The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
This vignette covers hexify’s visualization functions in detail: customizing appearance, showing points, creating heatmaps, and working with ggplot2.
We’ll use European cities throughout:
cities <- data.frame(
name = c("Vienna", "Paris", "Madrid", "Berlin", "Rome",
"Warsaw", "Prague", "Brussels", "Amsterdam", "Lisbon"),
lon = c(16.37, 2.35, -3.70, 13.40, 12.50,
21.01, 14.42, 4.35, 4.90, -9.14),
lat = c(48.21, 48.86, 40.42, 52.52, 41.90,
52.23, 50.08, 50.85, 52.37, 38.72)
)
grid <- hex_grid(area_km2 = 10000)
result <- hexify(cities, lon = "lon", lat = "lat", grid = grid)The plot() method provides quick visualization with
sensible defaults.
plot(result,
grid_fill = "steelblue",
grid_border = "darkblue",
grid_alpha = 0.6,
basemap_fill = "ivory",
basemap_border = "gray50",
main = "Custom Styling")#> Spherical geometry (s2) switched on
Points can be displayed on top of hexagon cells. By default, points are jittered within their assigned cell to avoid overplotting.
#> Spherical geometry (s2) switched on
The point_size parameter accepts presets that define
what fraction of a hex cell a single point covers:
| Preset | Coverage |
|---|---|
"tiny" |
~2% of cell |
"small" |
~5% of cell |
"normal" / "auto" |
~10% of cell |
"large" |
~20% of cell |
"very large" |
~35% of cell |
oldpar <- par(mfrow = c(2, 2))
plot(result, show_points = TRUE, point_size = "small",
point_color = "red", main = "small (~5%)")
#> Spherical geometry (s2) switched on
plot(result, show_points = TRUE, point_size = "normal",
point_color = "red", main = "normal (~10%)")
#> Spherical geometry (s2) switched on
plot(result, show_points = TRUE, point_size = "large",
point_color = "red", main = "large (~20%)")
#> Spherical geometry (s2) switched on
plot(result, show_points = TRUE, point_size = "very large",
point_color = "red", main = "very large (~35%)")#> Spherical geometry (s2) switched on
par(oldpar)
plot(result,
show_points = TRUE,
point_size = "small",
point_color = "darkblue",
point_alpha = 0.8,
grid_fill = "lightyellow",
grid_border = "orange",
main = "Custom Point Styling")
#> Warning in plot.window(...): "point_alpha" is not a graphical parameter
#> Warning in plot.xy(xy, type, ...): "point_alpha" is not a graphical parameter
#> Warning in axis(side = side, at = at, labels = labels, ...): "point_alpha" is
#> not a graphical parameter
#> Warning in axis(side = side, at = at, labels = labels, ...): "point_alpha" is
#> not a graphical parameter
#> Warning in box(...): "point_alpha" is not a graphical parameter
#> Warning in title(...): "point_alpha" is not a graphical parameter#> Spherical geometry (s2) switched on
For exact point locations (no randomization):
plot(result,
show_points = TRUE,
jitter = FALSE,
point_color = "red",
main = "Points at Cell Centers (No Jitter)")
#> Warning in plot.window(...): "jitter" is not a graphical parameter
#> Warning in plot.xy(xy, type, ...): "jitter" is not a graphical parameter
#> Warning in axis(side = side, at = at, labels = labels, ...): "jitter" is not a
#> graphical parameter
#> Warning in axis(side = side, at = at, labels = labels, ...): "jitter" is not a
#> graphical parameter
#> Warning in box(...): "jitter" is not a graphical parameter
#> Warning in title(...): "jitter" is not a graphical parameter#> Spherical geometry (s2) switched on
For ggplot2 users, hexify_heatmap() returns a ggplot
object that can be further customized.
hexify_heatmap(result, basemap = "world", title = "European Cities")
#> Spherical geometry (s2) switched off
#> Spherical geometry (s2) switched onSince hexify_heatmap() returns a ggplot object, you can
add layers and modify themes:
hexify_heatmap(result, basemap = "world") +
labs(
title = "Major European Cities",
subtitle = "Assigned to ISEA hexagonal grid cells",
caption = "Data: Sample cities"
) +
theme_minimal() +
theme(
plot.title = element_text(face = "bold", size = 14),
panel.grid = element_blank()
)
#> Spherical geometry (s2) switched off
#> Spherical geometry (s2) switched on# Get the city coordinates
city_points <- st_as_sf(cities, coords = c("lon", "lat"), crs = 4326)
hexify_heatmap(result, basemap = "world", title = "Cities with Labels") +
geom_sf(data = city_points, color = "red", size = 2) +
geom_sf_text(data = city_points, aes(label = name),
nudge_y = 0.8, size = 3, color = "darkgray") +
coord_sf(xlim = c(-5, 25), ylim = c(45, 55))
#> Spherical geometry (s2) switched off
#> Spherical geometry (s2) switched on
#> Coordinate system already present.
#> ℹ Adding new coordinate system, which will replace the existing one.
#> Warning in st_point_on_surface.sfc(sf::st_zm(x)): st_point_on_surface may not
#> give correct results for longitude/latitude dataFor choropleth-style visualizations with aggregated data, pass a
value column to hexify_heatmap().
# Simulate observation data with counts
set.seed(42)
n_obs <- 100
obs_data <- data.frame(
lon = c(rnorm(60, 10, 8), rnorm(40, 0, 10)),
lat = c(rnorm(60, 48, 5), rnorm(40, 52, 6)),
count = rpois(n_obs, lambda = 50)
)
# Hexify
grid <- hex_grid(area_km2 = 10000)
obs_hex <- hexify(obs_data, lon = "lon", lat = "lat", grid = grid)hexify_heatmap(
obs_hex,
value = "count",
title = "Observation Counts"
)
#> Spherical geometry (s2) switched off
#> Spherical geometry (s2) switched onhexify_heatmap(
obs_hex,
value = "count",
colors = "YlOrRd",
title = "Yellow-Orange-Red Palette"
)
#> Spherical geometry (s2) switched off
#> Spherical geometry (s2) switched onAvailable color palettes include any from
scale_fill_viridis_c() or
scale_fill_distiller():
"viridis", "magma",
"plasma", "inferno", "cividis",
"mako", "rocket", "turbo""YlOrRd",
"YlGnBu", "Blues", "Greens",
"Reds", "Purples", etc.p1 <- hexify_heatmap(obs_hex, value = "count", colors = "viridis",
title = "viridis", xlim = c(-20, 35), ylim = c(35, 65))
#> Spherical geometry (s2) switched off
#> Spherical geometry (s2) switched on
p2 <- hexify_heatmap(obs_hex, value = "count", colors = "YlGnBu",
title = "YlGnBu", xlim = c(-20, 35), ylim = c(35, 65))
#> Spherical geometry (s2) switched off
#> Spherical geometry (s2) switched on
gridExtra::grid.arrange(p1, p2, ncol = 2)hexify_heatmap(
obs_hex,
value = "count",
xlim = c(-20, 35),
ylim = c(35, 65),
title = "Zoomed to Region",
legend_title = "Count"
)
#> Spherical geometry (s2) switched off
#> Spherical geometry (s2) switched on# With world basemap (default)
hexify_heatmap(
obs_hex,
value = "count",
basemap = "world",
xlim = c(-20, 35),
ylim = c(35, 65),
title = "With World Basemap"
)
#> Spherical geometry (s2) switched off
#> Spherical geometry (s2) switched on# Without basemap
hexify_heatmap(
obs_hex,
value = "count",
basemap = NULL,
xlim = c(-20, 35),
ylim = c(35, 65),
title = "No Basemap"
)
#> Spherical geometry (s2) switched off
#> Spherical geometry (s2) switched onplot_world() provides a quick way to draw a world
basemap:
The ISEA grid contains 12 pentagonal cells at the icosahedron vertices. Here’s how to visualize them:
# Pentagon locations (icosahedron vertices in standard ISEA orientation)
pentagon_coords <- data.frame(
type = c("Pole", "Pole", rep("Vertex", 10)),
lon = c(0, 0, seq(0, 324, by = 36)),
lat = c(90, -90, rep(c(26.57, -26.57), 5))
)
# Assign to grid and get polygons
grid <- hex_grid(area_km2 = 500000)
pentagon_cells <- lonlat_to_cell(pentagon_coords$lon, pentagon_coords$lat, grid)
pentagon_polys <- cell_to_sf(pentagon_cells, grid)
pentagon_polys_wrapped <- st_wrap_dateline(
pentagon_polys,
options = c("WRAPDATELINE=YES", "DATELINEOFFSET=180"),
quiet = TRUE
)
ggplot() +
geom_sf(data = hexify_world, fill = "gray95", color = "gray70", linewidth = 0.2) +
geom_sf(data = pentagon_polys_wrapped, fill = alpha("purple", 0.6),
color = "purple", linewidth = 0.8) +
labs(
title = "Pentagon Cell Locations",
subtitle = "12 pentagonal cells at icosahedron vertices (area = 5/6 of hexagons)"
) +
theme_minimal() +
theme(axis.text = element_blank(), axis.ticks = element_blank())Visualizing uniformly sampled cells across Earth:
# Grid parameters (coarse for faster build)
grid <- hex_grid(area_km2 = 200000, aperture = 3)
max_cell <- 10 * (3^grid@resolution) + 2
# Sample random cell IDs
set.seed(123)
N <- 50
random_cells <- sample(1:max_cell, N, replace = FALSE)
# Generate polygons for sampled cells
sample_polys <- cell_to_sf(random_cells, grid)
sample_polys_wrapped <- st_wrap_dateline(
sample_polys,
options = c("WRAPDATELINE=YES", "DATELINEOFFSET=180"),
quiet = TRUE
)
ggplot() +
geom_sf(data = hexify_world, fill = "gray95", color = "gray70", linewidth = 0.2) +
geom_sf(data = sample_polys_wrapped, fill = alpha("forestgreen", 0.5),
color = "darkgreen", linewidth = 0.4) +
labs(title = sprintf("Random Sample of %d Cells (~%.0f km2 each)", N, grid@area_km2)) +
theme_minimal() +
theme(axis.text = element_blank(), axis.ticks = element_blank())For full control, generate polygons directly and use ggplot2:
# Create data with a numeric variable
set.seed(456)
stations <- data.frame(
lon = runif(50, -10, 30),
lat = runif(50, 35, 60),
temperature = rnorm(50, mean = 15, sd = 5)
)
# Hexify (coarser grid for faster build)
grid <- hex_grid(area_km2 = 20000)
stations_hex <- hexify(stations, lon = "lon", lat = "lat", grid = grid)
# Aggregate temperature by cell
stations_df <- as.data.frame(stations_hex)
stations_df$cell_id <- stations_hex@cell_id
cell_temps <- aggregate(temperature ~ cell_id, data = stations_df, FUN = mean)
# Generate polygons and merge data
cell_polys <- cell_to_sf(cell_temps$cell_id, grid)
cell_polys <- merge(cell_polys, cell_temps, by = "cell_id")
# Custom visualization
europe <- hexify_world[hexify_world$continent == "Europe", ]
ggplot() +
geom_sf(data = europe, fill = "gray95", color = "gray60", linewidth = 0.2) +
geom_sf(data = cell_polys, aes(fill = temperature),
color = "white", linewidth = 0.2) +
scale_fill_gradient2(
low = "blue", mid = "white", high = "red",
midpoint = 15, name = "Temp (°C)"
) +
coord_sf(xlim = c(-10, 30), ylim = c(35, 60)) +
labs(
title = "Mean Temperature by Grid Cell",
subtitle = "Diverging color scale centered at 15°C"
) +
theme_minimal() +
theme(
axis.text = element_blank(),
axis.ticks = element_blank(),
panel.grid = element_line(color = "gray90")
)| Function | Description |
|---|---|
plot() |
Base R plot method for HexData objects |
hexify_heatmap() |
ggplot2 visualization, returns modifiable ggplot object |
plot_world() |
Quick world basemap |
cell_to_sf() |
Generate sf polygons from cell IDs |
vignette("quickstart") - Getting started with
hexifyvignette("workflows") - Complete analysis
workflowsThese binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.