The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
Googleway provides access to Google Maps APIs, and the ability to plot an interactive Google Map overlayed with various layers and shapes, including markers, circles, rectangles, polygons, lines (polylines) and heatmaps. You can also overlay traffic information, transit and cycling routes.
The API functions are
google_directions()
google_distance()
google_elevation()
google_geocode()
google_reverse_geocode()
google_places()
google_place_details()
google_timezone()
google_snapToRoads()
and
google_nearestRoads()
Plotting a Google Map uses the JavaScript API, and the functions used to create a map and overlays are
google_map()
add_markers()
add_heatmap()
add_circles()
add_polygons()
add_polylines()
add_rectangles()
add_geojson()
add_dragdrop()
add_overlay()
add_kml()
add_bicycling()
add_traffic()
add_transit()
Downloading a static streetview map
google_streetview()
There are also functions that directly open in a browser, but don’t return any data
google_map_url()
google_map_search()
google_map_directions()
google_map_panorama()
Finally, the package includes the helper functions,
encode_pl()
and decode_pl()
for encoding and
decoding polylines.
To use most of the functions in this package you will need a valid API KEY (follow instructions here to get a key) for the API you wish to use. The same API key can be used for all the functions, but you need to register it with each API first.
The exceptions to this are the functions that don’t return any data
All the API functions have a key
argument which you can
use to provide your API key. Alternatively, you can use
set_key()
to set the key once, and make it available for
all further API calls.
If you use one key for all API calls you can just provide the
key
argument (it will automatically get set as your default
key).
If you use many different keys, you can specify which API they are
for in the api
argument.
library(googleway)
## not specifying the api will add the key as your 'default'
key <- "my_api_key"
set_key(key = key)
google_keys()
## Google API keys
## - default : my_api_key
## - map :
## - directions :
## - distance :
## - elevation :
## - geocode :
## - places :
## - find_place :
## - place_autocomplete :
## - place_details :
## - reverse_geocode :
## - roads :
## - streetview :
## - timezone :
## specifying the specific API will only make that key available for that API.
clear_keys() ## clear any previously set keys
key <- "my_api_key"
set_key(key = key, api = "directions")
google_keys()
## Google API keys
## - default :
## - map :
## - directions : my_api_key
## - distance :
## - elevation :
## - geocode :
## - places :
## - find_place :
## - place_autocomplete :
## - place_details :
## - reverse_geocode :
## - roads :
## - streetview :
## - timezone :
Google’s API pricing and plans contains the most up-to-date information on their use and restrictions.
For the free tier this is 2,500 web-service API requests (e.g., geocoding, directions, distances, etc) per day (the places API is slightly different), and 25,000 map loads per day.
Common use-cases for R users are where you might have a data.frame of
google_geocode()
)google_reverse_geocode()
)google_directions()
)In these cases Google’s API can only accept one request at a time. Therefore it’s not possible to ‘vectorise’ these functions as they have to operate one row at a time.
The solution, therefore, will be to write some sort of loop to iterate over each row of the data.frame.
An exaple (taken from user @Jazzurro’s answer on StackOverflow) being where you have 3 pairs of coordinates, and you want to find the route (polyline) between each pair.
In this example they used an lapply
to iterate over the
rows, but any looping mechanism would have worked as well.
library(googleway)
mydf <- data.frame(region = 1:3,
from_lat = 41.8674336,
from_long = -87.6266382,
to_lat = c(41.887544, 41.9168862, 41.8190937),
to_long = c(-87.626487, -87.64847, -87.6230967))
mykey <- "your_api_key"
pls <- lapply(1:nrow(mydf), function(x){
foo <- google_directions(origin = unlist(mydf[x, 2:3]),
destination = unlist(mydf[x, 4:5]),
#key = mykey,
mode = "driving",
simplify = TRUE)
## Decode the polyline into lat/lon coordinates
pl <- decode_pl(foo$routes$overview_polyline$points)
return(pl)
})
str(pls)
List of 3
$ :'data.frame': 46 obs. of 2 variables:
..$ lat: num [1:46] 41.9 41.9 41.9 41.9 41.9 ...
..$ lon: num [1:46] -87.6 -87.6 -87.6 -87.6 -87.6 ...
$ :'data.frame': 142 obs. of 2 variables:
..$ lat: num [1:142] 41.9 41.9 41.9 41.9 41.9 ...
..$ lon: num [1:142] -87.6 -87.6 -87.6 -87.6 -87.6 ...
$ :'data.frame': 72 obs. of 2 variables:
..$ lat: num [1:72] 41.9 41.9 41.9 41.9 41.9 ...
..$ lon: num [1:72] -87.6 -87.6 -87.6 -87.6 -87.6 ...
For the API calls that return data, I have provided some helper
functions to access specific data points returned from the API calls.
The full list is given in the help file ?access_result
.
Examples of its use is demonstrated throughout this vignette.
If there is a specific data point you would like added to the function, please file an issue on my github page
Google Maps allows users to find directions between locations.
The Google Maps Directions API is a service available to developers that calculates directions between locations.
Searching Google Maps for directions from Melbourne to Sydney generates the route:
The same query using the developers API generates the data in JSON
{
"geocoded_waypoints" : [
{
"geocoder_status" : "OK",
"place_id" : "ChIJ90260rVG1moRkM2MIXVWBAQ",
"types" : [ "colloquial_area", "locality", "political" ]
},
{
"geocoder_status" : "OK",
"place_id" : "ChIJP3Sa8ziYEmsRUKgyFmh9AQM",
"types" : [ "colloquial_area", "locality", "political" ]
}
],
"routes" : [
{
"bounds" : {
"northeast" : {
"lat" : -33.8660005,
"lng" : 151.2176931
},
"southwest" : {
"lat" : -37.8136598,
"lng" : 144.8875036
}
},
"copyrights" : "Map data ©2017 Google",
"legs" : [
{
"distance" : {
"text" : "878 km",
"value" : 878208
},
"duration" : {
"text" : "8 hours 44 mins",
"value" : 31447
},
"end_address" : "Sydney NSW, Australia",
"end_location" : {
"lat" : -33.8689894,
"lng" : 151.2091978
},
"start_address" : "Melbourne VIC, Australia",
"start_location" : {
"lat" : -37.8136598,
"lng" : 144.9629147
},
... etc
This result can be returned in R using the
google_directions()
function. By default the result will be
coerced to the simplest R
structure possible using
jsonlite::fromJSON()
. If you want the result in JSON set
simplify = FALSE
.
library(googleway)
key <- "your_api_key"
df <- google_directions(origin = "Melbourne, Australia",
destination = "Sydney, Australia",
key = key,
mode = "driving",
simplify = TRUE)
The data used to draw the route on the map is the overview_polyline. This string represents a sequence of lat/lon pairs, encoded using a lossy compression algorithm (https://developers.google.com/maps/documentation/utilities/polylinealgorithm) that allows you to store the series of coordinates as a single string.
You can extract the polyline manually
pl <- df$routes$overview_polyline$points
Or use the direction_polyline()
accessor
pl <- direction_polyline(df)
pl
# [1] "rqxeF_cxsZgr@xmCekBhMunGnWc_Ank@vBpyCqjAfbAqmBjXydAe{AoF{oEgTqjGur@ch@qfAhUuiCww@}kEtOepAtdD{dDf~BsgIuj@}tHi{C{bGg{@{rGsmG_bDbW{wCuTyiBajBytF_oAyaI}K}bEkqA{jDg^epJmbB{gC}v@i~D`@gkGmJ_kEojD_O{`FqvCetE}bGgbDm_BqpD}pEqdGiaBo{FglEg_Su~CegHw`Cm`Hv[mxFwaAisAklCuUgzAqmCalJajLqfDedHgyC_yHibCizK~Xo_DuqAojDshAeaEpg@g`Dy|DgtNswBcgDiaAgEqgBozB{jEejQ}p@ckIc~HmvFkgAsfGmjCcaJwwD}~AycCrx@skCwUqwN{yKygH}nF_qAgyOep@slIehDcmDieDkoEiuCg|LrKo~Eb}Bw{Ef^klG_AgdFqvAaxBgoDeqBwoDypEeiFkjBa|Ks}@gr@c}IkE_qEqo@syCgG{iEazAmeBmeCqvA}rCq_AixEemHszB_SisB}mEgeEenCqeDab@iwAmZg^guB}cCk_F_iAmkGsu@abDsoBylBk`Bm_CsfD{jFgrAerB{gDkw@{|EacB_jDmmAsjC{yBsyFaqFqfEi_Ei~C{yAmwFt{B{fBwKql@onBmtCq`IomFmdGueD_kDssAwsCyqDkx@e\\kwEyUstC}uAe|Ac|BakGpGkfGuc@qnDguBatBot@}kD_pBmmCkdAgkB}jBaIyoC}xAexHka@cz@ahCcfCayBqvBgtBsuDxb@yiDe{Ikt@c{DwhBydEynDojCapAq}AuAksBxPk{EgPgkJ{gA}tGsJezKbcAcdK__@uuBn_AcuGsjDwvC_|AwbE}~@wnErZ{nGr_@stEjbDakFf_@clDmKkwBbpAi_DlgA{lArLukCBukJol@w~DfCcpBwnAghCweA}{EmyAgaEbNybGeV}kCtjAq{EveBwuHlb@gyIg\\gmEhBw{G{dAmpHp_@a|MsnCcuGy~@agIe@e`KkoA}lBspBs^}sAmgIdpAumE{Y_|Oe|CioKouFwuIqnCmlDoHamBiuAgnDqp@yqIkmEqaIozAohAykDymA{uEgiE}fFehBgnCgrGmwCkiLurBkhL{jHcrGs}GkhFwpDezGgjEe_EsoBmm@g}KimLizEgbA{~DwfCwvFmhBuvBy~DsqCicBatC{z@mlCkkDoaDw_BagA}|Bii@kgCpj@}{E}b@cuJxQwkK}j@exF`UanFzM{fFumB}fCirHoTml@CoAh`A"
Having retrieved the polyline, you can decode it into latitude and
longitude coordinates using decode_pl()
.
polyline <- "rqxeF_cxsZgr@xmCekBhMunGnWc_Ank@vBpyCqjAfbAqmBjXydAe{AoF{oEgTqjGur@ch@qfAhUuiCww@}kEtOepAtdD{dDf~BsgIuj@}tHi{C{bGg{@{rGsmG_bDbW{wCuTyiBajBytF_oAyaI}K}bEkqA{jDg^epJmbB{gC}v@i~D`@gkGmJ_kEojD_O{`FqvCetE}bGgbDm_BqpD}pEqdGiaBo{FglEg_Su~CegHw`Cm`Hv[mxFwaAisAklCuUgzAqmCalJajLqfDedHgyC_yHibCizK~Xo_DuqAojDshAeaEpg@g`Dy|DgtNswBcgDiaAgEqgBozB{jEejQ}p@ckIc~HmvFkgAsfGmjCcaJwwD}~AycCrx@skCwUqwN{yKygH}nF_qAgyOep@slIehDcmDieDkoEiuCg|LrKo~Eb}Bw{Ef^klG_AgdFqvAaxBgoDeqBwoDypEeiFkjBa|Ks}@gr@c}IkE_qEqo@syCgG{iEazAmeBmeCqvA}rCq_AixEemHszB_SisB}mEgeEenCqeDab@iwAmZg^guB}cCk_F_iAmkGsu@abDsoBylBk`Bm_CsfD{jFgrAerB{gDkw@{|EacB_jDmmAsjC{yBsyFaqFqfEi_Ei~C{yAmwFt{B{fBwKql@onBmtCq`IomFmdGueD_kDssAwsCyqDkx@e\\kwEyUstC}uAe|Ac|BakGpGkfGuc@qnDguBatBot@}kD_pBmmCkdAgkB}jBaIyoC}xAexHka@cz@ahCcfCayBqvBgtBsuDxb@yiDe{Ikt@c{DwhBydEynDojCapAq}AuAksBxPk{EgPgkJ{gA}tGsJezKbcAcdK__@uuBn_AcuGsjDwvC_|AwbE}~@wnErZ{nGr_@stEjbDakFf_@clDmKkwBbpAi_DlgA{lArLukCBukJol@w~DfCcpBwnAghCweA}{EmyAgaEbNybGeV}kCtjAq{EveBwuHlb@gyIg\\gmEhBw{G{dAmpHp_@a|MsnCcuGy~@agIe@e`KkoA}lBspBs^}sAmgIdpAumE{Y_|Oe|CioKouFwuIqnCmlDoHamBiuAgnDqp@yqIkmEqaIozAohAykDymA{uEgiE}fFehBgnCgrGmwCkiLurBkhL{jHcrGs}GkhFwpDezGgjEe_EsoBmm@g}KimLizEgbA{~DwfCwvFmhBuvBy~DsqCicBatC{z@mlCkkDoaDw_BagA}|Bii@kgCpj@}{E}b@cuJxQwkK}j@exF`UanFzM{fFumB}fCirHoTml@CoAh`A"
df <- decode_pl(polyline)
head(df)
## lat lon
## 1 -37.81418 144.9632
## 2 -37.80598 144.9404
## 3 -37.78867 144.9380
## 4 -37.74520 144.9341
## 5 -37.73494 144.9270
## 6 -37.73554 144.9023
And, of course, to encode a series of lat/lon coordinates you use
encode_pl()
## [1] "pqxeF}bxsZer@vmCgkBlMunGjWc_Apk@vBpyCqjAfbAqmBjXydAg{AoFyoEgTojGsr@gh@sfAhUuiCuw@}kEtOepAvdD{dDd~BsgIuj@{tHi{C{bGg{@{rGsmGabDbW{wCuTwiBajBytFaoA{aI{K{bEkqA{jDg^gpJkbB{gC_w@g~D`@ikGmJ_kEojD_O}`FqvCctE}bGgbDk_BspD_qEodGgaBo{FilEi_Su~CcgHw`Cm`Hv[mxFwaAisAklCuUgzAsmCalJajLqfDcdHgyCayHibCezK~Xo_DuqAqjDshAeaEpg@g`Dy|DgtNqwBegDkaAeEogBozB{jEejQ_q@ckIc~HkvFkgAufGmjCcaJwwD}~AycCrx@skCwUqwN}yKygH}nF}pAgyOep@qlIghDemDgeDkoEkuCc|LtKq~E`}Bw{Ef^klG}@gdFsvAcxBeoDcqByoDypEciFkjBc|Ku}@gr@a}IkE_qEoo@syCgG}iEczAkeBmeCqvA}rCq_AgxEgmHszB}RksB}mEgeEgnCoeD_b@iwAmZi^guB}cCm_F_iAikGsu@cbDsoB{lBk`Bi_CsfD}jFerAgrB{gDiw@}|EacB_jDkmAsjC}yBsyFaqFofEk_Ei~C{yAowFv{ByfBwKsl@onBktCq`IqmFmdGueDakDssAssCyqDmx@e\\kwEyUstC}uAe|Ac|BakGpGmfGuc@mnDguBctBmt@}kDapBmmCkdAgkB}jBcIyoC}xAexHia@cz@ahCafCayBqvBitBuuDzb@wiDe{Imt@e{DwhBwdEynDqjCapAo}AuAmsBzPi{EiPgkJ{gA}tGsJezKbcAcdK__@wuBn_AauGsjDwvC_|AybE{~@unEpZ{nGt_@stEhbDakFh_@elDoKiwBdpAi_DjgAylArLykCDukJql@u~DfCepBwnAghCweA{{EmyAgaEbN{bGcV{kCrjAq{EveByuHlb@eyIg\\gmEhBw{GydAopHn_@_|MsnCcuGw~@agIg@e`KkoA}lBspBu^}sAmgIfpAsmE}Ya|Oc|CgoKouFwuIsnCmlDmHamBkuAinDop@wqIkmEsaIqzAmhAwkD{mA}uEciE}fFghBenCirGowCgiLsrBmhL}jHerGs}GihFupDezGgjEg_EuoBim@g}KmmLizEebAy~DwfCyvFmhBuvBy~DsqCicBatC{z@klCkkDqaDw_BagA}|Bii@kgCpj@}{E{b@cuJxQwkK}j@exF~TanFzM{fFumB_gCirHmTml@AoAd`A"
The Google Maps Distance API is a service that provides travel distance and time for a matrix of origins and destinations.
Finding the distances between Melbourne Airport, the MCG, a set of coordinates (-37.81659, 144.9841), to Portsea, Melbourne.
df <- google_distance(origins = list(c("Melbourne Airport, Australia"),
c("MCG, Melbourne, Australia"),
c(-37.81659, 144.9841)),
destinations = c("Portsea, Melbourne, Australia"),
key = key)
head(df)
$destination_addresses
[1] "Melbourne Rd, Victoria, Australia"
$origin_addresses
[1] "Melbourne Airport (MEL), Departure Dr, Melbourne Airport VIC 3045, Australia"
[2] "Jolimont Station, Wellington Cres, East Melbourne VIC 3002, Australia"
[3] "176 Wellington Parade, East Melbourne VIC 3002, Australia"
$rows
elements
1 130 km, 129501, 1 hour 38 mins, 5853, 1 hour 36 mins, 5770, OK
2 104 km, 104393, 1 hour 20 mins, 4819, 1 hour 20 mins, 4792, OK
3 104 km, 104350, 1 hour 20 mins, 4814, 1 hour 20 mins, 4788, OK
$status
[1] "OK"
The Google Maps Elevation API provides elevation data for all locations on the surface of the earth, including depth locations on the ocean floor (which return negative values).
Finding the elevation of 20 points between the MCG, Melbourne and the beach at Elwood, Melbourne
google_elevation(df_locations = data.frame(lat = c(-37.81659, -37.88950),
lon = c(144.9841, 144.9841)),
location_type = "path",
samples = 20,
key = key,
simplify = TRUE)
$results
elevation location.lat location.lng resolution
1 20.8899250 -37.81659 144.9841 9.543952
2 7.8955822 -37.82043 144.9841 9.543952
3 8.4334993 -37.82426 144.9841 9.543952
4 5.4820895 -37.82810 144.9841 9.543952
5 33.5920677 -37.83194 144.9841 9.543952
6 30.4819584 -37.83578 144.9841 9.543952
7 15.0097895 -37.83961 144.9841 9.543952
8 10.9842978 -37.84345 144.9841 9.543952
9 13.8762951 -37.84729 144.9841 9.543952
10 13.4834013 -37.85113 144.9841 9.543952
11 13.3473139 -37.85496 144.9841 9.543952
12 24.9176636 -37.85880 144.9841 9.543952
13 16.7720604 -37.86264 144.9841 9.543952
14 5.8330226 -37.86648 144.9841 9.543952
15 10.7889471 -37.87031 144.9841 9.543952
16 6.9589133 -37.87415 144.9841 9.543952
17 3.9915009 -37.87799 144.9841 9.543952
18 5.3637657 -37.88183 144.9841 9.543952
19 7.1594319 -37.88566 144.9841 9.543952
20 0.6697893 -37.88950 144.9841 9.543952
$status
[1] "OK"
The Google Maps Time zone API provides time offset data for locations on the surface of the earth. You request the time zone information for a specific latitude/longitude pair and date. The API returns the name of that time zone, the time offset from UTC, and the daylight savings offset.
Finding the timezone of the MCG in Melbourne
google_timezone(location = c(-37.81659, 144.9841),
timestamp = as.POSIXct("2016-06-05"),
key = key,
simplify = FALSE)
[1] "{"
[2] " \"dstOffset\" : 0,"
[3] " \"rawOffset\" : 36000,"
[4] " \"status\" : \"OK\","
[5] " \"timeZoneId\" : \"Australia/Hobart\","
[6] " \"timeZoneName\" : \"Australian Eastern Standard Time\""
[7] "}"
The Google Maps Geocoding API is a service that provides geocoding and reverse geocoding of addresses.
Finding the location details for Flinders Street Station, Melbourne
df <- google_geocode(address = "Flinders Street Station",
key = key,
simplify = TRUE)
df$results$formatted_address
[1] "Flinders St, Melbourne VIC 3000, Australia"
## If your search responde multiple results, you can
## bound the search, for example
bounds <- list(c(-37.81962,144.9657),
c(-37.81692, 144.9684))
df <- google_geocode(address = "Flinders Street Station",
bounds = bounds,
key = key,
simplify = TRUE)
## (in this example only one result was returned in the original call)
The coordinates of the location can be accessed with
geocode_coordinates(df)
# lat lng
# 1 -37.81827 144.9671
The Google Maps Reverse Geocoding API is a service that converts geographic coordinates into a human-readable address.
Finding the street address for a set of coordinates, using
result_type
and location_type
as bounding
parameters:
df <- google_reverse_geocode(location = c(-37.81659, 144.9841),
result_type = c("street_address", "postal_code"),
location_type = "rooftop",
key = key,
simplify = TRUE)
df$results$address_components
[[1]]
long_name short_name types
1 176 176 street_number
2 Wellington Parade Wellington Parade route
3 East Melbourne East Melbourne locality, political
4 Victoria VIC administrative_area_level_1, political
5 Australia AU country, political
6 3002 3002 postal_code
df$results$geometry
location.lat location.lng location_type viewport.northeast.lat viewport.northeast.lng viewport.southwest.lat
1 -37.81608 144.9842 ROOFTOP -37.81473 144.9855 -37.81743
viewport.southwest.lng
1 144.9828
The Google Maps Places API gets data from the same database used by Google Maps and Google+ Local. Places features more than 100 million businesses and points of interest that are updated frequently through owner-verified listings and user-moderated contributions.
There are three types of search you can perform
A Nearby Search lets you search for places within a specified area. You can refine your search request by supplying keywords or specifying the type of place you are searching for.
A Text Search Service is a web service that returns information about a set of places based on a string — for example “pizza in New York” or “shoe stores near Ottawa” or “123 Main Street”. The service responds with a list of places matching the text string and any location bias that has been set.
A Place Detail search (using
google_place_details()
) can be performed when you have a
given place_id
from one of the other three search
methods.
For a text search you are required to provide a
search_string
For example, here’s a query for “restaurants in Melbourne”
res <- google_places(search_string = "Restaurants in Melbourne, Australia",
key = key)
## View the names of the returned restaurantes, and whether they are open or not
cbind(res$results$name, res$results$opening_hours)
res$results$name open_now weekday_text
1 Vue de monde TRUE NULL
2 ezard FALSE NULL
3 MoVida TRUE NULL
4 Flower Drum Restaurant Melbourne TRUE NULL
5 The Press Club FALSE NULL
6 Maha TRUE NULL
7 Bluestone NA NULL
8 Chin Chin TRUE NULL
9 Taxi Kitchen TRUE NULL
10 Max on Hardware TRUE NULL
11 Attica FALSE NULL
12 Nirankar Restaurant FALSE NULL
13 The Mill TRUE NULL
14 The Left Bank Melbourne TRUE NULL
15 The Colonial Tramcar Restaurant TRUE NULL
16 Rockpool Bar & Grill TRUE NULL
17 Lane Restaurant Cafe & Bar - Novotel Melbourne on Collins TRUE NULL
18 Melba Restaurant TRUE NULL
19 CUMULUS INC. TRUE NULL
20 radii restaurant & bar FALSE NULL
A single query will return 20 results per page. You can view the next
20 results using the next_page_token
that is returned as
part of the initial query.
res_next <- google_places(search_string = "Restaurants in Melbourne, Australia",
page_token = res$next_page_token,
key = key)
cbind(res_next$results$name, res_next$results$opening_hours)
res_next$results$name open_now weekday_text
1 Moshi Moshi Japanese Seafood Restaurant TRUE NULL
2 Grill Steak Seafood TRUE NULL
3 Conservatory TRUE NULL
4 Sarti FALSE NULL
5 Tsindos TRUE NULL
6 The Cerberus Beach House TRUE NULL
7 Stalactites Restaurant TRUE NULL
8 Hanabishi Japanese Restaurant FALSE NULL
9 GAZI Restaurant TRUE NULL
10 Om Vegetarian FALSE NULL
11 Shark Fin Inn TRUE NULL
12 Om Vegetarian TRUE NULL
13 The Atlantic Restaurant TRUE NULL
14 Takumi TRUE NULL
15 Pei Modern NA NULL
16 Bamboo House Restaurant TRUE NULL
17 Byblos Bar & Restaurant TRUE NULL
18 Waterfront TRUE NULL
19 No 35 TRUE NULL
20 Bistro Guillaume TRUE NULL
For a nearby search you are required to provide a
location
as a pair of latitude/longitude coordinates. You
can refine your search by providing a keyword and / or a radius.
res <- google_places(location = c(-37.918, 144.968),
keyword = "Restaurant",
radius = 5000,
key = key)
cbind(res$results$name, res$results$opening_hours)
# res$results$name open_now weekday_text
# 1 Melbourne NA NULL
# 2 Quest Brighton on the Bay TRUE NULL
# 3 Brighton Savoy FALSE NULL
# 4 Caroline Serviced Apartments Brighton TRUE NULL
# 5 The Buckingham Serviced Apartment NA NULL
# 6 Sandringham Hotel TRUE NULL
# 7 Indian Palace Restaurant TRUE NULL
# 8 Elsternwick Park TRUE NULL
# 9 Brown Cow Cafe TRUE NULL
# 10 Bok Choy Chinese Cuisine FALSE NULL
# 11 Marine Hotel TRUE NULL
# 12 Daily Planet TRUE NULL
# 13 Riva St Kilda TRUE NULL
# 14 New Bay Hotel TRUE NULL
# 15 Flight Centre North Brighton TRUE NULL
# 16 Vintage Cellars Brighton TRUE NULL
# 17 Palace Brighton Bay TRUE NULL
# 18 Brighton Toyota TRUE NULL
# 19 Sportsgirl TRUE NULL
# 20 Saint Kilda NA NULL
The Google Roads API provides three functions
The snap to roads function takes up to 100 GPS points collected along a route and returns the points snapped to the most likely roads that were travelled along.
df_path <- read.table(text = "lat lon
-35.27801 149.12958
-35.28032 149.12907
-35.28099 149.12929
-35.28144 149.12984
-35.28194 149.13003
-35.28282 149.12956
-35.28302 149.12881
-35.28473 149.12836
", header = T, stringsAsFactors = F)
res <- google_snapToRoads(df_path = df_path, key = key)
res$snappedPoints
location.latitude location.longitude originalIndex placeId
1 -35.27800 149.1295 0 ChIJr_xl0GdNFmsRsUtUbW7qABM
2 -35.28032 149.1291 1 ChIJOyypT2hNFmsRZBtscGL0htw
3 -35.28101 149.1292 2 ChIJv5r0smlNFmsR5nunau79Fv4
4 -35.28147 149.1298 3 ChIJ601MoWlNFmsR5mvkfPp2ovA
5 -35.28194 149.1300 4 ChIJ601MoWlNFmsR5mvkfPp2ovA
6 -35.28282 149.1296 5 ChIJaUpThGlNFmsRMHWxoH7EOsc
7 -35.28313 149.1289 6 ChIJWSb8ImpNFmsRp_4JAxJFE1A
8 -35.28473 149.1283 7 ChIJtWxAZmpNFmsRlbUCkc6VtnA
The result includes the column originalIndex
. This is a
zero-based index that indicates which of the input coordinates has been
snapped to the given
location.latitude
/location.longitude
coordinates. So in this example, originalIndex
0 is the
first row of df_path
, originalIndex
1 is the
second row of df_path
, and so on.
The nearest roads function takes up to 100 independent coordinates and returns the closest road segment for each point.
df_points <- read.table(text = "lat lon
60.1707 24.9426
60.1708 24.9424
60.1709 24.9423", header = T)
res <- google_nearestRoads(df_points, key = key)
res$snappedPoints
location.latitude location.longitude originalIndex placeId
1 60.17070 24.94272 0 ChIJNX9BrM0LkkYRIM-cQg265e8
2 60.17081 24.94271 1 ChIJNX9BrM0LkkYRIM-cQg265e8
3 60.17091 24.94270 2 ChIJNX9BrM0LkkYRIM-cQg265e8
A google map can be made using the google_map()
function. Without any data present, or no location
value
set, the map will default to Melbourne, Australia.
You can also display traffic, transit (public transport) or bicycle
routes using the functions add_traffic()
,
add_transit()
and add_bicycling()
respectively.
You can also include a search box in your map by using the argument
search_box = TRUE
, which allows you to search the maps just
like you would when using Google Maps.
map_key <- "your_api_key"
google_map(key = map_key, search_box = T) %>%
add_traffic()
Markers and circles can be used to show points on the map.
In this example I’m using the tram_stops
data set
provided with googleway.
You can specify a column in the data.frame to use to populate a popup
info_window
that will be displayed when clicking on a
maker. The info window can display any valid HTML, as demonstrated in this Stack Overflow
answer.
df <- tram_stops
df$info <- paste0("<b>Stop Name: </b>", df$stop_name)
map_key <- "your_api_key"
google_map(data = df, key = map_key) %>%
add_markers(lat = "stop_lat", lon = "stop_lon", info_window = "info")
You can create a heatmap using Google’s Heatlayer.
google_map(data = tram_stops, key = map_key) %>%
add_heatmap(lat = "stop_lat", lon = "stop_lon", option_radius = 0.0025)
There are a few options you can configure to change how the heatmap is plotted, for example changing the colours, and weight associated with each point in the data set
## the colours can be any of those given by colors()
tram_stops$weight <- 1:nrow(tram_stops)
google_map(data = tram_stops, key = map_key) %>%
add_heatmap(lat = "stop_lat", lon = "stop_lon", option_radius = 0.0025,
weight = 'weight',
option_gradient = c("plum1", "purple1", "peachpuff"))
Polylines in Google Maps are formed from a set of latitude/longitude coordinates, encoded into a polyline string.
Both the add_polylines()
and add_polygons()
functions in googleway can plot the encoded polyline to save the amount
of data set to the browser. (They can also plot coordinates, but this is
often slower).
To draw a line on a map you use the add_polylines()
function. This function takes a data.frame with at least one column of
data containing the polylines, or two columns containing the series of
lat/lon coordinates.
Here we can plot the polyline we generated earlier from querying the directions from Melbourne to Sydney.
df <- data.frame(polyline = pl)
google_map(key = map_key) %>%
add_polylines(data = df, polyline = "polyline", stroke_weight = 9)
A polygon represents an area enclosed by one or more polylines. Holes are denoted by defining an inner path wound in the opposite direction to the outer path.
To draw a polygon on a map use the add_polygons()
function. This function takes a data.frame, where the polygons can be
specified in one of three ways
id
and pathId
value to specify
the polygon that each path belongs toid
value to specify
the polygon that each polyline representsThe melbourne
data set provided with
googleway
is a data.frame
of polygons of
Melbourne and the surrounding suburbs. The coordinates of the polygons
are encoded in to polylines.
## polygonId pathId SA2_NAME SA3_NAME SA4_NAME
## 386 338 1 Point Nepean Mornington Peninsula Mornington Peninsula
## 387 338 2 Point Nepean Mornington Peninsula Mornington Peninsula
## AREASQKM polyline
## 386 67.1875 `haiFgzjrZJMJBBRIJMCCQ
## 387 67.1875 z{biFyqlrZARO@SUTOB@JL
Plotting this data is done using add_polygons()
google_map(key = "your_api_key") %>%
add_polygons(data = melbourne, polyline = "polyline", fill_colour = "SA4_NAME")
In this example I’ve specified the fill_colour
to be one
of the columns of the melbourne
data set. The plotting
functions in googleway
will map the variables in the column
to a given colour. The default colour scale is taken from
viridisLite::viridis()
.
Where applicable the map layer functions provide two arguments that you can use to plot colours
fill_colour
(for colouring an area)stroke_colour
(for colouring a line / outline of an
area)Each of those arguments can be mapped to a column of data (as in the Polygon example), or if you want to use your own colours you can either
palette
argumentgoogle_map(key = "your_api_key") %>%
add_polygons(data = melbourne, polyline = "polyline", fill_colour = "SA4_NAME", palette = viridisLite::inferno)
colours <- RColorBrewer::brewer.pal(9, "Set1")
melbourne$randomColour <- sample(colours, size = nrow(melbourne), replace = T)
google_map(key = "your_api_key") %>%
add_polygons(data = melbourne, polyline = "polyline", fill_colour = "randomColour")
fill_colour
or stroke_colour
to colour all shapes the same colourgoogle_map(key = "your_api_key") %>%
add_polygons(data = melbourne, polyline = "polyline", fill_colour = "#FF00FF")
Setting legend = TRUE
will give you a legend
google_map(key = "your_api_key") %>%
add_polygons(data = melbourne, polyline = "polyline", fill_colour = "SA4_NAME", legend = T)
You can customise the legend by supplying any of the arguments in a
list to the legend_options
argument
If you are displaying two legends, one for stroke_colour
and one for fill_colour
, you can specify different options
for the different colour attributes
legendOpts <- list(
fill_colour = list(position = "TOP_RIGHT"),
stroke_colour = list(position = "BOTTOM_LEFT", title = "SA3")
)
google_map(key = "your_api_key") %>%
add_polygons(data = melbourne, polyline = "polyline", fill_colour = "SA4_NAME", stroke_colour = "SA3_NAME", legend = T, legend_options = legendOpts)
googleway
supports plotting certain geometries from
sf
objects (from library(sf)
)
add_markers()
and
add_circles()
add_polylines()
add_polygons()
This example uses and plots the polygons from the North Carolina data
set supplied with library(sf)
library(sf)
nc <- sf::st_read(system.file("shape/nc.shp", package="sf"))
google_map(data = nc) %>%
add_polygons()
If the sf
objects contains multiple geometries, you can
also use the various add_*
functions to add specific rows
of the sf
object. The mapping between the functions and the
sf
objects is
add_markers()
- POINT & MULTIPOINTadd_circles()
- POINT & MULTIPOINTadd_polylines()
- LINESTRING & MULTILINESTRINGadd_polygons()
- POLYGON & MULTIPOLYGONdf <- data.frame(myId = c(1,1,1,1,1,1,1,1,2,2,2,2),
lineId = c(1,1,1,1,2,2,2,2,1,1,1,2),
lon = c(-80.190, -66.118, -64.757, -80.190, -70.579, -67.514, -66.668, -70.579, -70, -49, -51, -70),
lat = c(26.774, 18.466, 32.321, 26.774, 28.745, 29.570, 27.339, 28.745, 22, 23, 22, 22))
p1 <- as.matrix(df[4:1, c("lon", "lat")])
p2 <- as.matrix(df[8:5, c("lon", "lat")])
p3 <- as.matrix(df[9:12, c("lon", "lat")])
point <- sf::st_sfc(sf::st_point(x = c(df[1,"lon"], df[1,"lat"])))
multipoint <- sf::st_sfc(sf::st_multipoint(x = as.matrix(df[1:2, c("lon", "lat")])))
polygon <- sf::st_sfc(sf::st_polygon(x = list(p1, p2)))
linestring <- sf::st_sfc(sf::st_linestring(p3))
multilinestring <- sf::st_sfc(sf::st_multilinestring(list(p1, p2)))
multipolygon <- sf::st_sfc(sf::st_multipolygon(x = list(list(p1, p2), list(p3))))
sf <- rbind(
sf::st_sf(geometry = polygon),
sf::st_sf(geometry = multipolygon),
sf::st_sf(geometry = multilinestring),
sf::st_sf(geometry = linestring),
sf::st_sf(geometry = point),
sf::st_sf(geometry = multipoint)
)
google_map(data = sf) %>%
add_markers() %>%
add_polylines()
The geo_melbourne
data set is a GeoJSON representation
of a subset of the melbourne
data set. You can use
add_geojson
to plot this data
google_map() %>%
add_geojson(data = geo_melbourne)
By default add_geojson()
will apply any styles included
in the GeoJSON file. In the geo_melbourne
data you can see
the styles fillColor
, strokeColor
and
strokeWeight
## {"type":"FeatureCollection","features":[{"type":"Feature","properties":{"SA2_NAME":"Abbotsford","polygonId":70,"SA3_NAME":"Yarra","AREASQKM":1.7405,"fillColor":"#440154","strokeColor":"#440154","strokeWeight":1},"geometry":{"type":"Polygon","coordinates":[[[144.9925232,-37.8024902],[144.9926453,-37.
You can also supply a string of JSON to style all the features in the GeoJSON
style <- '{ "fillColor" : "green" , "strokeColor" : "black", "strokeWeight" : 0.5}'
google_map(key = "your_api_key") %>%
add_geojson(data = geo_melbourne, style = style)
Or you can use a named list to have the same effect
style <- list(fillColor = "red" , strokeColor = "blue", strokeWeight = 0.5)
google_map(key = "your_api_key") %>%
add_geojson(data = geo_melbourne, style = style)
The function add_dragdrop()
creates a map on to which
you can drag & drop a GeoJSON file. There is an example of this in
action on
my blog
Rectangles can be added by supplying north, east, south and west
coordinates to add_rectangles()
df <- data.frame(north = 33.685, south = 33.671, east = -116.234, west = -116.251)
google_map(key = "your_api_key") %>%
add_rectangles(data = df, north = 'north', south = 'south',
east = 'east', west = 'west')
You can create your own shapes on a map using
add_drawing()
. The shapes you can create are
This can be particularly useful when working with shiny
as the shape information can be returned when drawing is completed.
For example, use the following code to create a shiny that enables drawing circles.
library(shiny)
ui <- fluidPage(
google_mapOutput(outputId = "map", height = "800px")
)
server <- function(input, output){
mapKey <- "your_map_key"
output$map <- renderGoogle_map({
google_map(key = mapKey) %>%
add_drawing(drawing_modes = c("circle"))
})
observeEvent(input$map_circlecomplete, {
print(input$map_circlecomplete)
})
}
shinyApp(ui, server)
When a circle is drawin, the
print(input$map_circlecomplete)
function prints the
following information to the console (it will vary based on where you
draw the circle)
$center
$center$lat
[1] -36.80489
$center$lng
[1] 144.2889
$radius
[1] 57970.9
$bounds
$bounds$south
[1] -37.32565
$bounds$west
[1] 143.6385
$bounds$north
[1] -36.28413
$bounds$east
[1] 144.9393
$randomValue
[1] 0.3688953
The add_kml()
function renders KML and GeoRSS elements
on a Google Map. All you need to specify is a URL containing the kml
data.
kmlUrl <- 'https://googlemaps.github.io/js-v2-samples/ggeoxml/cta.kml'
google_map(key = "your_api_key") %>%
add_kml(kml_url = kmlUrl)
Overalys are objects on the map that are tied to latitude/longitude coordinates, so they move when you drag or zoom the map.
You need to supply the lat/lon coordinates to the north (lat), south (lat), east (lon) and west (lon) arguments, and a URL to the overlay.
google_map(key = "your_api_key") %>%
add_overlay(north = 40.773941, south = 40.712216, east = -74.12544, west = -74.22655,
overlay_url = "https://www.lib.utexas.edu/maps/historical/newark_nj_1922.jpg")
As google_map()
is an HTMLWidget
, it
inherently works in Shiny. As with all shiny apps the
two functions you need to include are
renderGoogle_map()
(in the UI)google_mapOutput()
(in the server)The simplest app can be built with
library(shiny)
ui <- fluidPage(
google_mapOutput(outputId = "map")
)
server <- function(input, output){
map_key <- 'your_api_key'
output$map <- renderGoogle_map({
google_map(key = map_key)
})
}
shinyApp(ui, server)
But, of course, this isn’t very interesting.
You can use all the standard add_*
functions that have
already been discussed to add various shapes and layers. But there’s
also various clear_*
and update_*
functions
that let you update those shapes and layers dynamically within the shiny
app.
The clear_*
functions are designed to remove objects
from the app.
The update_*
functions are designed to update those
objects that are already on the map. This is useful for when you want to
update existing polylines, polygons, rectangles, circles and
markers.
library(shiny)
ui <- fluidPage(
sliderInput(inputId = "opacity", label = "opacity", min = 0, max = 1,
step = 0.01, value = 1),
google_mapOutput(outputId = "map")
)
server <- function(input, output){
map_key <- 'your_api_key'
output$map <- renderGoogle_map({
google_map(key = map_key) %>%
add_polygons(data = melbourne, id = "polygonId", pathId = "pathId",
polyline = "polyline", fill_opacity = 1)
})
## observe the opacity slider changing
observeEvent(input$opacity, {
melbourne$opacity <- input$opacity
google_map_update(map_id = "map") %>%
update_polygons(data = melbourne, fill_opacity = "opacity", id = "polygonId")
})
}
shinyApp(ui, server)
Note that to use the udpate_*
functions you need to
provide the id
of the object you want to update.
The exception to the update_*
functions is
update_heatmap()
, which allows you to both add and remove
points from the heat layer.
library(shiny)
ui <- fluidPage(
sliderInput(inputId = "sample", label = "sample", min = 1, max = 10,
step = 1, value = 10),
google_mapOutput(outputId = "map")
)
server <- function(input, output){
#map_key <- 'your_api_key'
set.seed(20170417)
df <- tram_route[sample(1:nrow(tram_route), size = 10 * 100, replace = T), ]
output$map <- renderGoogle_map({
google_map(key = map_key) %>%
add_heatmap(data = df, lat = "shape_pt_lat", lon = "shape_pt_lon",
option_radius = 0.001)
})
observeEvent(input$sample,{
df <- tram_route[sample(1:nrow(tram_route), size = input$sample * 100, replace = T), ]
google_map_update(map_id = "map") %>%
update_heatmap(data = df, lat = "shape_pt_lat", lon = "shape_pt_lon")
})
}
shinyApp(ui, server)
One of the more powerful features of googleway
mapping
is the ability to return data from the maps to R using Shiny.
Data can be returned using
Within the google_map()
call you can pass one of two
values to the event_return_type
argument, “list” or “json”.
This controls the type of data structure returned back to R from
Shiny.
Data can be retrieved from the map by clicking on it and “observing” the clicks.
The structure of the observed event is
input$<map_id>_map_click
where
<map_id>
is the id of the output map element (see
example)map_click
is the event being observedlibrary(shiny)
ui <- fluidPage(
google_mapOutput('myMap')
)
server <- function(input, output){
output$myMap <- renderGoogle_map({
google_map(key = "your_api_key", event_return_type = "list")
})
observeEvent(input$myMap_map_click, {
print(input$myMap_map_click)
})
}
shinyApp(ui, server)
Clicking on the map in this example will return the following fields
$id
[1] "myMap"
$lat
[1] -37.68382
$lon
[1] 145.08
$centerLat
[1] -37.9
$centerLon
[1] 144.5
$zoom
[1] 8
$randomValue
[1] 0.4043373
Similarly, observing input$myMap_bounds_changed
will
observe panning the map, and input$myMap_zoom_changed
will
observe zooming the map.
Data can be retrieved from shapes by clicking on them and “observing” the clicks.
The structure of the observed event is
input$<map_id>_<shape>_click
where
<map_id>
is the id of the output map element (see
example)<shape>
is the shape being clicked (e.g. polygon,
polyline, circle, etc)click
is the event being observedlibrary(shiny)
ui <- fluidPage(
google_mapOutput('map')
)
server <- function(input, output){
output$map <- renderGoogle_map({
google_map(key = "your_api_key", event_return_type = "list") %>%
add_polygons(data = melbourne, polyline = "polyline")
})
observeEvent(input$map_polygon_click, {
print(input$map_polygon_click)
})
}
shinyApp(ui, server)
Clicking on one of the polygons in this example will return the fields
$id
[1] 22
$lat
[1] -38.16911
$lon
[1] 144.6872
$outerPath
[1] "dlsgFyduq..." ## truncated
$allPaths
$allPaths[[1]]
[1] "dlsgFyduqZ..." ## truncated
$randomValue
[1] 0.5917599
$layerId
[1] "defaultLayerId"
The shape layers that have a editable
argument also
return data when the shape is edited.
In this case you would observe
input$<map_id>_<shape>_edited
Similarly, when shapes are dragged you would observe
input$<map_id>_<shape>_dragged
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.