The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

gsaot gsaot website

R-CMD-check test-coverage

The package gsaot provides a set of tools to compute and plot Optimal Transport (OT) based sensitivity indices. The core functions of the package are:

Installation

install.packages("gsaot")

You can install the development version of gsaot from GitHub with:

# install.packages("devtools")
devtools::install_github("pietrocipolla/gsaot")

:exclamation: :exclamation: Installation note

The sinkhorn and sinkhorn_log solvers in gsaot greatly benefit from optimization in compilation. To add this option (before package installation), edit your .R/Makevars file with the desired flags. Even though different compilers have different options, a common flag to enable a safe level of optimization is

CXXFLAGS+=-O2

More detailed information on how to customize the R packages compilation can be found in the R guide.

Example

We can use a gaussian toy model with three outputs as an example:

library(gsaot)

N <- 1000

mx <- c(1, 1, 1)
Sigmax <- matrix(data = c(1, 0.5, 0.5, 0.5, 1, 0.5, 0.5, 0.5, 1), nrow = 3)

x1 <- rnorm(N)
x2 <- rnorm(N)
x3 <- rnorm(N)

x <- cbind(x1, x2, x3)
x <- mx + x %*% chol(Sigmax)

A <- matrix(data = c(4, -2, 1, 2, 5, -1), nrow = 2, byrow = TRUE)
y <- t(A %*% t(x))

x <- data.frame(x)

After having defined the number of partitions, we compute the sensitivity indices using different solvers. First, Sinkhorn solver and default parameters:

M <- 25

sensitivity_indices <- ot_indices(x, y, M)
#> Using default values for solver sinkhorn
sensitivity_indices
#> Method: sinkhorn 
#> 
#> Indices:
#>        X1        X2        X3 
#> 0.5656021 0.6131907 0.2594603 
#> 
#> Upper bound: 97.74799

Second, Network Simplex solver:

sensitivity_indices <- ot_indices(x, y, M, solver = "transport")
#> Using default values for solver transport
sensitivity_indices
#> Method: transport 
#> 
#> Indices:
#>        X1        X2        X3 
#> 0.4878673 0.5265048 0.1709062 
#> 
#> Upper bound: 97.74799

Third, Wasserstein-Bures solver, with bootstrap:

sensitivity_indices <- ot_indices_wb(x, y, M, boot = TRUE, R = 100)
sensitivity_indices
#> Method: wasserstein-bures 
#> 
#> Indices:
#>        X1        X2        X3 
#> 0.4591200 0.4921479 0.1073590 
#> 
#> Advective component:
#>         X1         X2         X3 
#> 0.28001929 0.31345309 0.09888083 
#> 
#> Diffusive component:
#>          X1          X2          X3 
#> 0.179100703 0.178694835 0.008478178 
#> 
#> Type of confidence interval: norm 
#> Number of replicates: 100 
#> Confidence level: 0.95 
#> Indices confidence intervals:
#>   Inputs     Index      low.ci    high.ci
#> 1     X1        WB 0.439721916 0.47851807
#> 2     X2        WB 0.475448734 0.50884711
#> 3     X3        WB 0.087350066 0.12736794
#> 4     X1 Advective 0.267679667 0.29235891
#> 5     X2 Advective 0.303581126 0.32332505
#> 6     X3 Advective 0.081559278 0.11620237
#> 7     X1 Diffusive 0.170346138 0.18785527
#> 8     X2 Diffusive 0.170261391 0.18712828
#> 9     X3 Diffusive 0.003887014 0.01306934
#> 
#> Upper bound: 97.85844

Fourth, we can use the package to compute the sensitivity map on the output:

sensitivity_indices <- ot_indices_smap(x, y, M)
sensitivity_indices
#>             X1         X2        X3
#> [1,] 0.5744058 0.04464331 0.1685419
#> [2,] 0.2909957 0.71343703 0.1274479

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.