The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
A fast and light-weight implementation of Google’s polyline encoding algorithm.
Polyline encoding is a lossy compression algorithm that allows you to store a series of coordinates as a single string.
From CRAN
install.packages("googlePolylines")From github (dev version)
remotes::install_github("SymbolixAU/googlePolylines")Because googlePolylines uses Google’s polyline encoding
algorithm, all functions assume Google Web Mercator projection (WSG 84 /
EPSG:3857 / EPSG:900913) for inputs and outputs. Objects that use other
projections should be re-projected into EPSG:3857 before using these
functions.
googlePolylines supports Simple Feature objects (from
library(sf)), data.frames, and vectors of
lon/lat coordinates.
Supported sf types
googlePolylines contains functions to encode coordinates
into polylines, and also to parse polylines to and from well-known text
format.
encodelibrary(googlePolylines)
library(sf)
# create data
df <- data.frame(myId = c(1,1,1,1,1,1,1,1,2,2,2,2),
lineId = c(1,1,1,1,2,2,2,2,1,1,1,2),
lon = c(-80.190, -66.118, -64.757, -80.190, -70.579, -67.514, -66.668, -70.579, -70, -49, -51, -70),
lat = c(26.774, 18.466, 32.321, 26.774, 28.745, 29.570, 27.339, 28.745, 22, 23, 22, 22))
p1 <- as.matrix(df[1:4, c("lon", "lat")])
p2 <- as.matrix(df[5:8, c("lon", "lat")])
p3 <- as.matrix(df[9:12, c("lon", "lat")])
# create `sf` collections
point <- sf::st_sfc(sf::st_point(x = c(df[1,"lon"], df[1,"lat"])))
multipoint <- sf::st_sfc(sf::st_multipoint(x = as.matrix(df[1:2, c("lon", "lat")])))
polygon <- sf::st_sfc(sf::st_polygon(x = list(p1, p2)))
linestring <- sf::st_sfc(sf::st_linestring(p3))
multilinestring <- sf::st_sfc(sf::st_multilinestring(list(p1, p2)))
multipolygon <- sf::st_sfc(sf::st_multipolygon(x = list(list(p1, p2), list(p3))))
# combine all types into one collection
sf <- rbind(
sf::st_sf(geo = polygon),
sf::st_sf(geo = multilinestring),
sf::st_sf(geo = linestring),
sf::st_sf(geo = point),
sf::st_sf(geo = multipoint)
)
sf
# Simple feature collection with 5 features and 0 fields
# geometry type: GEOMETRY
# dimension: XY
# bbox: xmin: -80.19 ymin: 18.466 xmax: -49 ymax: 32.321
# epsg (SRID): NA
# proj4string: NA
# geo
# 1 POLYGON ((-80.19 26.774, -6...
# 2 MULTILINESTRING ((-80.19 26...
# 3 LINESTRING (-70 22, -49 23,...
# 4 POINT (-80.19 26.774)
# 5 MULTIPOINT (-80.19 26.774, ...
# encode sf objects
encode(sf)
geo
# 1 POLYGON: ohlbDnbmhN~suq@am{tA...
# 2 MULTILINESTRING: ohlbDnbmhN~suq@am{tA...
# 3 LINESTRING: _{geC~zfjL_ibE_qd_C~...
# 4 POINT: ohlbDnbmhN...
# 5 MULTIPOINT: ohlbDnbmhN...
# encode data frame as a list of points
encode(df)
# [1] "ohlbDnbmhN~suq@am{tAw`qsAeyhGvkz`@fge}Aw}_Kycty@gc`DesuQvvrLofdDorqGtzzVfkdh@uapB_ibE_qd_C~hbE~reK?~|}rB"
enc <- encode(sf)
wkt <- polyline_wkt(enc)
wkt
geo
# 1 POLYGON ((-80.19 26.774, -66.1...
# 2 MULTILINESTRING ((-80.19 26.77...
# 3 LINESTRING (-70 22, -49 23, -5...
# 4 POINT (-80.19 26.774)...
# 5 MULTIPOINT ((-80.19 26.774),(-...enc2 <- wkt_polyline(wkt)Encoding coordinates into polylines reduces the size of objects and can increase the speed in plotting Google Maps and Mapdeck
library(sf)
library(geojsonsf)
sf <- geojsonsf::geojson_sf("https://raw.githubusercontent.com/SymbolixAU/data/master/geojson/SA1_2016_VIC.json")
encoded <- encode(sf, FALSE)
encodedLite <- encode(sf, TRUE)
vapply(mget(c('sf', 'encoded', 'encodedLite') ), function(x) { format(object.size(x), units = "Kb") }, '')
# sf encoded encodedLite
# "38750.7 Kb" "14707.9 Kb" "9649.8 Kb"library(microbenchmark)
library(sf)
library(geojsonsf)
library(leaflet)
library(googleway)
library(mapdeck)
sf <- geojsonsf::geojson_sf("https://raw.githubusercontent.com/SymbolixAU/data/master/geojson/SA1_2016_VIC.json")
microbenchmark(
google = {
## you need a Google Map API key to use this function
google_map(key = mapKey) %>%
add_polygons(data = sf)
},
mapdeck = {
mapdeck(token = mapKey) %>%
add_polygon(data = sf)
},
leaflet = {
leaflet(sf) %>%
addTiles() %>%
addPolygons()
},
times = 25
)
# Unit: milliseconds
# expr min lq mean median uq max neval
# google 530.4193 578.3035 644.9472 606.3328 726.4577 897.9064 25
# mapdeck 527.7255 577.2322 628.5800 600.7449 682.2697 792.8950 25
# leaflet 3247.3318 3445.6265 3554.7433 3521.6720 3654.1177 4109.6708 25
These benchmarks don’t account for the time taken for the browswer to render the maps
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.