The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

grasps

Groupwise Regularized Adaptive Sparse Precision Solution

GitHub R package version GitHub last commit R-CMD-check GitHub License

The goal of grasps is to provide a collection of statistical methods that incorporate both element-wise and group-wise penalties to estimate a precision matrix, making them user-friendly and useful for researchers and practitioners.

\[\hat{\Omega}(\lambda,\alpha,\gamma) = {\arg\min}_{\Omega \succ 0} \{ -\log\det(\Omega) + \text{tr}(S\Omega) + \lambda P_{\alpha,\gamma}(\Omega) \},\]

\[P_{\alpha,\gamma}(\Omega) = \alpha P^\text{idv}_\gamma(\Omega) + (1-\alpha) P^\text{grp}_\gamma(\Omega),\]

\[P^\text{idv}_\gamma(\Omega) = \sum_{i,j} p_\gamma(\vert\omega_{ij}\vert),\]

\[P^\text{grp}_\gamma(\Omega) = \sum_{g,g^\prime} p_\gamma(\Vert\Omega_{gg^\prime}\Vert_F).\]

For more details, see the vignette Penalized Precision Matrix Estimation in grasps.

Penalties

The package grasps provides functions to estimate precision matrices using the following penalties:

Penalty Reference
Lasso (penalty = "lasso") Tibshirani (1996); Friedman et al. (2008)
Adaptive lasso (penalty = "adapt") Zou (2006); Fan et al. (2009)
Atan (penalty = "atan") Wang and Zhu (2016)
Exp (penalty = "exp") Wang et al. (2018)
Lq (penalty = "lq") Frank and Friedman (1993); Fu (1998); Fan and Li (2001)
LSP (penalty = "lsp") Candès et al. (2008)
MCP (penalty = "mcp") Zhang (2010)
SCAD (penalty = "scad") Fan and Li (2001); Fan et al. (2009)

See the vignette Penalized Precision Matrix Estimation in grasps for more details.

Installation

You can install the development version of grasps from GitHub with:

# install.packages("devtools")
devtools::install_github("Carol-seven/grasps")

Example

library(grasps)

## reproducibility for everything
set.seed(1234)

## block-structured precision matrix based on SBM
sim <- gen_prec_sbm(d = 30, K = 3,
                    within.prob = 0.25, between.prob = 0.05,
                    weight.dists = list("gamma", "unif"),
                    weight.paras = list(c(shape = 20, rate = 10),
                                        c(min = 0, max = 5)),
                    cond.target = 100)

## synthetic data
library(MASS)
X <- mvrnorm(n = 20, mu = rep(0, 30), Sigma = sim$Sigma)

## solution
res <- grasps(X = X, membership = sim$membership, penalty = "adapt", crit = "HBIC")

## visualization
plot(res)


## performance
performance(hatOmega = res$hatOmega, Omega = sim$Omega)
#>      measure    value
#> 1   sparsity   0.9103
#> 2  Frobenius  24.6796
#> 3         KL   7.2063
#> 4  quadratic  54.1949
#> 5   spectral  13.1336
#> 6         TP  22.0000
#> 7         TN 370.0000
#> 8         FP  17.0000
#> 9         FN  26.0000
#> 10       TPR   0.4583
#> 11       FPR   0.0439
#> 12        F1   0.5057
#> 13       MCC   0.4545

Reference

Candès, Emmanuel J., Michael B. Wakin, and Stephen P. Boyd. 2008. “Enhancing Sparsity by Reweighted \(\ell_1\) Minimization.” Journal of Fourier Analysis and Applications 14 (5): 877–905. https://doi.org/10.1007/s00041-008-9045-x.
Fan, Jianqing, Yang Feng, and Yichao Wu. 2009. “Network Exploration via the Adaptive LASSO and SCAD Penalties.” The Annals of Applied Statistics 3 (2): 521–41. https://doi.org/10.1214/08-aoas215.
Fan, Jianqing, and Runze Li. 2001. “Variable Selection via Nonconcave Penalized Likelihood and Its Oracle Properties.” Journal of the American Statistical Association 96 (456): 1348–60. https://doi.org/10.1198/016214501753382273.
Frank, Lldiko E., and Jerome H. Friedman. 1993. “A Statistical View of Some Chemometrics Regression Tools.” Technometrics 35 (2): 109–35. https://doi.org/10.1080/00401706.1993.10485033.
Friedman, Jerome, Trevor Hastie, and Robert Tibshirani. 2008. “Sparse Inverse Covariance Estimation with the Graphical Lasso.” Biostatistics 9 (3): 432–41. https://doi.org/10.1093/biostatistics/kxm045.
Fu, Wenjiang J. 1998. “Penalized Regressions: The Bridge Versus the Lasso.” Journal of Computational and Graphical Statistics 7 (3): 397–416. https://doi.org/10.1080/10618600.1998.10474784.
Tibshirani, Robert. 1996. “Regression Shrinkage and Selection via the Lasso.” Journal of the Royal Statistical Society: Series B (Methodological) 58 (1): 267–88. https://doi.org/10.1111/j.2517-6161.1996.tb02080.x.
Wang, Yanxin, Qibin Fan, and Li Zhu. 2018. “Variable Selection and Estimation Using a Continuous Approximation to the \(L_0\) Penalty.” Annals of the Institute of Statistical Mathematics 70 (1): 191–214. https://doi.org/10.1007/s10463-016-0588-3.
Wang, Yanxin, and Li Zhu. 2016. “Variable Selection and Parameter Estimation with the Atan Regularization Method.” Journal of Probability and Statistics 2016: 6495417. https://doi.org/10.1155/2016/6495417.
Zhang, Cun-Hui. 2010. “Nearly Unbiased Variable Selection Under Minimax Concave Penalty.” The Annals of Statistics 38 (2): 894–942. https://doi.org/10.1214/09-AOS729.
Zou, Hui. 2006. “The Adaptive Lasso and Its Oracle Properties.” Journal of the American Statistical Association 101 (476): 1418–29. https://doi.org/10.1198/016214506000000735.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.