The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
ETAs <- ETAmat(K, J, Q_matrix)
class_0 <- sample(1:2^K, N, replace = L)
Alphas_0 <- matrix(0,N,K)
mu_thetatau = c(0,0)
Sig_thetatau = rbind(c(1.8^2,.4*.5*1.8),c(.4*.5*1.8,.25))
Z = matrix(rnorm(N*2),N,2)
thetatau_true = Z%*%chol(Sig_thetatau)
thetas_true = thetatau_true[,1]
taus_true = thetatau_true[,2]
G_version = 3
phi_true = 0.8
for(i in 1:N){
Alphas_0[i,] <- inv_bijectionvector(K,(class_0[i]-1))
}
lambdas_true <- c(-2, .4, .055) # empirical from Wang 2017
Alphas <- sim_alphas(model="HO_joint",
lambdas=lambdas_true,
thetas=thetas_true,
Q_matrix=Q_matrix,
Design_array=Design_array)
table(rowSums(Alphas[,,5]) - rowSums(Alphas[,,1])) # used to see how much transition has taken place
#>
#> 0 1 2 3 4
#> 64 58 84 107 37
itempars_true <- matrix(runif(J*2,.1,.2), ncol=2)
RT_itempars_true <- matrix(NA, nrow=J, ncol=2)
RT_itempars_true[,2] <- rnorm(J,3.45,.5)
RT_itempars_true[,1] <- runif(J,1.5,2)
Y_sim <- sim_hmcdm(model="DINA",Alphas,Q_matrix,Design_array,
itempars=itempars_true)
L_sim <- sim_RT(Alphas,Q_matrix,Design_array,
RT_itempars_true,taus_true,phi_true,G_version)output_HMDCM_RT_joint = hmcdm(Y_sim,Q_matrix,"DINA_HO_RT_joint",Design_array,100,30,
Latency_array = L_sim, G_version = G_version,
theta_propose = 2,deltas_propose = c(.45,.25,.06))
#> 0
output_HMDCM_RT_joint
#>
#> Model: DINA_HO_RT_joint
#>
#> Sample Size: 350
#> Number of Items:
#> Number of Time Points:
#>
#> Chain Length: 100, burn-in: 50
summary(output_HMDCM_RT_joint)
#>
#> Model: DINA_HO_RT_joint
#>
#> Item Parameters:
#> ss_EAP gs_EAP
#> 0.1727 0.08984
#> 0.1816 0.17441
#> 0.1579 0.11196
#> 0.1180 0.16100
#> 0.1086 0.12128
#> ... 45 more items
#>
#> Transition Parameters:
#> lambdas_EAP
#> λ0 -1.9333
#> λ1 0.1473
#> λ2 0.1668
#>
#> Class Probabilities:
#> pis_EAP
#> 0000 0.1683
#> 0001 0.1329
#> 0010 0.1479
#> 0011 0.2828
#> 0100 0.1229
#> ... 11 more classes
#>
#> Deviance Information Criterion (DIC): 158101
#>
#> Posterior Predictive P-value (PPP):
#> M1: 0.5
#> M2: 0.49
#> total scores: 0.6265
a <- summary(output_HMDCM_RT_joint)
a
#>
#> Model: DINA_HO_RT_joint
#>
#> Item Parameters:
#> ss_EAP gs_EAP
#> 0.1727 0.08984
#> 0.1816 0.17441
#> 0.1579 0.11196
#> 0.1180 0.16100
#> 0.1086 0.12128
#> ... 45 more items
#>
#> Transition Parameters:
#> lambdas_EAP
#> λ0 -1.9333
#> λ1 0.1473
#> λ2 0.1668
#>
#> Class Probabilities:
#> pis_EAP
#> 0000 0.1683
#> 0001 0.1329
#> 0010 0.1479
#> 0011 0.2828
#> 0100 0.1229
#> ... 11 more classes
#>
#> Deviance Information Criterion (DIC): 158101
#>
#> Posterior Predictive P-value (PPP):
#> M1: 0.5008
#> M2: 0.49
#> total scores: 0.6284
a$ss_EAP
#> [,1]
#> [1,] 0.17269201
#> [2,] 0.18155850
#> [3,] 0.15793767
#> [4,] 0.11800202
#> [5,] 0.10859240
#> [6,] 0.18435075
#> [7,] 0.13729573
#> [8,] 0.09056036
#> [9,] 0.14026537
#> [10,] 0.10935337
#> [11,] 0.10923594
#> [12,] 0.18604417
#> [13,] 0.17070529
#> [14,] 0.09539927
#> [15,] 0.10884538
#> [16,] 0.15417946
#> [17,] 0.18275347
#> [18,] 0.17545294
#> [19,] 0.24954013
#> [20,] 0.13180079
#> [21,] 0.12408538
#> [22,] 0.20856378
#> [23,] 0.13759198
#> [24,] 0.22857160
#> [25,] 0.18071116
#> [26,] 0.23041432
#> [27,] 0.16984212
#> [28,] 0.20469014
#> [29,] 0.17311793
#> [30,] 0.17487781
#> [31,] 0.14947353
#> [32,] 0.12124006
#> [33,] 0.24027107
#> [34,] 0.13190875
#> [35,] 0.17088618
#> [36,] 0.10801057
#> [37,] 0.25565457
#> [38,] 0.12657494
#> [39,] 0.19016467
#> [40,] 0.14297617
#> [41,] 0.12272135
#> [42,] 0.15629315
#> [43,] 0.22920419
#> [44,] 0.24783945
#> [45,] 0.21246526
#> [46,] 0.14814914
#> [47,] 0.28445936
#> [48,] 0.22325116
#> [49,] 0.15027183
#> [50,] 0.16661440
head(a$ss_EAP)
#> [,1]
#> [1,] 0.1726920
#> [2,] 0.1815585
#> [3,] 0.1579377
#> [4,] 0.1180020
#> [5,] 0.1085924
#> [6,] 0.1843508(cor_thetas <- cor(thetas_true,a$thetas_EAP))
#> [,1]
#> [1,] 0.7914858
(cor_taus <- cor(taus_true,a$response_times_coefficients$taus_EAP))
#> [,1]
#> [1,] 0.9869964
(cor_ss <- cor(as.vector(itempars_true[,1]),a$ss_EAP))
#> [,1]
#> [1,] 0.7527781
(cor_gs <- cor(as.vector(itempars_true[,2]),a$gs_EAP))
#> [,1]
#> [1,] 0.7282395
AAR_vec <- numeric(L)
for(t in 1:L){
AAR_vec[t] <- mean(Alphas[,,t]==a$Alphas_est[,,t])
}
AAR_vec
#> [1] 0.9271429 0.9321429 0.9571429 0.9635714 0.9628571
PAR_vec <- numeric(L)
for(t in 1:L){
PAR_vec[t] <- mean(rowSums((Alphas[,,t]-a$Alphas_est[,,t])^2)==0)
}
PAR_vec
#> [1] 0.7257143 0.7600000 0.8342857 0.8657143 0.8685714a$DIC
#> Transition Response_Time Response Joint Total
#> D_bar 1959.319 137004.6 14607.29 3549.689 157120.9
#> D(theta_bar) 1704.693 136565.8 14429.81 3440.395 156140.7
#> DIC 2213.944 137443.3 14784.77 3658.983 158101.0
head(a$PPP_total_scores)
#> [,1] [,2] [,3] [,4] [,5]
#> [1,] 0.96 0.66 0.80 0.12 0.22
#> [2,] 0.20 0.38 0.08 0.84 0.92
#> [3,] 0.82 0.88 0.32 0.64 0.86
#> [4,] 0.76 0.04 0.96 0.40 0.74
#> [5,] 1.00 0.70 0.32 0.78 0.34
#> [6,] 0.34 0.40 0.78 0.78 0.70
head(a$PPP_total_RTs)
#> [,1] [,2] [,3] [,4] [,5]
#> [1,] 0.32 0.56 0.86 0.12 0.20
#> [2,] 0.56 0.84 0.18 0.90 0.02
#> [3,] 0.24 0.46 0.64 0.46 0.78
#> [4,] 0.42 0.64 0.52 0.78 0.28
#> [5,] 0.80 0.26 0.56 0.52 0.66
#> [6,] 0.82 0.00 0.08 0.88 0.32
head(a$PPP_item_means)
#> [1] 0.56 0.60 0.48 0.44 0.48 0.44
head(a$PPP_item_mean_RTs)
#> [1] 0.22 0.52 0.48 0.68 0.14 0.36
head(a$PPP_item_ORs)
#> [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [,14]
#> [1,] NA 0.94 0.92 0.18 0.94 0.38 0.82 0.70 0.64 0.98 0.48 0.84 0.34 0.36
#> [2,] NA NA 0.82 0.60 0.82 0.92 0.90 0.68 0.54 0.78 0.40 0.28 0.42 0.96
#> [3,] NA NA NA 0.66 0.62 0.42 0.60 0.72 0.78 0.24 0.80 0.82 0.80 0.98
#> [4,] NA NA NA NA 0.48 0.06 0.16 0.16 0.76 0.16 0.66 0.28 0.90 0.82
#> [5,] NA NA NA NA NA 0.30 0.54 0.62 0.46 0.34 0.84 0.36 0.88 0.52
#> [6,] NA NA NA NA NA NA 0.88 0.62 0.58 0.50 0.10 0.78 0.20 0.70
#> [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25] [,26]
#> [1,] 0.72 0.34 0.90 0.02 0.42 0.04 0.86 0.92 0.70 0.94 0.32 0.48
#> [2,] 0.92 0.90 0.42 0.90 1.00 0.96 0.88 0.92 0.54 0.88 0.62 0.52
#> [3,] 0.84 0.08 0.66 0.56 0.98 0.38 0.12 0.18 0.58 0.46 0.34 0.38
#> [4,] 0.02 0.18 0.32 0.30 0.40 0.28 0.46 0.50 0.20 0.34 0.44 0.34
#> [5,] 0.76 0.50 0.92 0.90 0.84 0.60 0.50 0.98 0.44 0.96 0.46 0.98
#> [6,] 0.30 0.54 0.90 0.72 0.84 0.62 0.10 0.78 0.12 0.76 0.02 0.50
#> [,27] [,28] [,29] [,30] [,31] [,32] [,33] [,34] [,35] [,36] [,37] [,38]
#> [1,] 0.10 0.34 0.58 0.76 0.12 0.66 0.80 0.72 0.94 0.78 0.46 0.94
#> [2,] 0.14 0.78 0.64 0.90 0.46 0.88 0.94 0.92 0.80 0.74 0.90 0.82
#> [3,] 0.84 0.46 0.08 0.68 0.06 0.24 0.36 0.62 0.14 0.60 0.38 0.14
#> [4,] 0.46 0.36 0.48 0.36 0.74 0.34 0.56 0.92 0.58 0.30 0.24 0.26
#> [5,] 0.28 0.24 0.32 0.82 0.40 0.64 0.72 0.72 0.66 0.78 0.62 0.32
#> [6,] 0.02 0.16 0.32 0.48 0.42 0.84 0.66 0.40 0.40 0.54 0.08 0.32
#> [,39] [,40] [,41] [,42] [,43] [,44] [,45] [,46] [,47] [,48] [,49] [,50]
#> [1,] 0.80 0.28 0.50 0.70 0.48 0.80 0.82 0.90 0.84 0.80 0.88 0.52
#> [2,] 0.70 0.76 0.86 0.42 0.30 0.94 0.62 0.76 0.98 0.90 0.78 0.76
#> [3,] 0.50 0.20 0.88 0.56 0.82 0.06 0.78 0.70 0.28 0.68 0.38 0.06
#> [4,] 0.88 0.18 0.36 0.92 0.42 0.94 0.98 0.42 0.80 0.06 0.56 0.12
#> [5,] 0.88 0.26 0.56 0.80 0.24 0.18 0.74 0.26 0.44 0.84 0.64 0.44
#> [6,] 0.18 0.22 0.76 0.12 0.22 0.46 0.52 0.78 0.24 0.34 0.52 0.44These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.