The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
library(hmcdm)
= length(Test_versions)
N = nrow(Q_matrix)
J = ncol(Q_matrix)
K = nrow(Test_order)
L = J/L Jt
<- TPmat(K)
TP <- rOmega(TP)
Omega_true <- sample(1:2^K, N, replace = L)
class_0 <- matrix(0,N,K)
Alphas_0 for(i in 1:N){
<- inv_bijectionvector(K,(class_0[i]-1))
Alphas_0[i,]
}<- sim_alphas(model="FOHM", Omega = Omega_true, N=N, L=L)
Alphas <- matrix(runif(J*2,.1,.2), ncol=2)
itempars_true
<- sim_hmcdm(model="DINA",Alphas,Q_matrix,Design_array,
Y_sim itempars=itempars_true)
= hmcdm(Y_sim,Q_matrix,"DINA_FOHM",Design_array,100,30)
output_FOHM #> 0
output_FOHM#>
#> Model: DINA_FOHM
#>
#> Sample Size: 350
#> Number of Items:
#> Number of Time Points:
#>
#> Chain Length: 100, burn-in: 50
summary(output_FOHM)
#>
#> Model: DINA_FOHM
#>
#> Item Parameters:
#> ss_EAP gs_EAP
#> 0.11392 0.1509
#> 0.15264 0.1265
#> 0.14103 0.2159
#> 0.12370 0.1917
#> 0.09824 0.1247
#> ... 45 more items
#>
#> Transition Parameters:
#> [1] 0.03612 0.04023 0.08724 0.06184 0.02024 0.03171 0.02305 0.15487 0.08500
#> [10] 0.11492 0.03781 0.08584 0.05697 0.03249 0.04251 0.08916
#> ... 15 more rows
#>
#> Class Probabilities:
#> pis_EAP
#> 0000 0.2068
#> 0001 0.1451
#> 0010 0.2370
#> 0011 0.1836
#> 0100 0.1632
#> ... 11 more classes
#>
#> Deviance Information Criterion (DIC): 18511.88
#>
#> Posterior Predictive P-value (PPP):
#> M1: 0.5016
#> M2: 0.49
#> total scores: 0.6248
<- summary(output_FOHM)
a head(a$ss_EAP)
#> [,1]
#> [1,] 0.11392417
#> [2,] 0.15264000
#> [3,] 0.14103456
#> [4,] 0.12370413
#> [5,] 0.09824396
#> [6,] 0.16858381
<- numeric(L)
AAR_vec for(t in 1:L){
<- mean(Alphas[,,t]==a$Alphas_est[,,t])
AAR_vec[t]
}
AAR_vec#> [1] 0.9257143 0.9485714 0.9757143 0.9785714 0.9785714
<- numeric(L)
PAR_vec for(t in 1:L){
<- mean(rowSums((Alphas[,,t]-a$Alphas_est[,,t])^2)==0)
PAR_vec[t]
}
PAR_vec#> [1] 0.7371429 0.8171429 0.9114286 0.9314286 0.9228571
$DIC
a#> Transition Response_Time Response Joint Total
#> D_bar 2207.458 NA 14536.61 1234.847 17978.92
#> D(theta_bar) 2114.333 NA 14142.28 1189.343 17445.95
#> DIC 2300.582 NA 14930.95 1280.352 18511.88
head(a$PPP_total_scores)
#> [,1] [,2] [,3] [,4] [,5]
#> [1,] 0.76 0.28 0.82 0.18 0.42
#> [2,] 0.66 0.58 0.34 0.36 0.92
#> [3,] 0.98 0.30 1.00 0.82 0.56
#> [4,] 0.26 0.38 0.72 0.80 0.22
#> [5,] 0.70 0.46 0.68 0.70 0.22
#> [6,] 0.66 0.66 0.80 0.56 1.00
head(a$PPP_item_means)
#> [1] 0.58 0.54 0.64 0.60 0.42 0.44
head(a$PPP_item_ORs)
#> [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [,14]
#> [1,] NA 0.28 0.30 0.28 0.70 0.16 0.54 0.58 0.70 0.72 0.10 0.98 0.84 0.48
#> [2,] NA NA 0.36 0.86 0.38 0.72 0.46 0.38 0.74 0.78 0.66 0.20 0.10 0.12
#> [3,] NA NA NA 0.54 0.34 0.56 0.82 0.82 0.62 0.18 0.38 0.42 0.28 0.82
#> [4,] NA NA NA NA 0.42 0.90 0.90 0.26 0.80 0.58 0.26 0.20 0.22 0.30
#> [5,] NA NA NA NA NA 0.10 0.58 0.82 1.00 0.56 0.02 0.28 0.22 0.12
#> [6,] NA NA NA NA NA NA 0.32 0.86 0.52 0.74 0.08 0.02 0.28 0.16
#> [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25] [,26]
#> [1,] 0.96 0.98 0.94 0.70 0.96 0.28 0.50 0.24 0.14 0.56 0.04 0.44
#> [2,] 0.20 0.84 0.64 0.20 0.30 0.18 0.78 0.06 0.96 0.98 0.10 0.96
#> [3,] 0.04 0.78 0.70 0.86 0.60 0.88 0.72 0.76 0.40 0.80 0.68 0.24
#> [4,] 0.30 0.54 0.68 0.30 0.56 0.76 0.92 0.28 0.88 0.84 0.62 1.00
#> [5,] 0.76 0.52 0.58 0.42 0.36 0.10 0.86 0.24 0.88 0.86 0.56 0.64
#> [6,] 0.22 0.76 0.20 0.84 0.58 0.42 0.42 0.12 0.74 0.94 0.18 0.66
#> [,27] [,28] [,29] [,30] [,31] [,32] [,33] [,34] [,35] [,36] [,37] [,38]
#> [1,] 0.60 0.20 0.50 0.16 0.98 0.20 0.28 0.52 0.74 0.54 0.18 0.88
#> [2,] 0.30 0.90 0.80 0.20 0.92 0.94 0.10 0.90 0.40 0.64 0.20 1.00
#> [3,] 0.50 0.14 0.22 0.92 0.20 0.10 0.24 0.20 0.10 0.60 0.84 0.22
#> [4,] 0.06 0.96 0.88 0.90 0.76 0.18 0.68 0.22 0.80 0.98 0.18 0.60
#> [5,] 0.60 0.72 0.86 0.24 0.74 0.50 0.16 0.84 0.42 0.48 0.84 0.92
#> [6,] 0.28 0.76 0.84 0.34 0.46 0.64 0.04 0.74 0.32 0.62 0.16 0.62
#> [,39] [,40] [,41] [,42] [,43] [,44] [,45] [,46] [,47] [,48] [,49] [,50]
#> [1,] 0.76 0.24 0.06 0.52 0.10 0.54 0.54 0.08 0.04 0.26 0.60 0.20
#> [2,] 0.70 0.34 0.66 0.02 0.80 0.30 0.20 0.80 0.96 0.62 0.54 0.48
#> [3,] 0.24 0.36 0.90 0.54 0.04 0.56 0.50 0.68 0.48 0.32 0.70 0.36
#> [4,] 0.02 0.56 0.32 0.34 0.32 0.32 0.14 0.16 0.84 0.86 0.42 0.32
#> [5,] 0.82 0.60 0.74 0.00 0.92 0.18 0.90 0.70 0.36 0.76 0.78 0.76
#> [6,] 0.66 0.80 0.82 0.22 0.36 0.34 0.74 0.22 0.76 0.68 0.62 0.14
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.