The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

Getting Started with healthyR.ts

A Quick Introduction

Steven P. Sanderson II, MPH

2026-01-23

Lets load in the libraries

library(healthyR.ts)
library(ggplot2)
library(dplyr)

Lets generage data and take a look

df <- ts_random_walk()
head(df)
#> # A tibble: 6 × 4
#>     run     x       y cum_y
#>   <dbl> <dbl>   <dbl> <dbl>
#> 1     1     1 -0.149   851.
#> 2     1     2 -0.0268  829.
#> 3     1     3  0.0550  874.
#> 4     1     4  0.0130  886.
#> 5     1     5  0.185  1050.
#> 6     1     6  0.0203 1071.
glimpse(df)
#> Rows: 10,000
#> Columns: 4
#> $ run   <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1…
#> $ x     <dbl> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 1…
#> $ y     <dbl> -0.14850813, -0.02682208, 0.05498798, 0.01298534, 0.18526402, 0.…
#> $ cum_y <dbl> 851.4919, 828.6531, 874.2191, 885.5711, 1049.6355, 1070.9613, 11…

Now that the data has been generated, lets take a look at it.

df %>%
   ggplot(
       mapping = aes(
           x = x
           , y = cum_y
           , color = factor(run)
           , group = factor(run)
        )
    ) +
    geom_line(alpha = 0.8) +
    ts_random_walk_ggplot_layers(df)

That is still pretty noisy, so lets see this in a different way. Lets clear this up a bit to make it easier to see the full range of the possible volatility of the random walks.

library(dplyr)
library(ggplot2)

df %>%
    group_by(x) %>%
    summarise(
        min_y = min(cum_y),
        max_y = max(cum_y)
    ) %>%
    ggplot(
        aes(x = x)
    ) +
    geom_line(aes(y = max_y), color = "steelblue") +
    geom_line(aes(y = min_y), color = "firebrick") +
    geom_ribbon(aes(ymin = min_y, ymax = max_y), alpha = 0.2) +
    ts_random_walk_ggplot_layers(df)

Lets look at volatility from several different percentages.


# Random Walk for volatility range 1-15%
df1 <- ts_random_walk(.sd = 0.01)
df2 <- ts_random_walk(.sd = 0.05)
df3 <- ts_random_walk(.sd = 0.10)
df4 <- ts_random_walk(.sd = 0.15)

# Merge data frames into one
df_merged <- dplyr::bind_rows(
    df1 %>% mutate(ver = "A) Vol 1%"),
    df2 %>% mutate(ver = "B) Vol 5%"),
    df3 %>% mutate(ver = "C) Vol 10%"),
    df4 %>% mutate(ver = "D) Vol 15%")
)

# Plot range between minimum and maximum values
df_merged %>%
    ggplot(aes(
        x = x, y = cum_y,
        color = factor(run), group = factor(run)
    )) +
    geom_line(alpha = 0.8) +
    labs(title = "", x = "", y = "") +
    facet_wrap(~ver, scales = "free") +
    scale_y_continuous(labels = scales::comma) +
    theme(legend.position = "none")

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.