The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
TP <- TPmat(K)
Omega_true <- rOmega(TP)
class_0 <- sample(1:2^K, N, replace = L)
Alphas_0 <- matrix(0,N,K)
for(i in 1:N){
Alphas_0[i,] <- inv_bijectionvector(K,(class_0[i]-1))
}
Alphas <- sim_alphas(model="FOHM", Omega = Omega_true, N=N, L=L)
itempars_true <- matrix(runif(J*2,.1,.2), ncol=2)
Y_sim <- sim_hmcdm(model="DINA",Alphas,Q_matrix,Design_array,
itempars=itempars_true)output_FOHM = hmcdm(Y_sim,Q_matrix,"DINA_FOHM",Design_array,100,30)
#> 0
output_FOHM
#>
#> Model: DINA_FOHM
#>
#> Sample Size: 350
#> Number of Items:
#> Number of Time Points:
#>
#> Chain Length: 100, burn-in: 50
summary(output_FOHM)
#>
#> Model: DINA_FOHM
#>
#> Item Parameters:
#> ss_EAP gs_EAP
#> 0.1608 0.1285
#> 0.1918 0.2048
#> 0.1378 0.2567
#> 0.2098 0.2158
#> 0.1816 0.1293
#> ... 45 more items
#>
#> Transition Parameters:
#> [1] 0.02909 0.04587 0.03618 0.04830 0.15715 0.03313 0.05721 0.02544 0.03755
#> [10] 0.06410 0.06371 0.03695 0.04014 0.05010 0.25844 0.01663
#> ... 15 more rows
#>
#> Class Probabilities:
#> pis_EAP
#> 0000 0.1944
#> 0001 0.1329
#> 0010 0.2160
#> 0011 0.2464
#> 0100 0.1279
#> ... 11 more classes
#>
#> Deviance Information Criterion (DIC): 18901.53
#>
#> Posterior Predictive P-value (PPP):
#> M1: 0.5036
#> M2: 0.49
#> total scores: 0.6264
a <- summary(output_FOHM)
head(a$ss_EAP)
#> [,1]
#> [1,] 0.1608014
#> [2,] 0.1918233
#> [3,] 0.1378178
#> [4,] 0.2097728
#> [5,] 0.1816050
#> [6,] 0.2081184AAR_vec <- numeric(L)
for(t in 1:L){
AAR_vec[t] <- mean(Alphas[,,t]==a$Alphas_est[,,t])
}
AAR_vec
#> [1] 0.9250000 0.9371429 0.9728571 0.9878571 0.9921429
PAR_vec <- numeric(L)
for(t in 1:L){
PAR_vec[t] <- mean(rowSums((Alphas[,,t]-a$Alphas_est[,,t])^2)==0)
}
PAR_vec
#> [1] 0.7342857 0.7800000 0.8971429 0.9514286 0.9685714a$DIC
#> Transition Response_Time Response Joint Total
#> D_bar 2089.519 NA 14968.72 1259.491 18317.73
#> D(theta_bar) 2041.764 NA 14487.14 1205.031 17733.93
#> DIC 2137.274 NA 15450.31 1313.952 18901.53
head(a$PPP_total_scores)
#> [,1] [,2] [,3] [,4] [,5]
#> [1,] 0.26 0.72 0.26 0.70 0.92
#> [2,] 0.92 0.98 0.86 0.04 0.94
#> [3,] 0.56 0.86 0.08 1.00 0.28
#> [4,] 0.82 0.60 0.92 0.60 0.76
#> [5,] 0.54 0.48 0.38 0.54 0.70
#> [6,] 0.62 0.04 0.72 0.62 0.94
head(a$PPP_item_means)
#> [1] 0.52 0.40 0.50 0.44 0.40 0.52
head(a$PPP_item_ORs)
#> [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [,14]
#> [1,] NA 0.24 0.74 0.82 0.48 0.66 0.76 0.78 0.74 0.82 0.50 0.66 0.26 0.34
#> [2,] NA NA 0.26 0.42 0.44 0.50 0.62 0.30 0.24 0.32 1.00 0.24 0.22 0.96
#> [3,] NA NA NA 0.98 0.46 0.84 0.24 0.36 0.30 0.64 0.96 0.58 0.56 0.66
#> [4,] NA NA NA NA 0.68 0.44 0.54 0.96 0.66 0.70 1.00 0.20 0.94 0.94
#> [5,] NA NA NA NA NA 0.78 0.58 0.12 0.60 0.62 0.54 0.80 0.24 0.86
#> [6,] NA NA NA NA NA NA 0.30 0.84 0.34 0.34 0.92 0.80 0.40 1.00
#> [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25] [,26]
#> [1,] 0.56 0.10 0.62 0.98 0.50 0.48 0.58 0.24 0.48 0.64 0.62 0.84
#> [2,] 0.94 0.54 0.60 0.44 0.94 0.86 0.80 0.02 0.50 0.78 0.58 0.80
#> [3,] 0.68 0.78 0.50 0.64 0.72 0.96 0.26 0.14 0.88 0.60 0.90 0.12
#> [4,] 0.64 0.86 0.12 0.68 0.18 1.00 0.62 0.04 0.78 0.54 0.74 0.12
#> [5,] 0.60 0.44 0.20 0.66 0.82 0.70 0.16 0.10 0.40 0.62 0.34 0.10
#> [6,] 0.78 0.50 0.48 0.72 0.68 0.96 0.78 0.08 0.12 1.00 0.16 0.54
#> [,27] [,28] [,29] [,30] [,31] [,32] [,33] [,34] [,35] [,36] [,37] [,38]
#> [1,] 0.76 0.14 0.56 0.58 0.54 0.16 0.38 0.54 0.76 0.80 0.52 0.64
#> [2,] 0.26 0.60 0.38 0.32 0.78 0.00 0.00 0.36 0.80 0.58 0.06 0.24
#> [3,] 0.02 0.40 0.28 1.00 0.70 0.16 0.24 0.64 0.58 0.42 0.18 0.34
#> [4,] 0.86 0.22 0.48 0.72 0.68 0.20 0.12 0.04 0.70 0.22 0.16 0.06
#> [5,] 0.34 0.82 0.90 0.68 0.80 0.08 0.38 0.52 0.90 0.58 0.94 0.62
#> [6,] 0.00 0.62 0.96 0.16 0.62 0.04 0.06 0.08 0.98 0.40 0.10 0.46
#> [,39] [,40] [,41] [,42] [,43] [,44] [,45] [,46] [,47] [,48] [,49] [,50]
#> [1,] 1.00 0.32 0.32 0.68 0.82 0.86 0.74 0.64 0.72 1.00 0.90 0.94
#> [2,] 0.50 0.22 0.62 0.60 0.38 0.38 0.20 0.12 0.64 0.70 0.84 0.62
#> [3,] 0.62 0.56 0.54 0.46 0.54 0.60 0.90 0.22 0.66 0.58 0.80 0.36
#> [4,] 0.98 0.32 0.56 0.58 0.22 0.28 1.00 0.56 0.74 0.34 0.64 0.28
#> [5,] 0.72 0.22 0.04 0.46 0.42 0.08 0.24 0.56 0.82 0.28 0.66 0.32
#> [6,] 0.68 0.34 0.20 0.62 0.80 0.66 0.50 0.62 0.54 0.24 0.74 0.24These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.