The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
ETAs <- ETAmat(K, J, Q_matrix)
class_0 <- sample(1:2^K, N, replace = L)
Alphas_0 <- matrix(0,N,K)
mu_thetatau = c(0,0)
Sig_thetatau = rbind(c(1.8^2,.4*.5*1.8),c(.4*.5*1.8,.25))
Z = matrix(rnorm(N*2),N,2)
thetatau_true = Z%*%chol(Sig_thetatau)
thetas_true = thetatau_true[,1]
taus_true = thetatau_true[,2]
G_version = 3
phi_true = 0.8
for(i in 1:N){
Alphas_0[i,] <- inv_bijectionvector(K,(class_0[i]-1))
}
lambdas_true <- c(-2, .4, .055) # empirical from Wang 2017
Alphas <- sim_alphas(model="HO_joint",
lambdas=lambdas_true,
thetas=thetas_true,
Q_matrix=Q_matrix,
Design_array=Design_array)
table(rowSums(Alphas[,,5]) - rowSums(Alphas[,,1])) # used to see how much transition has taken place
#>
#> 0 1 2 3 4
#> 70 47 81 124 28
itempars_true <- matrix(runif(J*2,.1,.2), ncol=2)
RT_itempars_true <- matrix(NA, nrow=J, ncol=2)
RT_itempars_true[,2] <- rnorm(J,3.45,.5)
RT_itempars_true[,1] <- runif(J,1.5,2)
Y_sim <- sim_hmcdm(model="DINA",Alphas,Q_matrix,Design_array,
itempars=itempars_true)
L_sim <- sim_RT(Alphas,Q_matrix,Design_array,
RT_itempars_true,taus_true,phi_true,G_version)output_HMDCM_RT_joint = hmcdm(Y_sim,Q_matrix,"DINA_HO_RT_joint",Design_array,100,30,
Latency_array = L_sim, G_version = G_version,
theta_propose = 2,deltas_propose = c(.45,.25,.06))
#> 0
output_HMDCM_RT_joint
#>
#> Model: DINA_HO_RT_joint
#>
#> Sample Size: 350
#> Number of Items:
#> Number of Time Points:
#>
#> Chain Length: 100, burn-in: 50
summary(output_HMDCM_RT_joint)
#>
#> Model: DINA_HO_RT_joint
#>
#> Item Parameters:
#> ss_EAP gs_EAP
#> 0.1127 0.124233
#> 0.2250 0.104211
#> 0.1877 0.009745
#> 0.1335 0.193535
#> 0.1808 0.150073
#> ... 45 more items
#>
#> Transition Parameters:
#> lambdas_EAP
#> λ0 -1.62844
#> λ1 0.21930
#> λ2 0.08968
#>
#> Class Probabilities:
#> pis_EAP
#> 0000 0.1366
#> 0001 0.2043
#> 0010 0.1899
#> 0011 0.1994
#> 0100 0.1981
#> ... 11 more classes
#>
#> Deviance Information Criterion (DIC): 154490
#>
#> Posterior Predictive P-value (PPP):
#> M1: 0.4924
#> M2: 0.49
#> total scores: 0.6256
a <- summary(output_HMDCM_RT_joint)
a
#>
#> Model: DINA_HO_RT_joint
#>
#> Item Parameters:
#> ss_EAP gs_EAP
#> 0.1127 0.124233
#> 0.2250 0.104211
#> 0.1877 0.009745
#> 0.1335 0.193535
#> 0.1808 0.150073
#> ... 45 more items
#>
#> Transition Parameters:
#> lambdas_EAP
#> λ0 -1.62844
#> λ1 0.21930
#> λ2 0.08968
#>
#> Class Probabilities:
#> pis_EAP
#> 0000 0.1366
#> 0001 0.2043
#> 0010 0.1899
#> 0011 0.1994
#> 0100 0.1981
#> ... 11 more classes
#>
#> Deviance Information Criterion (DIC): 154490
#>
#> Posterior Predictive P-value (PPP):
#> M1: 0.5004
#> M2: 0.49
#> total scores: 0.6265
a$ss_EAP
#> [,1]
#> [1,] 0.11270347
#> [2,] 0.22499077
#> [3,] 0.18766803
#> [4,] 0.13351881
#> [5,] 0.18084313
#> [6,] 0.16630679
#> [7,] 0.21917773
#> [8,] 0.16926534
#> [9,] 0.15198695
#> [10,] 0.10504352
#> [11,] 0.18651961
#> [12,] 0.20737220
#> [13,] 0.11106260
#> [14,] 0.12706865
#> [15,] 0.04172292
#> [16,] 0.14512500
#> [17,] 0.12693036
#> [18,] 0.11337881
#> [19,] 0.22802246
#> [20,] 0.16607305
#> [21,] 0.21718210
#> [22,] 0.21294002
#> [23,] 0.13819274
#> [24,] 0.10512822
#> [25,] 0.22038682
#> [26,] 0.18080738
#> [27,] 0.24075552
#> [28,] 0.20718553
#> [29,] 0.15083268
#> [30,] 0.14005061
#> [31,] 0.20968285
#> [32,] 0.19344205
#> [33,] 0.14357316
#> [34,] 0.15476279
#> [35,] 0.14418051
#> [36,] 0.10282458
#> [37,] 0.17717930
#> [38,] 0.20544774
#> [39,] 0.17236065
#> [40,] 0.07957245
#> [41,] 0.17311277
#> [42,] 0.20793720
#> [43,] 0.15947439
#> [44,] 0.10157765
#> [45,] 0.15023576
#> [46,] 0.16526813
#> [47,] 0.21881203
#> [48,] 0.19479450
#> [49,] 0.20101923
#> [50,] 0.09277548
head(a$ss_EAP)
#> [,1]
#> [1,] 0.1127035
#> [2,] 0.2249908
#> [3,] 0.1876680
#> [4,] 0.1335188
#> [5,] 0.1808431
#> [6,] 0.1663068(cor_thetas <- cor(thetas_true,a$thetas_EAP))
#> [,1]
#> [1,] 0.8234573
(cor_taus <- cor(taus_true,a$response_times_coefficients$taus_EAP))
#> [,1]
#> [1,] 0.9857816
(cor_ss <- cor(as.vector(itempars_true[,1]),a$ss_EAP))
#> [,1]
#> [1,] 0.7852056
(cor_gs <- cor(as.vector(itempars_true[,2]),a$gs_EAP))
#> [,1]
#> [1,] 0.6492715
AAR_vec <- numeric(L)
for(t in 1:L){
AAR_vec[t] <- mean(Alphas[,,t]==a$Alphas_est[,,t])
}
AAR_vec
#> [1] 0.9407143 0.9400000 0.9500000 0.9607143 0.9514286
PAR_vec <- numeric(L)
for(t in 1:L){
PAR_vec[t] <- mean(rowSums((Alphas[,,t]-a$Alphas_est[,,t])^2)==0)
}
PAR_vec
#> [1] 0.7857143 0.7857143 0.8171429 0.8628571 0.8457143a$DIC
#> Transition Response_Time Response Joint Total
#> D_bar 2106.370 133261.0 14862.97 3199.193 153429.5
#> D(theta_bar) 1834.658 132833.9 14656.24 3044.158 152369.0
#> DIC 2378.082 133688.0 15069.69 3354.228 154490.0
head(a$PPP_total_scores)
#> [,1] [,2] [,3] [,4] [,5]
#> [1,] 0.52 0.92 0.52 0.90 0.56
#> [2,] 0.74 0.92 0.14 0.98 0.22
#> [3,] 0.28 0.96 0.26 0.72 0.08
#> [4,] 0.52 0.38 0.82 0.64 0.32
#> [5,] 0.90 1.00 0.80 1.00 0.56
#> [6,] 0.82 0.74 0.90 0.32 0.48
head(a$PPP_total_RTs)
#> [,1] [,2] [,3] [,4] [,5]
#> [1,] 0.70 0.52 0.78 0.66 0.28
#> [2,] 0.28 0.82 0.46 0.42 0.86
#> [3,] 0.18 0.56 0.32 0.86 0.62
#> [4,] 0.88 0.12 0.08 0.78 0.56
#> [5,] 0.14 0.60 0.48 0.36 0.60
#> [6,] 0.74 0.68 0.92 0.12 0.56
head(a$PPP_item_means)
#> [1] 0.64 0.44 0.40 0.50 0.52 0.56
head(a$PPP_item_mean_RTs)
#> [1] 0.66 0.34 0.60 0.48 0.64 0.60
head(a$PPP_item_ORs)
#> [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [,14]
#> [1,] NA 0.24 0.86 0.20 0.76 0.46 0.78 0.30 0.70 1.00 0.30 0.78 0.84 0.06
#> [2,] NA NA 0.60 0.38 0.08 0.84 0.46 0.08 0.64 0.74 0.90 0.54 0.88 0.44
#> [3,] NA NA NA 0.30 0.78 0.92 0.96 0.82 0.28 0.98 0.76 0.78 0.56 0.54
#> [4,] NA NA NA NA 0.00 0.06 0.02 0.36 0.62 0.20 0.98 0.10 0.14 0.20
#> [5,] NA NA NA NA NA 0.18 0.70 0.26 0.86 0.34 0.60 0.44 0.68 0.10
#> [6,] NA NA NA NA NA NA 0.28 0.28 0.52 0.66 0.70 1.00 0.48 0.32
#> [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25] [,26]
#> [1,] 0.56 0.70 0.36 0.18 0.74 0.34 0.38 0.98 0.78 0.80 0.02 0.60
#> [2,] 0.68 0.54 0.32 0.24 0.50 0.36 0.68 0.92 0.08 0.24 0.12 0.30
#> [3,] 0.88 0.72 0.68 0.06 0.58 0.80 0.52 0.26 0.60 1.00 0.78 0.90
#> [4,] 0.00 0.26 0.14 0.32 0.70 0.32 0.04 0.06 0.34 0.10 0.26 0.40
#> [5,] 0.04 0.74 0.02 0.12 0.44 0.46 1.00 1.00 0.84 0.92 0.74 0.82
#> [6,] 0.96 1.00 0.94 0.10 0.74 0.76 0.42 0.96 0.08 0.90 0.30 0.90
#> [,27] [,28] [,29] [,30] [,31] [,32] [,33] [,34] [,35] [,36] [,37] [,38]
#> [1,] 0.68 0.96 0.10 0.50 0.40 0.04 0.46 0.88 0.16 0.48 0.10 0.40
#> [2,] 0.90 0.72 0.16 0.22 0.14 0.36 0.92 0.84 0.24 0.44 0.92 0.10
#> [3,] 0.68 0.92 0.98 0.44 0.90 0.44 0.78 0.84 0.84 0.18 0.54 0.66
#> [4,] 0.40 0.12 0.02 0.14 0.62 0.48 0.50 0.16 0.20 0.32 0.18 0.24
#> [5,] 0.98 0.98 0.62 0.38 0.68 0.64 0.40 0.82 0.98 0.60 0.56 0.70
#> [6,] 0.92 0.92 0.94 0.34 0.56 0.26 0.74 0.64 0.22 0.14 0.44 0.72
#> [,39] [,40] [,41] [,42] [,43] [,44] [,45] [,46] [,47] [,48] [,49] [,50]
#> [1,] 0.68 0.12 0.26 0.56 0.56 0.94 0.88 0.24 0.86 0.08 0.94 0.44
#> [2,] 0.60 0.12 0.46 0.64 0.84 0.88 0.90 0.42 0.50 0.52 0.70 0.66
#> [3,] 0.74 0.64 0.04 0.82 0.46 0.92 0.76 0.86 0.98 0.98 0.88 0.48
#> [4,] 0.30 0.34 0.20 1.00 0.32 0.64 0.60 0.30 0.32 0.68 0.54 0.50
#> [5,] 1.00 0.94 0.54 0.62 0.22 0.46 0.68 0.84 0.78 0.56 0.78 0.34
#> [6,] 0.74 0.16 0.66 0.30 0.50 0.82 0.36 0.12 0.58 0.58 0.48 0.02These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.