The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
# define some function for plotting
ellipse <- function(hlaxa = 1, hlaxb = 1, theta = 0, xc = 0, yc = 0, newplot = F, npoints = 100, fill = F, fillColor = "black", ...) {
a <- seq(0, 2 * pi, length = npoints + 1)
x <- hlaxa * cos(a)
y <- hlaxb * sin(a)
alpha <- angle(x, y)
rad <- sqrt(x^2 + y^2)
xp <- rad * cos(alpha + theta) + xc
yp <- rad * sin(alpha + theta) + yc
if (newplot) {
plot(xp, yp, type = "l", ...)
} else {
lines(xp, yp, ...)
if (fill == T) {
polygon(xp, yp, border = F, col = fillColor)
}
}
invisible()
}
angle <- function(x, y) {
angle2 <- function(xy) {
x <- xy[1]
y <- xy[2]
if (x > 0) {
atan(y / x)
} else {
if (x < 0 & y != 0) {
atan(y / x) + sign(y) * pi
} else {
if (x < 0 & y == 0) {
pi
} else {
if (y != 0) {
(sign(y) * pi) / 2
} else {
NA
}
}
}
}
}
apply(cbind(x, y), 1, angle2)
}
# define function to make color transparent
make_transparent <- function(colors, alpha = 0.5) {
# Ensure alpha is between 0 and 1
if (alpha < 0 || alpha > 1) {
stop("Alpha value must be between 0 and 1")
}
# Convert colors to RGB and add alpha
transparent_colors <- sapply(colors, function(col) {
rgb_val <- col2rgb(col) / 255
rgb(rgb_val[1], rgb_val[2], rgb_val[3], alpha = alpha)
})
return(transparent_colors)
}
# Estimate little network in France
all_station <- download_all_stations_ngl()
# download selected stations
selected_station <- c("BSCN", "CERN", "SCDA", "GLRA", "STPS")
selected_station <- c("BSCN")
# selected_station = c("BSCN")
df_network <- all_station %>% filter(station_name %in% selected_station)
df_network
## station_name latitude longitude height
## <char> <num> <num> <num>
## 1: BSCN 47.24688 -354.0106 359.5549
df_estimated_velocities <- data.frame(matrix(NA, nrow = dim(df_network)[1], ncol = 6))
for (station_index in seq_along(df_network$station_name)) {
station_name <- df_network$station_name[station_index]
# extract station
station_data <- download_station_ngl(station_name = station_name)
fit_N <- gmwmx2(station_data, n_seasonal = 2, component = "N", stochastic_model = "wn + pl")
fit_E <- gmwmx2(station_data, n_seasonal = 2, component = "E", stochastic_model = "wn + pl")
df_estimated_velocities[station_index, 1] <- station_name
df_estimated_velocities[station_index, 2:6] <- c(fit_N$beta_hat[2], fit_N$std_beta_hat[2], fit_E$beta_hat[2], fit_E$std_beta_hat[2], dim(fit_N$design_matrix_X)[1])
cat(paste0("Processing station ", station_name, " ", station_index, "/", length(df_network$station_name), "\n"))
}
## Processing station BSCN 1/1
colnames(df_estimated_velocities) <- c("station_name", "estimated_trend_N", "std_estimated_trend_N", "estimated_trend_E", "std_estimated_trend_E", "time_series_length")
df_estimated_velocities$estimated_trend_N_scaled <- df_estimated_velocities$estimated_trend_N * 365.25
df_estimated_velocities$std_estimated_trend_N_scaled <- df_estimated_velocities$std_estimated_trend_N * 365.25
df_estimated_velocities$estimated_trend_E_scaled <- df_estimated_velocities$estimated_trend_E * 365.25
df_estimated_velocities$std_estimated_trend_E_scaled <- df_estimated_velocities$std_estimated_trend_E * 365.25
# transform longitude
df_network$longitude2 <- ifelse(df_network$longitude < -180,
df_network$longitude + 360,
df_network$longitude
)
# merge with location
df_estimated_velocities_and_location <- dplyr::left_join(df_estimated_velocities, df_network, by = "station_name")
# print estimated North and East velocities
head(df_estimated_velocities)
## station_name estimated_trend_N std_estimated_trend_N estimated_trend_E
## 1 BSCN 4.435408e-05 3.191844e-07 5.345211e-05
## std_estimated_trend_E time_series_length estimated_trend_N_scaled
## 1 2.191117e-07 8059 0.01620033
## std_estimated_trend_N_scaled estimated_trend_E_scaled
## 1 0.0001165821 0.01952338
## std_estimated_trend_E_scaled
## 1 8.003053e-05
station_name | estimated_trend_N | std_estimated_trend_N | estimated_trend_E | std_estimated_trend_E | time_series_length | estimated_trend_N_scaled | std_estimated_trend_N_scaled | estimated_trend_E_scaled | std_estimated_trend_E_scaled |
---|---|---|---|---|---|---|---|---|---|
BSCN | 4.44e-05 | 3e-07 | 5.35e-05 | 2e-07 | 8059 | 0.0162003 | 0.0001166 | 0.0195234 | 8e-05 |
# load elevation data
tmp <- tempdir()
elevation_data_swiss <- geodata::elevation_30s(country = "Switzerland", path = tmp)
elevation_data_france <- geodata::elevation_30s(country = "France", path = tmp)
elevation_data_italy <- geodata::elevation_30s(country = "Italy", path = tmp)
# load raster
elevation_raster_swiss <- raster(elevation_data_swiss)
elevation_raster_france <- raster(elevation_data_france)
elevation_raster_italy <- raster(elevation_data_italy)
# create combined raster
combined_raster <- merge(
elevation_raster_swiss, elevation_raster_france,
elevation_raster_italy
)
# sett plot limits
xlims <- c(2, 7)
ylims <- c(44, 48)
# Custom color scale
custom_colors <- c(
"#33660059", "#33CB6659", "#BAE39159", "#FEDBB859", "#F2C98859",
"#E5B75859", "#D8A52759", "#A7991F59", "#A38F1959", "#A1851359", "#9E7B0D59", "#9B710759",
"#98660059", "#A1595959", "#B1767659", "#B6929259", "#C1AFAF59", "#CBCBCB59", "#E4E4E459", "#FEFEFE59"
)
# Define breaks for the color scale based on the raster values
raster_values <- values(combined_raster)
min_val <- min(raster_values, na.rm = TRUE)
max_val <- max(raster_values, na.rm = TRUE)
# Generate breaks based on the range of the raster data
num_colors <- length(custom_colors)
breaks <- seq(min_val, max_val, length.out = num_colors + 1)
# plot
plot(NA,
xlim = xlims, ylim = ylims, las = 1,
ylab = "", xlab = "",
xaxt = "n", yaxt = "n"
)
axis(side = 1, at = seq(0, 12, by = 2), labels = (paste0(seq(0, 12, by = 2), " E")))
axis(side = 2, at = seq(40, 50, by = 2), labels = (paste0(seq(40, 50, by = 2), " N")), las = 1)
# Plot the elevation data
raster::plot(combined_raster,
col = custom_colors,
# breaks=breaks,
add = TRUE, # Add to the existing plot
legend = FALSE
) # Disable default legend
# add axis
for (i in seq(-150, 150, by = 2)) {
abline(v = i, col = "grey80", lty = 5)
}
for (i in seq(-90, 90, by = 2)) {
abline(h = i, col = "grey80", lty = 5)
}
# add points for station data
points(df_network$longitude2, df_network$latitude, pch = 16)
# set param for graph
shift <- 0
scale_arrow <- 20
arrow_width <- .1
arrow_lwd <- 2
my_col <- c("#e96bff")
scale_ellipses <- 3500
my_col_trans <- make_transparent(my_col, alpha = .3)
for (i in seq(nrow(df_estimated_velocities_and_location))) {
ellipse(
hlaxa = as.numeric(df_estimated_velocities_and_location[i, "std_estimated_trend_E_scaled"]) * scale_ellipses,
hlaxb = as.numeric(df_estimated_velocities_and_location[i, "std_estimated_trend_N_scaled"]) * scale_ellipses,
theta = 0,
xc = as.numeric(df_estimated_velocities_and_location[i, "longitude2"]) + as.numeric(df_estimated_velocities_and_location[i, "estimated_trend_E_scaled"]) * scale_arrow,
yc = as.numeric(df_estimated_velocities_and_location[i, "latitude"]) + as.numeric(df_estimated_velocities_and_location[i, "estimated_trend_N_scaled"]) * scale_arrow,
fill = T,
fillColor = my_col_trans[1],
lw = 1,
col = my_col_trans[1]
)
x0 <- as.numeric(df_estimated_velocities_and_location[i, "longitude2"])
y0 <- as.numeric(df_estimated_velocities_and_location[i, "latitude"])
x1 <- as.numeric(df_estimated_velocities_and_location[i, "longitude2"] + df_estimated_velocities_and_location[i, "estimated_trend_E_scaled"] * scale_arrow)
y1 <- as.numeric(df_estimated_velocities_and_location[i, "latitude"] + df_estimated_velocities_and_location[i, "estimated_trend_N_scaled"] * scale_arrow)
shape::Arrows(
x0 = x0, y0 = y0, x1 = x1, y1 = y1,
col = my_col,
arr.type = "triangle",
arr.length = .10,
arr.width = arrow_width,
lwd = arrow_lwd
)
}
# add
text(
x = df_estimated_velocities_and_location$longitude2, y = df_estimated_velocities_and_location$latitude,
labels = df_estimated_velocities_and_location$station_name, pos = 3, cex = 0.8, col = "black"
)
# define cities
df_city <- tibble(address = c("Genève", "Clermont-Ferrand", "Dijon"))
# Load geolocalisation of cities
df_geo <- df_city %>%
geocode_combine(
queries = list(
list(method = "osm")
),
global_params = list(address = "address"),
cascade = FALSE
)
##
## Passing 3 addresses to the Nominatim single address geocoder
## Query completed in: 3 seconds
df_city_2 <- cbind(df_city, df_geo)
df_city_2$City <- df_city_2$address
# Add city to map
points(x = df_city_2$lon, y = df_city_2$lat, pch = 15, col = "black")
cex_size_city <- .7
for (i in seq(dim(df_city_2)[1])) {
text(
x = df_city_2$lon[i], y = df_city_2$lat[i],
labels = df_city_2$City[i],
adj = c(0, 2), col = "black",
cex = cex_size_city
)
}
# add a legend
twenty_mm_per_year <- .02
twenty_mm_per_year_mm_per_year_scaled <- twenty_mm_per_year * scale_arrow
x_start <- xlims[2] - 5
y <- ylims[1] + .3
segments(x0 = x_start, y0 = y, x1 = x_start + twenty_mm_per_year_mm_per_year_scaled, y1 = y)
delta_y <- .1
segments(x0 = x_start, x1 = x_start, y0 = y + delta_y, y1 = y - delta_y)
segments(x0 = x_start + twenty_mm_per_year_mm_per_year_scaled, x1 = x_start + twenty_mm_per_year_mm_per_year_scaled, y0 = y + delta_y, y1 = y - delta_y)
txt_size <- .8
text(
x = x_start + twenty_mm_per_year_mm_per_year_scaled / 2,
y = y + .1,
pos = 3, cex = txt_size,
labels = "20 mm/year"
)
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.