The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

Type: Package
Title: Hierarchical Cluster Analysis (Learning Didactically)
Version: 0.1.0
Description: Implements hierarchical clustering methods (single linkage, complete linkage, average linkage, and centroid linkage) with stepwise printing and dendrograms for didactic purposes.
License: MIT + file LICENSE
Encoding: UTF-8
RoxygenNote: 7.3.2
NeedsCompilation: no
Packaged: 2025-09-18 14:57:50 UTC; gsaga
Author: Gualberto Segundo Agamez Montalvo [aut, cre]
Maintainer: Gualberto Segundo Agamez Montalvo <gsagamez@dema.ufc.br>
Repository: CRAN
Date/Publication: 2025-09-23 10:30:02 UTC

Hierarchical Clustering - Average linkage

Description

A function that performs hierarchical clustering with average linkage. It can also print the clustering steps and display a dendrogram

Usage

hclust_average(
  data,
  metric = "euclidean",
  print.steps = TRUE,
  plot = TRUE,
  label.names = TRUE
)

Arguments

data

Numerical matrix or data frame of observations (rows = observations, columns = variables).

metric

Distance metric to be used (default: "euclidean").

print.steps

If TRUE, the algorithm's steps are printed.

plot

If TRUE, a dendrogram is plotted.

label.names

If TRUE, uses the row names as labels in the dendrogram.

Value

object of class "hclust".

Examples

y1 <- c(1, 2, 1, 0); y2 <- c(2, 1, 0, 2)
y3 <- c(8, 8, 9, 7); y4 <- c(6, 9, 8, 9)
Data <- rbind(y1, y2, y3, y4)
hc <- hclust_average(Data, metric = "euclidean",
                     print.steps = TRUE,
                     plot = TRUE,
                     label.names = TRUE)

Hierarchical Clustering - Centroid

Description

A function that performs hierarchical clustering with centroid linkage. It can also print the clustering steps and display a dendrogram

Usage

hclust_centroid(
  data,
  metric = "euclidean",
  print.steps = TRUE,
  plot = TRUE,
  label.names = TRUE
)

Arguments

data

Numerical matrix or data frame of observations (rows = observations, columns = variables).

metric

Distance metric to be used (default: "euclidean").

print.steps

If TRUE, the algorithm's steps are printed.

plot

If TRUE, a dendrogram is plotted.

label.names

If TRUE, uses the row names as labels in the dendrogram.

Value

object of class "hclust".

Examples

y1 <- c(1, 2, 1, 0); y2 <- c(2, 1, 0, 2)
y3 <- c(8, 8, 9, 7); y4 <- c(6, 9, 8, 9)
Data <- rbind(y1, y2, y3, y4)
hc <- hclust_centroid(Data, metric = "euclidean",
                      print.steps = TRUE,
                      plot = TRUE,
                      label.names = TRUE)

Hierarchical Clustering - Complete linkage

Description

A function that performs hierarchical clustering with complete linkage. It can also print the clustering steps and display a dendrogram

Usage

hclust_complete(
  data,
  metric = "euclidean",
  print.steps = TRUE,
  plot = TRUE,
  label.names = TRUE
)

Arguments

data

Numerical matrix or data frame of observations (rows = observations, columns = variables).

metric

Distance metric to be used (default: "euclidean").

print.steps

If TRUE, the algorithm's steps are printed.

plot

If TRUE, a dendrogram is plotted.

label.names

If TRUE, uses the row names as labels in the dendrogram.

Value

object of class "hclust".

Examples

y1 <- c(1, 2, 1, 0); y2 <- c(2, 1, 0, 2)
y3 <- c(8, 8, 9, 7); y4 <- c(6, 9, 8, 9)
Data <- rbind(y1, y2, y3, y4)
hc <- hclust_complete(Data, metric = "euclidean",
                      print.steps = TRUE,
                      plot = TRUE,
                      label.names = TRUE)

Hierarchical Clustering - Single linkage

Description

A function that performs hierarchical clustering with single linkage. It can also print the clustering steps and display a dendrogram

Usage

hclust_single(
  data,
  metric = "euclidean",
  print.steps = TRUE,
  plot = TRUE,
  label.names = TRUE
)

Arguments

data

Numerical matrix or data frame of observations (rows = observations, columns = variables).

metric

Distance metric to be used (default: "euclidean").

print.steps

If TRUE, the algorithm's steps are printed.

plot

If TRUE, a dendrogram is plotted.

label.names

If TRUE, uses the row names as labels in the dendrogram.

Value

object of class "hclust".

Examples

y1 <- c(1, 2, 1, 0); y2 <- c(2, 1, 0, 2)
y3 <- c(8, 8, 9, 7); y4 <- c(6, 9, 8, 9)
Data <- rbind(y1, y2, y3, y4)
hc <- hclust_single(Data, metric = "euclidean",
                    print.steps = TRUE,
                    plot = TRUE,
                    label.names = TRUE)

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.