The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

1 Demonstration of googleVis

It may take a little while to load all charts. Please be patient. All charts require an Internet connection.

These examples are taken from the googleVis demo. You can execute the demo via

library(googleVis)
demo(googleVis)

For more details about the charts and further examples see the help files of the individual googleVis function and review the Google Charts API documentation and Terms of Service.

1.1 Line chart

df=data.frame(country=c("US", "GB", "BR"), 
              val1=c(10,13,14), 
              val2=c(23,12,32))
Line <- gvisLineChart(df)
plot(Line)

1.1.1 Line chart with two axis

Line2 <- gvisLineChart(df, "country", c("val1","val2"),
                       options=list(
                         series="[{targetAxisIndex: 0},
                                 {targetAxisIndex:1}]",
                         vAxes="[{title:'val1'}, {title:'val2'}]"
                       ))
plot(Line2)

1.2 Bar chart

Bar <- gvisBarChart(df)
plot(Bar)

1.3 Column chart

Column <- gvisColumnChart(df)
plot(Column)

1.4 Area chart

Area <- gvisAreaChart(df)
plot(Area)

1.5 Stepped Area chart

SteppedArea <- gvisSteppedAreaChart(df, xvar="country", 
                                    yvar=c("val1", "val2"),
                                    options=list(isStacked=TRUE))
plot(SteppedArea)

1.6 Combo chart

Combo <- gvisComboChart(df, xvar="country",
                        yvar=c("val1", "val2"),
                        options=list(seriesType="bars",
                                     series='{1: {type:"line"}}'))
plot(Combo)

1.7 Scatter chart

Scatter <- gvisScatterChart(women, 
                            options=list(
                              legend="none",
                              lineWidth=2, pointSize=0,
                              title="Women", vAxis="{title:'weight (lbs)'}",
                              hAxis="{title:'height (in)'}", 
                              width=300, height=300))
plot(Scatter)

1.8 Bubble chart

Bubble <- gvisBubbleChart(Fruits, idvar="Fruit", 
                          xvar="Sales", yvar="Expenses",
                          colorvar="Year", sizevar="Profit",
                          options=list(
                            hAxis='{minValue:75, maxValue:125}'))
plot(Bubble)

1.8.1 Customizing Lines

Dashed <-  gvisLineChart(df, xvar="country", yvar=c("val1","val2"),
                        options=list(
                          series="[{color:'green', targetAxisIndex: 0, 
                          lineWidth: 1, lineDashStyle: [2, 2, 20, 2, 20, 2]}, 
                          {color: 'blue',targetAxisIndex: 1, 
                          lineWidth: 2, lineDashStyle: [4, 1]}]",
                          vAxes="[{title:'val1'}, {title:'val2'}]"
                        ))
plot(Dashed)

1.9 Customizing points

M <- matrix(nrow=6,ncol=6)
M[col(M)==row(M)] <- 1:6
dat <- data.frame(X=1:6, M)
SC <- gvisScatterChart(dat, 
                       options=list(
                         title="Customizing points",
                         legend="right",
                         pointSize=30,
                         series="{
                              0: { pointShape: 'circle' },
                              1: { pointShape: 'triangle' },
                              2: { pointShape: 'square' },
                              3: { pointShape: 'diamond' },
                              4: { pointShape: 'star' },
                              5: { pointShape: 'polygon' }
                              }"))
plot(SC)

1.9.1 Add edit button for on the fly customisation

Line4 <-  gvisLineChart(df, "country", c("val1","val2"),
                        options=list(gvis.editor="Edit me!"))
plot(Line4)

The same option is available for all other charts as well.

1.9.2 A chart with many options set

Line3 <-  gvisLineChart(df, xvar="country", yvar=c("val1","val2"),
                        options=list(
                          title="Hello World",
                          titleTextStyle="{color:'red', 
                                           fontName:'Courier', 
                                           fontSize:16}",                         
                          backgroundColor="#D3D3D3",                          
                          vAxis="{gridlines:{color:'red', count:3}}",
                          hAxis="{title:'Country', titleTextStyle:{color:'blue'}}",
                          series="[{color:'green', targetAxisIndex: 0}, 
                                   {color: 'orange',targetAxisIndex:1}]",
                          vAxes="[{title:'val1'}, {title:'val2'}]",
                          legend="bottom",
                          curveType="function",
                          width=500,
                          height=300                         
                        ))
plot(Line3)

1.10 Candlestick chart

Candle <- gvisCandlestickChart(OpenClose, 
                               options=list(legend='none'))
plot(Candle)

1.11 Pie chart

Pie <- gvisPieChart(CityPopularity)
plot(Pie)

1.12 Gauge

Gauge <-  gvisGauge(CityPopularity, 
                    options=list(min=0, max=800, greenFrom=500,
                                 greenTo=800, yellowFrom=300, yellowTo=500,
                                 redFrom=0, redTo=300, width=400, height=300))
plot(Gauge)

1.13 Geo Chart

Geo=gvisGeoChart(Exports, locationvar="Country", 
                 colorvar="Profit",
                 options=list(projection="kavrayskiy-vii"))
plot(Geo)

1.13.1 Example showing US data by state

require(datasets)
states <- data.frame(state.name, state.x77)
GeoStates <- gvisGeoChart(states, "state.name", "Illiteracy",
                          options=list(region="US", 
                                       displayMode="regions", 
                                       resolution="provinces",
                                       width=600, height=400))
plot(GeoStates)

1.13.2 Show Hurricane Andrew (1992) storm track with markers

GeoMarker <- gvisGeoChart(Andrew, "LatLong", 
                          sizevar='Speed_kt',
                          colorvar="Pressure_mb", 
                          options=list(region="US"))
plot(GeoMarker)

1.14 Table

Table <- gvisTable(Stock, 
                   formats=list(Value="#,###"))
plot(Table)

Click on the column header to sort the rows

1.14.1 Table with pages

PopTable <- gvisTable(Population, 
                      formats=list(Population="#,###",
                                   '% of World Population'='#.#%'),
                      options=list(page='enable'))
plot(PopTable)

1.15 Org chart

Org <- gvisOrgChart(Regions, 
                    options=list(width=600, height=250,
                                 size='large', allowCollapse=TRUE))
plot(Org)

Double click on a parent to collapse all its children.

1.16 Tree Map

Tree <- gvisTreeMap(Regions,  
                    "Region", "Parent", 
                    "Val", "Fac", 
                    options=list(fontSize=16))
plot(Tree)

Left mouse-click to drill down, right mouse-click to move up a level.

1.17 Annotation chart

Anno <- gvisAnnotationChart(Stock, 
                            datevar="Date",
                            numvar="Value", 
                            idvar="Device",
                            titlevar="Title", 
                            annotationvar="Annotation",
                            options=list(
                              width=600, height=350,
                              fill=10, displayExactValues=TRUE,
                              colors="['#0000ff','#00ff00']")
)
plot(Anno)

1.18 Sankey chart

datSK <- data.frame(From=c(rep("A",3), rep("B", 3)),
                    To=c(rep(c("X", "Y", "Z"),2)),
                    Weight=c(5,7,6,2,9,4))

Sankey <- gvisSankey(datSK, from="From", to="To", weight="Weight",
                     options=list(
                       sankey="{link: {color: { fill: '#d799ae' } },
                            node: { color: { fill: '#a61d4c' },
                            label: { color: '#871b47' } }}"))
plot(Sankey)

1.19 Histogram

set.seed(123)
datHist=data.frame(A=rpois(100, 20),
                   B=rpois(100, 5),
                   C=rpois(100, 50))

Hist <- gvisHistogram(datHist, options=list(
  legend="{ position: 'top', maxLines: 2 }",
  colors="['#5C3292', '#1A8763', '#871B47']",
  width=400, height=360))
plot(Hist)

1.20 Calendar chart

Cal <- gvisCalendar(Cairo, 
                    datevar="Date", 
                    numvar="Temp",
                    options=list(
                      title="Daily temperature in Cairo",
                      height=320,
                      calendar="{yearLabel: { fontName: 'Times-Roman',
                               fontSize: 32, color: '#1A8763', bold: true},
                               cellSize: 10,
                               cellColor: { stroke: 'red', strokeOpacity: 0.2 },
                               focusedCellColor: {stroke:'red'}}")
)
plot(Cal)

1.21 Timeline chart

datTL <- data.frame(Position=c(rep("President", 3), rep("Vice", 3)),
                    Name=c("Washington", "Adams", "Jefferson",
                           "Adams", "Jefferson", "Burr"),
                    start=as.Date(x=rep(c("1789-03-29", "1797-02-03", 
                                          "1801-02-03"),2)),
                    end=as.Date(x=rep(c("1797-02-03", "1801-02-03", 
                                        "1809-02-03"),2)))

Timeline <- gvisTimeline(data=datTL, 
                         rowlabel="Name",
                         barlabel="Position",
                         start="start", 
                         end="end",
                         options=list(timeline="{groupByRowLabel:false}",
                                      backgroundColor='#ffd', 
                                      height=350,
                                      colors="['#cbb69d', '#603913', '#c69c6e']"))
plot(Timeline)

1.22 Gantt chart

daysToMilliseconds <- function(days){
  days * 24 * 60 * 60 * 1000
}

dat <- data.frame(
  taskID = c("Research", "Write", "Cite", "Complete", "Outline"),
  taskName = c("Find sources", "Write Paper",  "Create bibliography", "Hand in paper", "Outline paper"),
  resource = c(NA, "write", "write", "complete", "write"),
  start = c(as.Date("2015-01-01"), NA, NA, NA, NA),
  end = as.Date(c("2015-01-05", "2015-01-09", "2015-01-07", "2015-01-10", "2015-01-06")),
  duration = c(NA, daysToMilliseconds(c(3, 1, 1, 1))),
  percentComplete = c(100, 25, 20, 0, 100),
  dependencies = c(NA, "Research, Outline", "Research", "Cite, Write", "Research")
)

gntt <- gvisGantt(dat, taskID = "taskID",
                  taskName = "taskName", 
                  resource = "resource",
                  start = "start",
                  end = "end", 
                  duration = "duration",
                  percentComplete = "percentComplete",
                  dependencies = "dependencies",
                  options = list(height = '300',
                                 width = 'auto'))

plot(gntt)

1.23 Word tree chart

wt1 <- gvisWordTree(Cats, textvar = "Phrase")
plot(wt1)

1.24 Merging charts

G <- gvisGeoChart(Exports, "Country", "Profit", 
                  options=list(width=300, height=300))
T <- gvisTable(Exports, 
               options=list(width=220, height=300))

GT <- gvisMerge(G,T, horizontal=TRUE) 
plot(GT)

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.