The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
The package is used for statistical analysis of Plant Breeding experiments.
Package Website https://nandp1.github.io/gpbStat/
Note: In the latest version 0.3.1 estimation of Kings Variance is not included.
Install latest package from Github through
install.packages("devtools")
library(devtools)
install_github("nandp1/gpbStat")
Install gpbStat from CRAN with:
install.packages("gpbStat")
Line by Tester analysis (only crosses).
# Loading the gpbStat package
library(gpbStat)
# Loading dataset
data(rcbdltc)
## Now by using function ltc we analyze the data.
## The first parameter of `ltc` function is "data" followed by replication, line, tester and dependent variable(yield)
= ltc(rcbdltc, replication, line, tester, yield)
results1 #>
#> Analysis of Line x Tester: yield
## Viewing the results
results1#> $Means
#> Testers
#> Lines 6 7 8
#> 1 68.550 107.640 52.640
#> 2 73.265 97.640 85.650
#> 3 100.885 111.540 117.735
#> 4 105.795 64.450 46.855
#> 5 84.150 81.935 94.820
#>
#> $`Overall ANOVA`
#> Df Sum Sq Mean Sq F value Pr(>F)
#> Replication 3 148.436 49.47866 0.509612 6.778194e-01
#> Crosses 14 26199.654 1871.40388 19.274772 6.737492e-14
#> Lines 4 10318.361 2579.59035 27.466791 1.421271e-11
#> Testers 2 1718.926 859.46289 9.151332 4.626865e-04
#> Lines X Testers 8 14162.367 1770.29589 18.849639 4.973396e-12
#> Error 42 4077.815 97.09084 NA NA
#> Total 59 30425.906 NA NA NA
#>
#> $`Coefficient of Variation`
#> [1] 11.42608
#>
#> $`Genetic Variance`
#> Genotypic Variance Phenotypic Variance Environmental Variance
#> 455.48131 552.57215 97.09084
#>
#> $`Genetic Variability `
#> Phenotypic coefficient of Variation Genotypic coefficient of Variation
#> 27.2585365 24.7481829
#> Environmental coefficient of Variation <NA>
#> 11.4260778 0.8242929
#>
#> $`Line x Tester ANOVA`
#> Df Sum Sq Mean Sq F value Pr(>F)
#> Lines 4 10318.361 2579.59035 27.466791 1.421271e-11
#> Testers 2 1718.926 859.46289 9.151332 4.626865e-04
#> Lines X Testers 8 14162.367 1770.29589 18.849639 4.973396e-12
#> Error 42 4077.815 97.09084 NA NA
#>
#> $`GCA lines`
#> 1 2 3 4 5
#> -9.960 -0.718 23.817 -13.870 0.732
#>
#> $`GCA testers`
#> 6 7 8
#> 0.292 6.404 -6.697
#>
#> $`SCA crosses`
#> Testers
#> Lines 6 7 8
#> 1 -8.019 24.959 -16.940
#> 2 -12.546 5.717 6.828
#> 3 -9.461 -4.918 14.378
#> 4 33.136 -14.321 -18.815
#> 5 -3.111 -11.438 14.548
#>
#> $`Proportional Contribution`
#> Lines Tester Line x Tester
#> 39.383578 6.560872 54.055550
#>
#> $`GV Singh & Chaudhary`
#> Cov H.S. (line) Cov H.S. (tester)
#> 67.441205 -45.541650
#> Cov H.S. (average) Cov F.S. (average)
#> 2.680894 408.052454
#> F = 0, Adittive genetic variance F = 1, Adittive genetic variance
#> 10.723574 5.361787
#> F = 0, Variance due to Dominance F = 1, Variance due to Dominance
#> 836.602526 418.301263
#>
#> $`Standard Errors`
#> S.E. gca for line S.E. gca for tester S.E. sca effect
#> 2.844451 2.203303 4.926734
#> S.E. (gi - gj)line S.E. (gi - gj)tester S.E. (sij - skl)tester
#> 4.022662 3.115940 6.967454
#>
#> $`Critical differance`
#> C.D. gca for line C.D. gca for tester C.D. sca effect
#> 5.740335 4.446445 9.942552
#> C.D. (gi - gj)line C.D. (gi - gj)tester C.D. (sij - skl)tester
#> 8.118060 6.288222 14.060892
# Similarly we analyze the line tester data containing only crosses laid out in Alpha lattice design.
# Load the package
library(gpbStat)
# Loading dataset
data("alphaltc")
# Viewing the Structure of dataset
str(alphaltc)
#> 'data.frame': 60 obs. of 5 variables:
#> $ replication: chr "r1" "r1" "r1" "r1" ...
#> $ block : chr "b1" "b1" "b1" "b2" ...
#> $ line : int 5 1 4 4 1 2 2 5 3 1 ...
#> $ tester : int 7 8 8 6 7 7 6 6 8 6 ...
#> $ yield : num 47.3 109.4 36.3 36.2 70.7 ...
# There are five columns replication, block, line, tester and yield.
## Now by using function ltc we analyze the data.
## The first parameter of `ltc` function is "data" followed by replication, line, tester, dependent variable(yield) and block.
## Note: The "block" parameter comes at the end.
= ltc(alphaltc, replication, line, tester, yield, block)
results2 #>
#> Analysis of Line x Tester: yield
## Viewing the results
results2#> $Means
#> Testers
#> Lines 6 7 8
#> 1 86.47500 88.95833 89.55000
#> 2 88.64667 55.48000 50.12667
#> 3 51.19917 53.28417 36.91583
#> 4 33.47500 34.29833 50.78417
#> 5 45.30417 42.14500 49.98000
#>
#> $`Overall ANOVA`
#> Df Sum Sq Mean Sq F value Pr(>F)
#> Replication 3 1586.4934 528.8311 3.1440495 4.213104e-02
#> Crosses 14 23862.0199 1704.4300 10.1333150 3.161969e-07
#> Blocks within Replication 16 2555.9198 159.7450 0.9497288 5.307851e-01
#> Lines 4 18835.3119 4708.8280 24.8833344 6.536498e-11
#> Testers 2 463.1458 231.5729 1.2237239 3.037332e-01
#> Lines X Testers 8 4563.5622 570.4453 3.0144615 8.508293e-03
#> Error 26 4373.2165 168.2006 NA NA
#> Total 59 2561.2067 NA NA NA
#>
#> $`Coefficient of Variation`
#> [1] 22.70992
#>
#> $`Genetic Variance`
#> Genotypic Variance Phenotypic Variance Environmental Variance
#> 293.8997 462.1004 168.2006
#>
#> $`Genetic Variability `
#> Phenotypic coefficient of Variation Genotypic coefficient of Variation
#> 37.6417608 30.0193557
#> Environmental coefficient of Variation <NA>
#> 22.7099195 0.6360084
#>
#> $`Line x Tester ANOVA`
#> Df Sum Sq Mean Sq F value Pr(>F)
#> Lines 4 18835.3119 4708.8280 24.883334 6.536498e-11
#> Testers 2 463.1458 231.5729 1.223724 3.037332e-01
#> Lines X Testers 8 4563.5622 570.4453 3.014461 8.508293e-03
#> Error 26 4373.2165 168.2006 NA NA
#>
#> $`GCA lines`
#> 1 2 3 4 5
#> 31.220 7.643 -9.975 -17.589 -11.298
#>
#> $`GCA testers`
#> 6 7 8
#> 3.912 -2.275 -1.637
#>
#> $`SCA crosses`
#> Testers
#> Lines 6 7 8
#> 1 -5.765 2.906 2.859
#> 2 19.984 -6.996 -12.988
#> 3 0.154 8.426 -8.580
#> 4 -9.956 -2.946 12.902
#> 5 -4.417 -1.390 5.807
#>
#> $`Proportional Contribution`
#> Lines Tester Line x Tester
#> 78.934273 1.940933 19.124794
#>
#> $`GV Singh & Chaudhary`
#> Cov H.S. (line) Cov H.S. (tester)
#> 344.86523 -16.94362
#> Cov H.S. (average) Cov F.S. (average)
#> 30.06778 262.35565
#> F = 0, Adittive genetic variance F = 1, Adittive genetic variance
#> 120.27111 60.13555
#> F = 0, Variance due to Dominance F = 1, Variance due to Dominance
#> 201.12232 15.84306
#>
#> $`Standard Errors`
#> S.E. gca for line S.E. gca for tester S.E. sca effect
#> 3.743891 2.900005 6.484609
#> S.E. (gi - gj)line S.E. (gi - gj)tester S.E. (sij - skl)tester
#> 5.294661 4.101227 9.170622
#>
#> $`Critical differance`
#> C.D. gca for line C.D. gca for tester C.D. sca effect
#> 7.695678 5.961047 13.329305
#> C.D. (gi - gj)line C.D. (gi - gj)tester C.D. (sij - skl)tester
#> 10.883332 8.430193 18.850484
# Line x Tester analysis for multiple traits laid in Alpha lattice design.
# Load the package
library(gpbStat)
#Load the dataset
data("alphaltcmt")
# View the structure of dataframe.
str(alphaltcmt)
#> spc_tbl_ [60 × 7] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
#> $ replication: chr [1:60] "r1" "r3" "r2" "r4" ...
#> $ block : chr [1:60] "b2" "b2" "b4" "b5" ...
#> $ line : chr [1:60] "DIL 2" "DIL 2" "DIL 2" "DIL 2" ...
#> $ tester : chr [1:60] "DIL-101" "DIL-101" "DIL-101" "DIL-101" ...
#> $ hsw : num [1:60] 25.7 24.5 23.7 25.1 23 ...
#> $ sh : num [1:60] 81.7 83.3 86 84.6 85.5 ...
#> $ gy : num [1:60] 25.9 41 65.7 47.3 30.8 ...
#> - attr(*, "spec")=List of 3
#> ..$ cols :List of 7
#> .. ..$ replication: list()
#> .. .. ..- attr(*, "class")= chr [1:2] "collector_character" "collector"
#> .. ..$ block : list()
#> .. .. ..- attr(*, "class")= chr [1:2] "collector_character" "collector"
#> .. ..$ line : list()
#> .. .. ..- attr(*, "class")= chr [1:2] "collector_character" "collector"
#> .. ..$ tester : list()
#> .. .. ..- attr(*, "class")= chr [1:2] "collector_character" "collector"
#> .. ..$ hsw : list()
#> .. .. ..- attr(*, "class")= chr [1:2] "collector_double" "collector"
#> .. ..$ sh : list()
#> .. .. ..- attr(*, "class")= chr [1:2] "collector_double" "collector"
#> .. ..$ gy : list()
#> .. .. ..- attr(*, "class")= chr [1:2] "collector_double" "collector"
#> ..$ default: list()
#> .. ..- attr(*, "class")= chr [1:2] "collector_guess" "collector"
#> ..$ delim : chr ","
#> ..- attr(*, "class")= chr "col_spec"
#> - attr(*, "problems")=<externalptr>
# Conduct Line x Tester analysis
= ltcmt(alphaltcmt, replication, line, tester, alphaltcmt[,5:7], block)
result3 #>
#> Analysis of Line x Tester for Multiple traits
#> Warning in sqrt(x): NaNs produced
#> Warning in sqrt(x): NaNs produced
#> Warning in sqrt(x): NaNs produced
#> Warning in sqrt(x): NaNs produced
#> Warning in sqrt(x): NaNs produced
#> Warning in sqrt(x): NaNs produced
# View the output
result3#> $Mean
#> $Mean$hsw
#> Tester
#> Line DIL-101 DIL-103 DIL 102
#> DIL-1 24.2800 26.4325 24.3900
#> DIL-4 25.3625 26.3225 26.5250
#> DIL 2 24.7525 23.8525 23.1800
#> DIL 3 22.1300 25.4675 25.0975
#> DIL 5 24.4075 22.9050 23.8625
#>
#> $Mean$sh
#> Tester
#> Line DIL-101 DIL-103 DIL 102
#> DIL-1 82.9375 84.2025 83.8700
#> DIL-4 84.2775 81.8175 84.3250
#> DIL 2 83.8950 83.7725 84.6225
#> DIL 3 83.6100 83.0450 84.4600
#> DIL 5 83.0425 84.8300 82.5875
#>
#> $Mean$gy
#> Tester
#> Line DIL-101 DIL-103 DIL 102
#> DIL-1 54.2675 44.7525 48.8625
#> DIL-4 60.5650 53.7975 52.1400
#> DIL 2 44.9575 47.3975 45.3125
#> DIL 3 46.0625 55.0550 54.7700
#> DIL 5 58.2675 53.5525 53.5300
#>
#>
#> $ANOVA
#> $ANOVA$hsw
#> Df Sum Sq Mean Sq F value Pr(>F)
#> Replication 3 123.534952 41.178317 5.2008236 0.006007676
#> Blocks within Replication 16 159.578141 9.973634 1.2596705 0.292005429
#> Crosses 14 95.647543 6.831967 0.8628778 0.602918614
#> Lines 4 44.421693 11.105423 1.0220298 0.406231362
#> Testers 2 6.558103 3.279052 0.3017705 0.740992561
#> Lines X Testers 8 44.667747 5.583468 0.5138454 0.839635289
#> Error 26 205.858982 7.917653 NA NA
#> Total 59 584.619618 NA NA NA
#>
#> $ANOVA$sh
#> Df Sum Sq Mean Sq F value Pr(>F)
#> Replication 3 47.847660 15.9492200 5.5792805 0.004311049
#> Blocks within Replication 16 61.895494 3.8684684 1.3532492 0.239549969
#> Crosses 14 39.935293 2.8525210 0.9978553 0.482967180
#> Lines 4 3.050693 0.7626733 0.1864544 0.944255260
#> Testers 2 2.468943 1.2344717 0.3017971 0.740973054
#> Lines X Testers 8 34.415657 4.3019571 1.0517198 0.413116072
#> Error 26 74.324946 2.8586518 NA NA
#> Total 59 224.003393 NA NA NA
#>
#> $ANOVA$gy
#> Df Sum Sq Mean Sq F value Pr(>F)
#> Replication 3 3171.01367 1057.00456 7.6631523 0.0007893935
#> Blocks within Replication 16 2338.12660 146.13291 1.0594455 0.4352040161
#> Crosses 14 1411.65982 100.83284 0.7310257 0.7261397075
#> Lines 4 787.60961 196.90240 0.9741847 0.4310920496
#> Testers 2 48.49009 24.24505 0.1199536 0.8872442280
#> Lines X Testers 8 575.56012 71.94502 0.3559517 0.9380005166
#> Error 26 3586.26808 137.93339 NA NA
#> Total 59 10507.06817 NA NA NA
#>
#>
#> $GCA.Line
#> hsw sh gy
#> DIL-1 0.4363333 -0.01633333 -2.2585000
#> DIL-4 1.4721667 -0.21300000 3.9481667
#> DIL 2 -0.6695000 0.41033333 -5.6635000
#> DIL 3 -0.3661667 0.01866667 0.4098333
#> DIL 5 -0.8728333 -0.19966667 3.5640000
#>
#> $GCA.Tester
#> hsw sh gy
#> DIL-101 -0.41133333 -0.1338333 1.2713333
#> DIL-103 0.39816667 -0.1528333 -0.6416667
#> DIL 102 0.01316667 0.2866667 -0.6296667
#>
#> $SCA
#> $SCA$hsw
#> Tester
#> Line DIL-101 DIL-103 DIL 102
#> DIL-1 -0.3428333 1.0001667 -0.6573333
#> DIL-4 -0.2961667 -0.1456667 0.4418333
#> DIL 2 1.2355000 -0.4740000 -0.7615000
#> DIL 3 -1.6903333 0.8376667 0.8526667
#> DIL 5 1.0938333 -1.2181667 0.1243333
#>
#> $SCA$sh
#> Tester
#> Line DIL-101 DIL-103 DIL 102
#> DIL-1 -0.59866667 0.6853333 -0.08666667
#> DIL-4 0.93800000 -1.5030000 0.56500000
#> DIL 2 -0.06783333 -0.1713333 0.23916667
#> DIL 3 0.03883333 -0.5071667 0.46833333
#> DIL 5 -0.31033333 1.4961667 -1.18583333
#>
#> $SCA$gy
#> Tester
#> Line DIL-101 DIL-103 DIL 102
#> DIL-1 3.702000 -3.900000 0.198000
#> DIL-4 3.792833 -1.061667 -2.731167
#> DIL 2 -2.203000 2.150000 0.053000
#> DIL 3 -7.171333 3.734167 3.437167
#> DIL 5 1.879500 -0.922500 -0.957000
#>
#>
#> $CV
#> hsw sh gy
#> 11.439351 2.020348 22.781566
#>
#> $Genetic.Variance.Covariance.
#> Phenotypic Variance Genotypic Variance Environmental Variance
#> hsw -0.6689343 -8.586587 7.917653
#> sh -0.4155230 -3.274175 2.858652
#> gy -101.1095400 -239.042928 137.933388
#> Phenotypic coefficient of Variation Genotypic coefficient of Variation
#> hsw NaN NaN
#> sh NaN NaN
#> gy NaN NaN
#> Environmental coefficient of Variation Broad sense heritability
#> hsw 11.439351 12.836220
#> sh 2.020348 7.879648
#> gy 22.781566 2.364198
#>
#> $Std.Error
#> S.E. gca for line S.E. gca for tester S.E. sca effect S.E. (gi - gj)line
#> hsw 0.8122835 0.6291921 1.4069162 1.1487423
#> sh 0.4880789 0.3780643 0.8453774 0.6902478
#> gy 3.3903464 2.6261511 5.8722523 4.7946739
#> S.E. (gi - gj)tester S.E. (sij - skl)tester
#> hsw 0.8898120 1.989680
#> sh 0.5346636 1.195544
#> gy 3.7139384 8.304619
#>
#> $C.D.
#> C.D. gca for line C.D. gca for tester C.D. sca effect C.D. (gi - gj)line
#> hsw 1.669673 1.2933228 2.891958 2.361274
#> sh 1.003260 0.7771222 1.737698 1.418825
#> gy 6.968957 5.3981308 12.070587 9.855593
#> C.D. (gi - gj)tester C.D. (sij - skl)tester
#> hsw 1.829035 4.089846
#> sh 1.099017 2.457476
#> gy 7.634110 17.070388
#>
#> $Add.Dom.Var
#> Cov H.S. (line) Cov H.S. (tester) Cov H.S. (average) Cov F.S. (average)
#> hsw 0.4601629 -0.1152208 0.03310414 -0.3374874
#> sh -0.2949403 -0.1533743 -0.03843202 -0.1641164
#> gy 10.4131155 -2.3849984 0.76596517 -10.5696184
#> Addittive Variance(F=0) Addittive Variance(F=1) Dominance Variance(F=0)
#> hsw 0.1324166 0.06620828 -1.1670924
#> sh -0.1537281 -0.07686404 0.7216527
#> gy 3.0638607 1.53193033 -32.9941861
#> Dominance Variance(F=1)
#> hsw -0.5835462
#> sh 0.3608263
#> gy -16.4970931
#>
#> $Contribution.of.Line.Tester
#> Lines Tester Line x Tester
#> hsw 46.443110 6.856531 46.70036
#> sh 7.639091 6.182359 86.17855
#> gy 55.793159 3.434970 40.77187
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.