Package ‘h30’

August 29, 2025

Title H3 Geospatial Indexing System
Version 0.3.0

Description A dependency free interface to the H3 geospatial indexing system utilizing the Rust li-
brary 'h30' <https://github.com/HydroniumLabs/h30> via the 'extendr' li-
brary <https://github.com/extendr/extendr>.

License MIT + file LICENSE

Encoding UTF-8

Language en

RoxygenNote 7.3.2

SystemRequirements Cargo (Rust's package manager), rustc >= 1.75
Imports rlang, stats, vctrs

Suggests sf, wk

Config/rextendr/version 0.4.0.9000

Depends R (>=4.2)

URL https://github.com/extendr/h3o, https://extendr.rs/h3o/

BugReports https://github.com/extendr/h3o/issues
NeedsCompilation yes

Author Josiah Parry [aut, cph] (ORCID:
<https://orcid.org/0000-0001-9910-865X>),

Kenneth Vernon [cre, ctb] (ORCID:
<https://orcid.org/0000-0003-0098-5092>)

Maintainer Kenneth Vernon <kenneth.b.vernon@gmail.com>
Repository CRAN
Date/Publication 2025-08-29 11:00:02 UTC

Contents

compact_cells
get_parents L e e e e e e e

https://github.com/HydroniumLabs/h3o
https://github.com/extendr/extendr
https://github.com/extendr/h3o
https://extendr.rs/h3o/
https://github.com/extendr/h3o/issues
https://orcid.org/0000-0001-9910-865X
https://orcid.org/0000-0003-0098-5092

2 compact_cells

grid_disk e 4
h3_edges e 5
h3_from_xy e 8
h3_resolution 9
IS_Nb_Pairwise o e e 11
sfc to_cells e, 11

Index 13

compact_cells Compact H3 Cells
Description

Reduce a set of H3 indices of the same resolution to the minimum number of H3 indices of varying
resolution that entirely covers the input area.

Usage

compact_cells(x)

uncompact_cells(x, resolution)

Arguments

X a vector of H3 indexes.

resolution a scalar integer representing the grid resolution in the range [0, 15].
Value

An H3 vector.

Examples

x <= h3_from_strings("841f91dffffffff")
y <- uncompact_cells(x, 5)[[1]]

z <- compact_cells(y)

all.equal(x, z)

get_parents 3

get_parents Hierarchical H3 Grid Functions

Description

Functions used to traverse the hierarchy of H3 grids.

Usage

get_parents(x, resolution)

get_children(x, resolution)

get_children_count(x, resolution)

get_children_center(x, resolution)

get_children_position(x, resolution)

get_children_at(x, position, resolution)

Arguments
X an H3 vector.
resolution a scalar integer representing the grid resolution in the range [0, 15].
position the integer position in the ordered set of cells.

Details

Value

get_parents(): returns the parent cells for an H3 vector at a given resolution. Errors if the
resolution is smaller than the provided cell.

get_children(): returns a list of H3 vectors containing the children of each H3 cell at a
specified resolution. If the resolution is greater than the cell’s resolution an empty vector is
returned.

get_children_count(): returns an integer vector containing the number of children for each
cell at the specified resolution.

get_children_center(): returns the middle child (center child) for all children of an H3
cell at a specified resolution as an H3 vector.

get_children_position(): returns the position of the observed H3 cell in an ordered list of
all children as a child of a higher resolution cell (PR for clearer language welcome).

get_children_at(): returns the child of each H3 cell at a specified resolution based on its
position in an ordered list (PR for clearer language welcome).

See details.

4 grid_disk

Examples

h3_strs <- c("841f91dffffffff", "841fb59ffffffff")
h3 <- h3_from_strings(h3_strs)

get_parents(h3, 3)
get_children(h3, 5)
get_children_count(h3, 6)
get_children_position(h3, 3)
get_children_at(h3, 999, 10)

grid_disk Grid Traversal

Description

Functions used to traverse the H3 grid.

Usage

grid_disk(x, k = 1, safe = TRUE)

grid_ring(x, k 1)
grid_distances(x, k = 1)
grid_path_cells(x, y)
grid_path_cells_size(x, y)

grid_distance(x, y)

grid_local_ij(x, y)

Arguments

X an H3 vector.

k the order of ring neighbors. 0 is the focal location (the observed H3 index). 1
is the immediate neighbors of the H3 index. 2 is the neighbors of the 1st order
neighbors and so on.

safe default TRUE. If FALSE uses the fast algorithm which can fail.

y an H3 vector.

h3_edges

Details

Value

grid_disk(): returns the disk of cells for the identified K ring. It is a disk because it returns
all cells to create a complete geometry without any holes. See grid_ring() if you do not
want inclusive neighbors.

grid_ring(): returns a K ring of neighbors around the H3 cell.

grid_distances(): returns a list of numeric vectors indicating the network distances be-
tween neighbors in a K ring. The first element is always O as the travel distance to one’s self
is 0. If the H3 index is missing a 0 length vector will be returned.

grid_path_cells(): returns a list of H3 vectors indicating the cells traversed to get from x
to y. If either x or y are missing, an empty vector is returned.

grid_path_cells_size(): returns an integer vector with the cell path distance between pair-
wise elements of x and y. If either x or y are missing the result is NA. grid_distance():
returns an integer vector with the network distance between pairwise elements of x and y. If
either x or y are missing the result is NA. Effectively grid_path_cells_size() - 1.

grid_local_ij() returns a two column data frame containing the columns i and j which
correspond to the i,j coordinate directions to the destination cell.

See details.

Examples

h3_strs <- c("841f91dffffffff", "841fb59ffffffff")
h3 <- h3_from_strings(h3_strs)

grid_disk(h3, 1)

grid_ring(h3, 2)
grid_distances(h3, 2)
grid_path_cells(h3, rev(h3))
grid_path_cells_size(h3, rev(h3))
grid_distance(h3, rev(h3))
grid_local_ij(h3, rev(h3))

h3_edges H3 Edges

Description

Functions to create or work with H3Edge vectors. See Details for further details.

Usage

h3_edges

h3_edges(x, flat = FALSE)

h3_shared_edge_sparse(x, y)

h3_shared_edge_pairwise(x, y)

is_edge(x)

is_valid_edge(x)

h3_edges_from_strings(x)

flatten_edges(x)

h3_edge_cells(x)

h3_edge_origin(x)

h3_edge_destination(x)

S3 method for class 'H3Edge'
as.character(x, ...)

Arguments

X
flat

y

Details

an H3 vector
default FALSE. If TRUE return a single vector combining all edges of all H3 cells.
an H3 vector

unused.

h3_edges(): returns a list of H3Edge vectors for each H3 index. When flat = TRUE, returns
a single H3Edge vector.

h3_shared_edge_pairwise(): returns an H3Edge vector of shared edges. If there is no
shared edge NA is returned.

h3_shared_edge_sparse(): returns a list of H3Edge vectors. Each element iterates through
each element of y checking for a shared edge.

is_edge(): returns TRUE if the element inherits the H3Edge class.

is_valid_edge(): checks each element of a character vector to determine if it is a valid edge
ID.

h3_edges_from_strings(): create an H3Edge vector from a character vector.
flatten_edges(): flattens a list of H3Edge vectors into a single H3Edge vector.

h3_edge_cells(): returns a list of length 2 named H3Edge vectors of origin and destination
cells

h3_edges

* h3_edge_origin(): returns a vector of H3Edge origin cells

¢ h3_edge_destination(): returns a vector of H3Edge destination cells

Value

See details.

Examples

create an H3 cell
x <- h3_from_xy(-122, 38, 5)

find all edges and flatten
edges <- h3_edges(x) |>
flatten_edges()

check if they are all edges
is_edge(edges)

check if valid edge strings
is_valid_edge(c("115e22da7fffffff", "abcd"))

get the origin cell of the edge
h3_edge_origin(edges)

get the destination of the edge
h3_edge_destination(edges)

get both origin and destination cells
h3_edge_cells(edges)

create edges from strings
h3_edges_from_strings(c("115e22da7fffffff", "abcd"))

create a vector of cells

cells_ids <-c(
"85e22da7fffffff", "85e35ad3fffffff",
"85e22daffffffff", "85e35adbfffffff",
"85e22da3fffffff"”

)

cells <- h3o::h3_from_strings(cells_ids)

find shared edges between the two pairwise
h3_shared_edge_pairwise(cells, rev(cells))

get the sparse shared eddge. Finds all possible shared edges.
h3_shared_edge_sparse(cells, cells)

8 h3_from_xy

h3_from_xy Create H3 Index

Description

Create H3 indices from sfc objects, vectors of x and y coordinates, or H3 string IDs.
Usage

h3_from_xy(x, y, resolution)

h3_from_points(x, resolution)

h3_from_strings(x)

h3_to_points(x)

h3_to_vertexes(x)

S3 method for class 'H3'
as.character(x, ...)

flatten_h3(x)

is_h3(x)
Arguments
X for h3_from_points() an object of class sfc_POINT. For h3_from_strings()
a character vector of H3 index IDs. For h3_from_xy() a numeric vector of
longitudes.
y a numeric vector of latitudes.
resolution an integer indicating the H3 cell resolution. Must be between 0 and 15 inclusive.
unused.
Details

* h3_from_points(): takes an sfc_POINT object and creates a vector of H3 cells
e h3_from_strings(): converts a character vector of cell indexes to an H3 vector
* h3_from_xy(): converts vectors of x and y coordinates to an H3 vector

* h3_to_points(): converts an H3 vector to a either an sfc_POINT object or a list of sfg POINT
objects.

* h3_to_vertexes(): converts an H3 vector to an sfc_MULTIPOINT object or a list of MULTIPOINT
objects.

h3 resolution

Value

See details.

Examples

h3_from_xy(-90, 120, 5)
h3_from_strings("85f29383fffffff")

if (requireNamespace("sf")) {
create random points
pnts <- sf::st_cast(
sf::st_sfc(
sf::st_multipoint(matrix(runif (10, max = 90), ncol = 2)),
crs = 4326
),
"POINT"
)

convert to H3 objects
h3s <- h3_from_points(pnts, 5)

h3_to_vertexes(h3s)

h3_to_points(h3s)
3

h3_ids <- c("831F91FFFFFFFFF", "831FbSFFFFFFFFF", "831F94FFFFFFFFF")

flatten_h3(
list(
NULL,
h3_from_strings(h3_ids),
h3_from_strings(h3_ids[1])
)
)

h3_resolution H3 Inspection Functions

Description

Functions that provide metadata about H3 indexes.

Usage

h3_resolution(x)

h3_base_cell(x)

10 h3_resolution

is_valid_h3(x)
is_res_class_iii(x)
is_pentagon(x)

get_face_count(x)

Arguments

X an H3 vector.

Details

e h3_resolution(): returns the resolution of each H3 cell.

* h3_base_cell(): returns the base cell integer.

* is_valid_h3(): given a vector of H3 index string IDs, determine if they are valid.
e is_res_class_iii(): determines if an H3 cell has Class III orientation.

* is_pentagon(): determines if an H3 cell is one of the rare few pentagons.

» get_face_count(): returns the number of faces that intersect with the H3 index.

Value

See details.

Examples

cells_ids <-c(
"85e22da7fffffff", "85e35ad3fffffff",
"85e22daf fffffff", "85e35adbfffffff",
"85e22db7fffffff", "85e35e6bfffffff",
"85e22da3fffffff”

)
cells <- h3o::h3_from_strings(cells_ids)

h3_resolution(cells)

h3_base_cell(cells)
is_valid_h3(c("85e22db7fffffff", NA, "oopsies”))
is_res_class_iii(cells)
is_res_class_iii(h3_from_xy(@, @, 10))
is_pentagon(h3_from_strings("08FD600000000000"))
get_face_count(cells)

is_nb_pairwise 11

is_nb_pairwise H3 index neighbors

Description

Test if two H3 cells are neighbors.

Usage

is_nb_pairwise(x, y)

is_nb_sparse(x, y)

Arguments
X an H3 vector.
y and H3 vector.
Value

is_nb_pairwise() returns a logical vector wheraas is_nb_sparse() returns a list with logical
vector elements.

Examples

cells_ids <-c(
"85e22da7fffffff", "85e35ad3fffffff",
"85e22daf fffffff"”, "85e35adbfffffff",
"85e22db7fffffff", "85e35e6bfffffff",
"85e22da3fffffff"

)

cells <- h3o::h3_from_strings(cells_ids)

is_nb_pairwise(cells, rev(cells))
is_nb_sparse(cells, cells)

sfc_to_cells Convert sf geometry to H3 Cells

Description

Given a vector of sf geometries (class sfc) create a list of H3 vectors. Each list element contains the
vector of H3 cells that cover the geometry.

12 sfc_to_cells

Usage
sfc_to_cells(x, resolution, containment = "intersect")
Arguments
X for h3_from_points() an object of class sfc_POINT. For h3_from_strings()
a character vector of H3 index IDs. For h3_from_xy() a numeric vector of
longitudes.
resolution an integer indicating the H3 cell resolution. Must be between 0 and 15 inclusive.
containment default "intersect"”. Mustbe one of "intersect”, "centroid”, or "boundary".
See details.
Details

Note, use flatten_h3() to reduce the list to a single vector.
The Containment Mode determines if an H3 cell should be returned.
* "centroid” returns every cell whose centroid are contained inside of a polygon. This is the
fastest option but may not cover the entire polygon.

* "boundary"” this returns the cells which are completely contained by the polygon. Much of a
polygon might not be covered using this approach.

* "intersect” ensures that a polygon is entirely covered. If an H3 cell comes in contact with
the polygon it will be returned. This is the default.

* "contains” behaves the same as "intersect”, but also handles the case where the geometry
is being covered by a cell without intersecting with its boundaries. In such cases, the covering
cell is returned.

Value

An H3 vector.

Examples

if (interactive() && rlang::is_installed("sf")) {
nc <- sf::st_read(system.file("shape/nc.shp”, package = "sf"), quiet = TRUE)
geo <- sf::st_geometry(nc)
cells <- sfc_to_cells(geo, 5)

head(cells)

plot(flatten_h3(cells))

https://docs.rs/h3o/0.4.0/h3o/geom/enum.ContainmentMode.html

Index

as.character.H3 (h3_from_xy), 8
as.character.H3Edge (h3_edges), 5

compact_cells, 2

flatten_edges (h3_edges), 5
flatten_h3 (h3_from_xy), 8

get_children (get_parents), 3
get_children_at (get_parents), 3
get_children_center (get_parents), 3
get_children_count (get_parents), 3
get_children_position (get_parents), 3
get_face_count (h3_resolution), 9
get_parents, 3

grid_disk, 4

grid_distance (grid_disk), 4
grid_distances (grid_disk), 4
grid_local_ij (grid_disk), 4
grid_path_cells (grid_disk), 4
grid_path_cells_size (grid_disk), 4
grid_ring (grid_disk), 4

h3_base_cell (h3_resolution), 9
h3_edge_cells (h3_edges), 5
h3_edge_destination (h3_edges), 5
h3_edge_origin (h3_edges), 5
h3_edges, 5

h3_edges_from_strings (h3_edges), 5
h3_from_points (h3_from_xy), 8
h3_from_strings (h3_from_xy), 8
h3_from_xy, 8

h3_resolution, 9
h3_shared_edge_pairwise (h3_edges), 5
h3_shared_edge_sparse (h3_edges), 5
h3_to_points (h3_from_xy), 8
h3_to_vertexes (h3_from_xy), 8

is_edge (h3_edges), 5

is_h3 (h3_from_xy), 8
is_nb_pairwise, 11

13

is_nb_sparse (is_nb_pairwise), 11
is_pentagon (h3_resolution), 9
is_res_class_iii (h3_resolution), 9
is_valid_edge (h3_edges), 5
is_valid_h3 (h3_resolution), 9

sfc_to_cells, 11

uncompact_cells (compact_cells), 2

	compact_cells
	get_parents
	grid_disk
	h3_edges
	h3_from_xy
	h3_resolution
	is_nb_pairwise
	sfc_to_cells
	Index

