326 0.04447
#> 0.1232 0.15566
#> 0.1367 0.20499
#> ... 45 more items
#>
#> Transition Parameters:
#> lambdas_EAP
#> λ0 -1.87169
#> λ1 0.09275
#> λ2 0.12180
#>
#> Class Probabilities:
#> pis_EAP
#> 0000 0.1069
#> 0001 0.1718
#> 0010 0.1717
#> 0011 0.2851
#> 0100 0.1919
#> ... 11 more classes
#>
#> Deviance Information Criterion (DIC): 154397.3
#>
#> Posterior Predictive P-value (PPP):
#> M1: 0.5208
#> M2: 0.49
#> total scores: 0.6268
$ss_EAP
a#> [,1]
#> [1,] 0.14527364
#> [2,] 0.22347089
#> [3,] 0.23264554
#> [4,] 0.12324120
#> [5,] 0.13671703
#> [6,] 0.15870662
#> [7,] 0.13474586
#> [8,] 0.16340068
#> [9,] 0.23955037
#> [10,] 0.09482755
#> [11,] 0.22594592
#> [12,] 0.21414600
#> [13,] 0.20544524
#> [14,] 0.16827695
#> [15,] 0.18610171
#> [16,] 0.24041734
#> [17,] 0.20221820
#> [18,] 0.19796050
#> [19,] 0.16214569
#> [20,] 0.16190172
#> [21,] 0.16581845
#> [22,] 0.15179118
#> [23,] 0.14965766
#> [24,] 0.22729361
#> [25,] 0.19476440
#> [26,] 0.23051407
#> [27,] 0.15559297
#> [28,] 0.18621418
#> [29,] 0.20944074
#> [30,] 0.10174868
#> [31,] 0.11808534
#> [32,] 0.14596304
#> [33,] 0.18828569
#> [34,] 0.14753469
#> [35,] 0.19077708
#> [36,] 0.23527372
#> [37,] 0.21634465
#> [38,] 0.18328075
#> [39,] 0.20804419
#> [40,] 0.20749658
#> [41,] 0.14474496
#> [42,] 0.25869170
#> [43,] 0.13241310
#> [44,] 0.12952914
#> [45,] 0.21678566
#> [46,] 0.11513858
#> [47,] 0.14294383
#> [48,] 0.23072136
#> [49,] 0.15857348
#> [50,] 0.15212187
head(a$ss_EAP)
#> [,1]
#> [1,] 0.1452736
#> [2,] 0.2234709
#> [3,] 0.2326455
#> [4,] 0.1232412
#> [5,] 0.1367170
#> [6,] 0.1587066
<- cor(thetas_true,a$thetas_EAP))
(cor_thetas #> [,1]
#> [1,] 0.8061758
<- cor(taus_true,a$response_times_coefficients$taus_EAP))
(cor_taus #> [,1]
#> [1,] 0.9879757
<- cor(as.vector(itempars_true[,1]),a$ss_EAP))
(cor_ss #> [,1]
#> [1,] 0.639022
<- cor(as.vector(itempars_true[,2]),a$gs_EAP))
(cor_gs #> [,1]
#> [1,] 0.5692589
<- numeric(L)
AAR_vec for(t in 1:L){
<- mean(Alphas[,,t]==a$Alphas_est[,,t])
AAR_vec[t]
}
AAR_vec#> [1] 0.9271429 0.9335714 0.9457143 0.9542857 0.9457143
<- numeric(L)
PAR_vec for(t in 1:L){
<- mean(rowSums((Alphas[,,t]-a$Alphas_est[,,t])^2)==0)
PAR_vec[t]
}
PAR_vec#> [1] 0.7428571 0.7685714 0.8085714 0.8314286 0.8228571
$DIC
a#> Transition Response_Time Response Joint Total
#> D_bar 1990.836 133126.8 15066.03 3277.902 153461.6
#> D(theta_bar) 1723.832 132699.9 14961.74 3140.410 152525.9
#> DIC 2257.839 133553.8 15170.31 3415.393 154397.3
head(a$PPP_total_scores)
#> [,1] [,2] [,3] [,4] [,5]
#> [1,] 0.46 0.10 0.30 0.82 0.62
#> [2,] 0.84 0.00 0.24 0.24 0.06
#> [3,] 0.40 0.32 0.28 0.44 0.06
#> [4,] 0.88 0.92 0.84 0.24 0.98
#> [5,] 0.74 0.88 0.46 0.52 0.04
#> [6,] 0.42 0.80 0.24 0.50 0.88
head(a$PPP_total_RTs)
#> [,1] [,2] [,3] [,4] [,5]
#> [1,] 0.38 0.14 0.22 0.96 0.72
#> [2,] 0.04 0.96 0.56 0.96 0.32
#> [3,] 0.80 0.40 0.40 0.32 0.50
#> [4,] 0.96 0.08 0.84 0.72 0.12
#> [5,] 0.36 0.54 0.98 0.22 0.84
#> [6,] 0.42 0.24 0.74 0.32 0.86
head(a$PPP_item_means)
#> [1] 0.64 0.44 0.52 0.50 0.46 0.56
head(a$PPP_item_mean_RTs)
#> [1] 0.42 0.72 0.52 0.66 0.62 0.48
head(a$PPP_item_ORs)
#> [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [,14]
#> [1,] NA 0.86 0.58 0.40 0.44 0.60 0.60 0.74 0.08 0.74 0.36 0.94 0.78 0.76
#> [2,] NA NA 0.98 0.88 0.80 0.48 0.82 0.88 0.64 0.62 0.78 0.80 0.80 0.46
#> [3,] NA NA NA 0.84 1.00 0.98 0.98 0.76 0.80 0.92 0.02 0.54 0.42 0.56
#> [4,] NA NA NA NA 0.96 0.94 0.82 0.94 0.80 0.96 0.94 0.82 0.90 0.96
#> [5,] NA NA NA NA NA 0.78 0.50 0.30 0.12 0.36 0.56 0.08 0.96 0.32
#> [6,] NA NA NA NA NA NA 0.84 0.74 0.74 0.82 0.40 0.94 1.00 0.26
#> [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25] [,26]
#> [1,] 0.62 0.14 0.62 0.56 0.56 0.28 0.40 0.22 0.48 0.16 0.94 0.14
#> [2,] 0.16 0.60 0.28 0.24 0.38 0.72 0.76 0.92 0.96 0.84 0.58 0.74
#> [3,] 0.88 0.18 0.58 0.74 0.88 0.44 0.90 0.58 0.62 0.96 0.44 0.32
#> [4,] 0.68 0.70 0.66 0.82 0.80 0.80 0.82 0.98 0.54 0.88 0.80 0.90
#> [5,] 0.10 0.14 0.02 0.30 0.44 0.20 0.34 0.92 0.44 0.16 0.88 0.20
#> [6,] 0.48 0.06 0.12 0.36 0.84 0.14 0.64 0.98 0.38 0.16 0.54 0.56
#> [,27] [,28] [,29] [,30] [,31] [,32] [,33] [,34] [,35] [,36] [,37] [,38]
#> [1,] 0.32 0.86 0.82 0.68 1.00 0.92 0.04 0.60 1.00 0.64 0.90 0.82
#> [2,] 0.70 0.90 0.62 0.98 0.68 0.78 0.86 0.64 0.94 0.44 0.98 0.76
#> [3,] 0.90 0.48 0.38 0.88 0.64 0.84 1.00 0.74 0.66 0.60 1.00 0.74
#> [4,] 0.74 0.84 0.92 0.42 0.60 0.74 0.50 0.82 0.94 0.38 0.72 1.00
#> [5,] 0.72 0.30 0.44 0.70 0.26 0.72 0.88 0.98 0.90 0.44 0.96 0.14
#> [6,] 0.88 0.62 0.64 0.56 0.90 0.16 0.56 0.80 0.82 0.14 0.72 0.40
#> [,39] [,40] [,41] [,42] [,43] [,44] [,45] [,46] [,47] [,48] [,49] [,50]
#> [1,] 0.00 0.42 0.44 0.74 0.10 0.96 0.04 0.14 0.30 0.18 0.96 0.76
#> [2,] 0.68 0.78 0.58 1.00 0.40 0.42 0.82 0.34 0.10 0.64 0.42 0.82
#> [3,] 0.50 0.86 0.68 1.00 1.00 0.78 0.82 0.92 0.98 1.00 1.00 0.96
#> [4,] 0.56 0.92 0.76 0.52 1.00 0.96 0.38 0.94 0.70 0.84 0.38 0.50
#> [5,] 0.62 0.38 0.96 0.68 0.66 0.54 0.66 0.80 0.36 0.84 0.52 0.80
#> [6,] 0.26 0.78 0.90 0.94 0.92 0.84 0.82 0.46 0.50 0.82 0.48 1.00
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.