The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

Introduction to gtexr

The GTEx Portal API V2 enables programmatic access to data available from the Genotype-Tissue Expression Portal. The gtexr package wraps this API, providing R functions that correspond to each API endpoint:

Shiny app

Users can try out all functions interatively with the ⭐gtexr shiny app⭐, which pre-populates query parameters with those for the first working example from each function’s documentation. To run the app locally:

shiny::runApp(system.file("app", package = "gtexr"))

Paginated responses

library(gtexr)
library(dplyr)
library(purrr)

Many API endpoints return only the first 250 available items by default. A warning is raised if the number of available items exceeds the selected maximum page size e.g.

get_eqtl_genes("Whole_Blood")

For most cases, the simplest solution is to increase the value of itemsPerPage e.g. get_eqtl_genes("Whole_Blood", itemsPerPage = 100000). This limit can be set globally by setting the “gtexr.itemsPerPage” option with options(list(gtexr.itemsPerPage = 100000)).

Alternatively, multiple pages can be retrieved sequentially e.g.

# to retrieve the first 3 pages, with default setting of 250 items per page
1:3 |>
  map(\(page) get_eqtl_genes("Whole_Blood", page = page, .verbose = FALSE) |>
        suppressWarnings()) |>
  bind_rows()

Note that paging information is printed to the R console by default. Set argument .verbose to FALSE to silence these messages, or disable globally with options(list(gtexr.verbose = FALSE)).

Examples

The rest of this vignette outlines some example applications of gtexr.

Get build 37 coordinates for a variant

get_variant(snpId = "rs1410858") |>
  tidyr::separate(
    col = b37VariantId,
    into = c(
      "chromosome",
      "position",
      "reference_allele",
      "alternative_allele",
      "genome_build"
    ),
    sep = "_",
    remove = FALSE
  ) |>
  select(snpId:genome_build)

Convert gene symbol to versioned GENCODE ID

Use get_gene() or get_genes()

get_genes("CRP") |>
  select(geneSymbol, gencodeId)

Convert rsID to GTEx variant ID

Use get_variant()

get_variant(snpId = "rs1410858") |>
  select(snpId, variantId)

For a gene of interest, which tissues have significant cis-eQTLs?

Use get_significant_single_tissue_eqtls() (note this requires versioned GENCODE IDs)

gene_symbol_of_interest <- "CRP"

gene_gencodeId_of_interest <- get_genes(gene_symbol_of_interest) |>
  pull(gencodeId) |>
  suppressMessages()

gene_gencodeId_of_interest |>
  get_significant_single_tissue_eqtls() |>
  distinct(geneSymbol, gencodeId, tissueSiteDetailId)

Get data for non-eQTL variants

Some analyses (e.g. Mendelian randomisation) require data for variants which may or may not be significant eQTLs. Use calculate_expression_quantitative_trait_loci() with purrr::map() to retrieve data for multiple variants

variants_of_interest <- c("rs12119111", "rs6605071", "rs1053870")

variants_of_interest |>
  set_names() |>
  map(
    \(x) calculate_expression_quantitative_trait_loci(
      tissueSiteDetailId = "Liver",
      gencodeId = "ENSG00000237973.1",
      variantId = x
    )
  ) |>
  bind_rows(.id = "rsid") |>
  # optionally, reformat output - first extract genomic coordinates and alleles
  tidyr::separate(
    col = "variantId",
    into = c(
      "chromosome",
      "position",
      "reference_allele",
      "alternative_allele",
      "genome_build"
    ),
    sep = "_"
  ) |>
  # ...then ascertain alternative_allele frequency
  mutate(
    alt_allele_count = (2 * homoAltCount) + hetCount,
    total_allele_count = 2 * (homoAltCount + hetCount + homoRefCount),
    alternative_allele_frequency = alt_allele_count / total_allele_count
  ) |>
  select(
    rsid,
    beta = nes,
    se = error,
    pValue,
    minor_allele_frequency = maf,
    alternative_allele_frequency,
    chromosome:genome_build,
    tissueSiteDetailId
  )

  1. With the exception of get_sample_biobank_data() and get_sample_datasets(), for which ‘get_sample’ is additionally appended with their respective category titles ‘biobank_data’ and ‘datasets’.↩︎

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.