The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
The model is high-dimensional vector autoregression with measurement error, also known as linear gaussian state-space model. Provable sparse expectation-maximization algorithm is provided for the estimation of transition matrix and noise variances. Global and simultaneous testings are implemented for transition matrix with false discovery rate control. For more information, see the accompanying paper: Lyu, X., Kang, J., & Li, L. (2023). "Statistical inference for high-dimensional vector autoregression with measurement error", Statistica Sinica.
Version: | 1.0.2 |
Depends: | R (≥ 3.1) |
Imports: | lpSolve, abind |
Suggests: | knitr, rmarkdown |
Published: | 2023-05-14 |
DOI: | 10.32614/CRAN.package.hdiVAR |
Author: | Xiang Lyu [aut, cre], Jian Kang [aut], Lexin Li [aut] |
Maintainer: | Xiang Lyu <xianglyu.public at gmail.com> |
License: | GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] |
NeedsCompilation: | no |
CRAN checks: | hdiVAR results |
Reference manual: | hdiVAR.pdf |
Vignettes: |
hdiVAR |
Package source: | hdiVAR_1.0.2.tar.gz |
Windows binaries: | r-devel: hdiVAR_1.0.2.zip, r-release: hdiVAR_1.0.2.zip, r-oldrel: hdiVAR_1.0.2.zip |
macOS binaries: | r-release (arm64): hdiVAR_1.0.2.tgz, r-oldrel (arm64): hdiVAR_1.0.2.tgz, r-release (x86_64): hdiVAR_1.0.2.tgz, r-oldrel (x86_64): hdiVAR_1.0.2.tgz |
Old sources: | hdiVAR archive |
Please use the canonical form https://CRAN.R-project.org/package=hdiVAR to link to this page.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.