The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
Graticules are the longitude latitude lines shown on a projected map, and defining and drawing these lines is not easy to automate. The graticule package provides the tools to create and draw these lines by explicit specification by the user. This provides a good compromise between high-level automation and the flexibility to drive the low level details as needed, using base graphics in R.
Please note that this is an evolving topic, across a number of packages in R. There’s no ongoing integration of how best to do this, and some of the commentary in this vignette will be out of date quickly as individual packages do updates. I’ve recorded the exact versions used for this document at the end.
This is an area that needs much more discussion and outlining of needs and experiences.
A simple example to build a map around the state of Victoria in Australia. Victoria uses a local Lambert Conformal Conic projection that was introduced while the shift to GDA94 was implemented, to reduce complications due to working with more than one UTM zone for the state.
library(raster)
library(graticule)
## VicGrid
<- "+proj=lcc +lat_1=-36 +lat_2=-38 +lat_0=-37 +lon_0=145 +x_0=2500000 +y_0=2500000 +ellps=GRS80 +towgs84=0,0,0,0,0,0,0 +units=m +no_defs"
prj
## specify exactly where we want meridians and parallels
<- seq(140, 150, length = 5)
lons <- seq(-40, -35, length = 6)
lats ## optionally, specify the extents of the meridians and parallels
## here we push them out a little on each side
<- range(lons) + c(-0.4, 0.4)
xl <- range(lats) + c(-0.4, 0.4)
yl ## build the lines with our precise locations and ranges
<- graticule(lons, lats, proj = prj, xlim = xl, ylim = yl)
grat ## build the labels, here they sit exactly on the western and northern extent
## of our line ranges
<- graticule_labels(lons, lats, xline = min(xl), yline = max(yl), proj = prj)
labs
## set up a map extent and plot
<- par(mar = rep(0, 4))
op plot(extent(grat) + c(4, 2) * 1e5, asp = 1, type = "n", axes = FALSE, xlab = "", ylab = "")
#plot(pmap, add = TRUE)
## the lines are a SpatialLinesDataFrame
plot(grat, add = TRUE, lty = 5, col = rgb(0, 0, 0, 0.8))
## the labels are a SpatialPointsDataFrame, and islon tells us which kind
text(subset(labs, labs$islon), lab = parse(text = labs$lab[labs$islon]), pos = 3)
text(subset(labs, !labs$islon), lab = parse(text = labs$lab[!labs$islon]), pos = 2)
par(op)
Download some sea ice concentration data and plot with a graticule. These passive microwave data are defined on a Polar Stereographic grid on the Hughes ellipsoid (predating WGS84), and there are daily files available since 1978. This is not the prettiest map, but the example is showing how we have control over exactly where the lines are created. We can build the lines anywhere, not necessarily at regular intervals or rounded numbers, and we can over or under extend the parallels relative to the meridians and vice versa.
library(raster)
library(graticule)
<- system.file("extdata", "nt_20140320_f17_v01_s.bin", package = "graticule")
tfile <- raster(tfile)
ice
<- seq(-180, 160, by = 20)
meridians <- c(-80, -73.77, -68, -55, -45)
parallels <- c(-180, 180)
mlim <- c(-88, -50)
plim <- graticule(lons = meridians, lats = parallels, xlim = mlim, ylim = plim, proj = projection(ice))
grat <- graticule_labels(meridians, parallels, xline = -45, yline = -60, proj = projection(ice))
labs plot(ice, axes = FALSE)
plot(grat, add = TRUE, lty = 3)
text(labs, lab = parse(text= labs$lab), col= c("firebrick", "darkblue")[labs$islon + 1], cex = 0.85)
title(sprintf("Sea ice concentration %s", gsub(".bin", "", basename(tfile))), cex.main = 0.8)
title(sub = projection(ice), cex.sub = 0.6)
Continuing from the sea ice example, build the graticule grid as
actual polygons. Necessarily the xlim/ylim
option is
ignored since we have not specified sensibly closed polygonal rings
where there are under or over laps.
<- graticule(lons = c(meridians, 180), lats = parallels, proj = projection(ice), tiles = TRUE)
polargrid <- reproj::reproj_xy(coordinates(polargrid), "+proj=longlat +datum=WGS84", source = projection(ice))
centroids <- graticule_labels(meridians, parallels, proj = projection(ice))
labs #labs <- graticule_labels(as.integer(centroids[,1]), as.integer(centroids[,2]), proj = projection(ice))
#labs <- labs[!duplicated(as.data.frame(labs)), ] ## this needs a fix
<- sample(colors(), nrow(polargrid))
cols <- par(mar = rep(0, 4))
op plot(polargrid, col = cols, bg = "black")
text(labs[labs$islon, ], lab = parse(text = labs$lab[labs$islon]), col = "white", cex = 0.9, pos = 3)
par(op)
This section kept for historical interest only.
See: https://github.com/hypertidy/graticule/issues/19#issuecomment-1379874409
Also see here for another implementation of the Tissot Indicatrix in R by user whuber on GIS StackExchange. This is available in the dev package tissot.
Efforts could be shared with the sp and rgdal projects to improve the
functionality for the llgridlines
and its worker functions
gridlines
and gridat
in that central place,
and I agree with this. But I have an interest in working with graticules
more directly as objects, and potentially stored in relational-table
approach built on dplyr, and so I just found it simpler to start from
scratch in this package. Also, there is a lot of this functionality
spread around the place in sp, raster, maptools, fields, oce and many
others. It is time for a new review, analogous to the effort that built
sp in ca. 2002.
I tend to use the same terminology as used within Manifold System because it’s so awesome and that’s where I first learnt about most of these concepts. In my experience not many people use the term graticule in this way, so take it from the master himself on page 8 (Snyder, 1987):
To identify the location of points on the Earth, a graticule or network of longitude and latitude lines has been superimposed on the surface. They are commonly referred to as meridians and parallels, respectively.
::session_info()
devtools#> ─ Session info ───────────────────────────────────────────────────────────────
#> setting value
#> version R version 4.3.1 (2023-06-16)
#> os Ubuntu 20.04.6 LTS
#> system x86_64, linux-gnu
#> ui X11
#> language (EN)
#> collate C
#> ctype en_AU.UTF-8
#> tz Australia/Hobart
#> date 2023-09-25
#> pandoc 2.19.2 @ /usr/lib/rstudio-server/bin/quarto/bin/tools/ (via rmarkdown)
#>
#> ─ Packages ───────────────────────────────────────────────────────────────────
#> package * version date (UTC) lib source
#> bslib 0.4.2 2022-12-16 [4] CRAN (R 4.2.3)
#> cachem 1.0.7 2023-02-24 [4] CRAN (R 4.2.3)
#> callr 3.7.3 2022-11-02 [4] CRAN (R 4.2.2)
#> class 7.3-22 2023-05-03 [6] CRAN (R 4.3.1)
#> classInt 0.4-9 2023-02-28 [4] CRAN (R 4.2.2)
#> cli 3.6.1 2023-03-23 [4] CRAN (R 4.2.3)
#> codetools 0.2-19 2023-02-01 [6] CRAN (R 4.2.2)
#> crayon 1.5.2 2022-09-29 [4] CRAN (R 4.2.1)
#> DBI 1.1.3 2022-06-18 [4] CRAN (R 4.2.0)
#> devtools 2.4.5 2022-10-11 [4] CRAN (R 4.2.3)
#> digest 0.6.31 2022-12-11 [4] CRAN (R 4.2.2)
#> dplyr 1.1.2 2023-04-20 [4] CRAN (R 4.2.3)
#> e1071 1.7-13 2023-02-01 [4] CRAN (R 4.2.2)
#> ellipsis 0.3.2 2021-04-29 [4] CRAN (R 4.1.0)
#> evaluate 0.20 2023-01-17 [4] CRAN (R 4.2.2)
#> fansi 1.0.4 2023-01-22 [4] CRAN (R 4.2.2)
#> fastmap 1.1.1 2023-02-24 [4] CRAN (R 4.2.3)
#> fs 1.6.2 2023-04-25 [4] CRAN (R 4.2.3)
#> generics 0.1.3 2022-07-05 [4] CRAN (R 4.2.1)
#> geosphere 1.5-18 2022-11-15 [4] CRAN (R 4.2.2)
#> glue 1.6.2 2022-02-24 [4] CRAN (R 4.1.2)
#> graticule * 0.4.0 2023-09-25 [1] local
#> highr 0.10 2022-12-22 [4] CRAN (R 4.2.2)
#> htmltools 0.5.5 2023-03-23 [4] CRAN (R 4.2.3)
#> htmlwidgets 1.6.2 2023-03-17 [4] CRAN (R 4.2.3)
#> httpuv 1.6.9 2023-02-14 [4] CRAN (R 4.2.3)
#> jquerylib 0.1.4 2021-04-26 [4] CRAN (R 4.1.0)
#> jsonlite 1.8.4 2022-12-06 [4] CRAN (R 4.2.2)
#> KernSmooth 2.23-22 2023-07-10 [6] CRAN (R 4.3.1)
#> knitr 1.42 2023-01-25 [4] CRAN (R 4.2.2)
#> later 1.3.0 2021-08-18 [4] CRAN (R 4.1.1)
#> lattice 0.21-8 2023-04-05 [6] CRAN (R 4.3.0)
#> lifecycle 1.0.3 2022-10-07 [4] CRAN (R 4.2.1)
#> magrittr 2.0.3 2022-03-30 [4] CRAN (R 4.1.3)
#> memoise 2.0.1 2021-11-26 [4] CRAN (R 4.1.2)
#> mime 0.12 2021-09-28 [4] CRAN (R 4.1.2)
#> miniUI 0.1.1.1 2018-05-18 [4] CRAN (R 4.1.0)
#> pillar 1.9.0 2023-03-22 [4] CRAN (R 4.2.3)
#> pkgbuild 1.4.0 2022-11-27 [4] CRAN (R 4.2.2)
#> pkgconfig 2.0.3 2019-09-22 [4] CRAN (R 4.1.0)
#> pkgload 1.3.2 2022-11-16 [4] CRAN (R 4.2.2)
#> prettyunits 1.1.1 2020-01-24 [4] CRAN (R 4.1.0)
#> processx 3.8.0 2022-10-26 [4] CRAN (R 4.2.2)
#> profvis 0.3.7 2020-11-02 [4] CRAN (R 4.2.1)
#> PROJ 0.4.5 2023-07-15 [3] local
#> proj4 1.0-12 2022-11-30 [4] CRAN (R 4.2.2)
#> promises 1.2.0.1 2021-02-11 [4] CRAN (R 4.1.0)
#> proxy 0.4-27 2022-06-09 [4] CRAN (R 4.2.0)
#> ps 1.7.3 2023-03-21 [4] CRAN (R 4.2.3)
#> purrr 1.0.1 2023-01-10 [4] CRAN (R 4.2.2)
#> R6 2.5.1 2021-08-19 [4] CRAN (R 4.1.1)
#> raster * 3.6-23 2023-07-10 [3] local
#> Rcpp 1.0.10 2023-01-22 [4] CRAN (R 4.2.2)
#> remotes 2.4.2 2021-11-30 [4] CRAN (R 4.1.2)
#> reproj 0.5.0 2023-08-21 [4] Github (hypertidy/reproj@266ac05)
#> rlang 1.1.1 2023-04-28 [4] CRAN (R 4.3.0)
#> rmarkdown 2.23 2023-07-01 [4] CRAN (R 4.3.0)
#> rstudioapi 0.14 2022-08-22 [4] CRAN (R 4.2.1)
#> sass 0.4.5 2023-01-24 [4] CRAN (R 4.2.3)
#> sessioninfo 1.2.2 2021-12-06 [4] CRAN (R 4.1.2)
#> sf 1.0-14 2023-07-11 [4] CRAN (R 4.3.1)
#> shiny 1.7.4 2022-12-15 [4] CRAN (R 4.2.3)
#> sp * 2.0-0 2023-06-22 [4] CRAN (R 4.3.0)
#> stringi 1.7.12 2023-01-11 [4] CRAN (R 4.2.3)
#> stringr 1.5.0 2022-12-02 [4] CRAN (R 4.2.2)
#> terra 1.7-46 2023-09-06 [4] CRAN (R 4.3.1)
#> tibble 3.2.1 2023-03-20 [4] CRAN (R 4.2.3)
#> tidyselect 1.2.0 2022-10-10 [4] CRAN (R 4.2.2)
#> units 0.8-1 2022-12-10 [4] CRAN (R 4.2.2)
#> urlchecker 1.0.1 2021-11-30 [4] CRAN (R 4.1.2)
#> usethis 2.1.6 2022-05-25 [4] CRAN (R 4.2.0)
#> utf8 1.2.3 2023-01-31 [4] CRAN (R 4.2.2)
#> vctrs 0.6.3 2023-06-14 [4] CRAN (R 4.3.0)
#> xfun 0.39 2023-04-20 [4] CRAN (R 4.2.3)
#> xtable 1.8-4 2019-04-21 [4] CRAN (R 4.1.0)
#> yaml 2.3.7 2023-01-23 [4] CRAN (R 4.2.2)
#>
#> [1] /perm_storage/home/data/r_tmp/Rtmp2t0Efw/Rinstc8bcb67193a70
#> [2] /perm_storage/home/data/r_tmp/RtmpZHx90m/temp_libpathc804464bc4707
#> [3] /perm_storage/home/mdsumner/R/x86_64-pc-linux-gnu-library/4.3
#> [4] /usr/local/lib/R/site-library
#> [5] /usr/lib/R/site-library
#> [6] /usr/lib/R/library
#>
#> ──────────────────────────────────────────────────────────────────────────────
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.