The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

ltc: Analysing Line x Tester data containing only crosses.

Nandan Patil

The function ltc conducts Line x Tester analysis when the data contains only crosses. The experimental design may be RCBD or Alpha lattice design.

Example: Analyzing Line x Tester data (crosses) laid out in Alpha Lattice design.

# Load the package
library(gpbStat)

#Load the dataset
data("alphaltc")

# View the structure of dataframe. 
str(alphaltc)
#> 'data.frame':    60 obs. of  5 variables:
#>  $ replication: chr  "r1" "r1" "r1" "r1" ...
#>  $ block      : chr  "b1" "b1" "b1" "b2" ...
#>  $ line       : int  5 1 4 4 1 2 2 5 3 1 ...
#>  $ tester     : int  7 8 8 6 7 7 6 6 8 6 ...
#>  $ yield      : num  47.3 109.4 36.3 36.2 70.7 ...

# Conduct Line x Tester analysis
result = ltc(alphaltc, replication, line, tester, yield, block)
#> 
#> Analysis of Line x Tester: yield

# View the output
result
#> $Means
#>      Testers
#> Lines        6        7        8
#>     1 86.47500 88.95833 89.55000
#>     2 88.64667 55.48000 50.12667
#>     3 51.19917 53.28417 36.91583
#>     4 33.47500 34.29833 50.78417
#>     5 45.30417 42.14500 49.98000
#> 
#> $`Overall ANOVA`
#>                           Df     Sum Sq   Mean Sq    F value       Pr(>F)
#> Replication                3  1586.4934  528.8311  3.1440495 4.213104e-02
#> Crosses                   14 23862.0199 1704.4300 10.1333150 3.161969e-07
#> Blocks within Replication 16  2555.9198  159.7450  0.9497288 5.307851e-01
#> Lines                      4 18835.3119 4708.8280 24.8833344 6.536498e-11
#> Testers                    2   463.1458  231.5729  1.2237239 3.037332e-01
#> Lines X Testers            8  4563.5622  570.4453  3.0144615 8.508293e-03
#> Error                     26  4373.2165  168.2006         NA           NA
#> Total                     59  2561.2067        NA         NA           NA
#> 
#> $`Coefficient of Variation`
#> [1] 22.70992
#> 
#> $`Genetic Variance`
#>     Genotypic Variance    Phenotypic Variance Environmental Variance 
#>               293.8997               462.1004               168.2006 
#> 
#> $`Genetic Variability `
#>    Phenotypic coefficient of Variation     Genotypic coefficient of Variation 
#>                             37.6417608                             30.0193557 
#> Environmental coefficient of Variation                                   <NA> 
#>                             22.7099195                              0.6360084 
#> 
#> $`Line x Tester ANOVA`
#>                 Df     Sum Sq   Mean Sq   F value       Pr(>F)
#> Lines            4 18835.3119 4708.8280 24.883334 6.536498e-11
#> Testers          2   463.1458  231.5729  1.223724 3.037332e-01
#> Lines X Testers  8  4563.5622  570.4453  3.014461 8.508293e-03
#> Error           26  4373.2165  168.2006        NA           NA
#> 
#> $`GCA lines`
#>       1       2       3       4       5 
#>  31.220   7.643  -9.975 -17.589 -11.298 
#> 
#> $`GCA testers`
#>      6      7      8 
#>  3.912 -2.275 -1.637 
#> 
#> $`SCA crosses`
#>      Testers
#> Lines      6      7       8
#>     1 -5.765  2.906   2.859
#>     2 19.984 -6.996 -12.988
#>     3  0.154  8.426  -8.580
#>     4 -9.956 -2.946  12.902
#>     5 -4.417 -1.390   5.807
#> 
#> $`Proportional Contribution`
#>          Lines         Tester  Line x Tester 
#>      78.934273       1.940933      19.124794 
#> 
#> $`GV Singh & Chaudhary`
#>                  Cov H.S. (line)                Cov H.S. (tester) 
#>                        344.86523                        -16.94362 
#>               Cov H.S. (average)               Cov F.S. (average) 
#>                         30.06778                        262.35565 
#> F = 0, Adittive genetic variance F = 1, Adittive genetic variance 
#>                        120.27111                         60.13555 
#> F = 0, Variance due to Dominance F = 1, Variance due to Dominance 
#>                        201.12232                         15.84306 
#> 
#> $`Standard Errors`
#>      S.E. gca for line    S.E. gca for tester        S.E. sca effect 
#>               3.743891               2.900005               6.484609 
#>     S.E. (gi - gj)line   S.E. (gi - gj)tester S.E. (sij - skl)tester 
#>               5.294661               4.101227               9.170622 
#> 
#> $`Critical differance`
#>      C.D. gca for line    C.D. gca for tester        C.D. sca effect 
#>               7.695678               5.961047              13.329305 
#>     C.D. (gi - gj)line   C.D. (gi - gj)tester C.D. (sij - skl)tester 
#>              10.883332               8.430193              18.850484

Example: Analyzing Line x Tester data (crosses) laid out in RCBD.

# Load the package
library(gpbStat)

#Load the dataset
data("rcbdltc")

# View the structure of dataframe. 
str(rcbdltc)
#> tibble [60 × 4] (S3: tbl_df/tbl/data.frame)
#>  $ replication: num [1:60] 1 2 3 4 1 2 3 4 1 2 ...
#>  $ line       : num [1:60] 1 1 1 1 1 1 1 1 1 1 ...
#>  $ tester     : num [1:60] 6 6 6 6 7 7 7 7 8 8 ...
#>  $ yield      : num [1:60] 74.4 70.9 60.9 68 91.8 ...

# Conduct Line x Tester analysis
result1 = ltc(rcbdltc, replication, line, tester, yield)
#> 
#> Analysis of Line x Tester:  yield

# View the output
result1
#> $Means
#>      Testers
#> Lines       6       7       8
#>     1  68.550 107.640  52.640
#>     2  73.265  97.640  85.650
#>     3 100.885 111.540 117.735
#>     4 105.795  64.450  46.855
#>     5  84.150  81.935  94.820
#> 
#> $`Overall ANOVA`
#>                 Df    Sum Sq    Mean Sq   F value       Pr(>F)
#> Replication      3   148.436   49.47866  0.509612 6.778194e-01
#> Crosses         14 26199.654 1871.40388 19.274772 6.737492e-14
#> Lines            4 10318.361 2579.59035 27.466791 1.421271e-11
#> Testers          2  1718.926  859.46289  9.151332 4.626865e-04
#> Lines X Testers  8 14162.367 1770.29589 18.849639 4.973396e-12
#> Error           42  4077.815   97.09084        NA           NA
#> Total           59 30425.906         NA        NA           NA
#> 
#> $`Coefficient of Variation`
#> [1] 11.42608
#> 
#> $`Genetic Variance`
#>     Genotypic Variance    Phenotypic Variance Environmental Variance 
#>              455.48131              552.57215               97.09084 
#> 
#> $`Genetic Variability `
#>    Phenotypic coefficient of Variation     Genotypic coefficient of Variation 
#>                             27.2585365                             24.7481829 
#> Environmental coefficient of Variation                                   <NA> 
#>                             11.4260778                              0.8242929 
#> 
#> $`Line x Tester ANOVA`
#>                 Df    Sum Sq    Mean Sq   F value       Pr(>F)
#> Lines            4 10318.361 2579.59035 27.466791 1.421271e-11
#> Testers          2  1718.926  859.46289  9.151332 4.626865e-04
#> Lines X Testers  8 14162.367 1770.29589 18.849639 4.973396e-12
#> Error           42  4077.815   97.09084        NA           NA
#> 
#> $`GCA lines`
#>       1       2       3       4       5 
#>  -9.960  -0.718  23.817 -13.870   0.732 
#> 
#> $`GCA testers`
#>      6      7      8 
#>  0.292  6.404 -6.697 
#> 
#> $`SCA crosses`
#>      Testers
#> Lines       6       7       8
#>     1  -8.019  24.959 -16.940
#>     2 -12.546   5.717   6.828
#>     3  -9.461  -4.918  14.378
#>     4  33.136 -14.321 -18.815
#>     5  -3.111 -11.438  14.548
#> 
#> $`Proportional Contribution`
#>          Lines         Tester  Line x Tester 
#>      39.383578       6.560872      54.055550 
#> 
#> $`GV Singh & Chaudhary`
#>                  Cov H.S. (line)                Cov H.S. (tester) 
#>                        67.441205                       -45.541650 
#>               Cov H.S. (average)               Cov F.S. (average) 
#>                         2.680894                       408.052454 
#> F = 0, Adittive genetic variance F = 1, Adittive genetic variance 
#>                        10.723574                         5.361787 
#> F = 0, Variance due to Dominance F = 1, Variance due to Dominance 
#>                       836.602526                       418.301263 
#> 
#> $`Standard Errors`
#>      S.E. gca for line    S.E. gca for tester        S.E. sca effect 
#>               2.844451               2.203303               4.926734 
#>     S.E. (gi - gj)line   S.E. (gi - gj)tester S.E. (sij - skl)tester 
#>               4.022662               3.115940               6.967454 
#> 
#> $`Critical differance`
#>      C.D. gca for line    C.D. gca for tester        C.D. sca effect 
#>               5.740335               4.446445               9.942552 
#>     C.D. (gi - gj)line   C.D. (gi - gj)tester C.D. (sij - skl)tester 
#>               8.118060               6.288222              14.060892

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.