
Using stepreg

Walter K. Kremers, Mayo Clinic, Rochester MN

10 May 2024

The Package

The stepreg() and cv.stepreg() funcitons in the glmnetr package were written for convenience and stability as
opposed to speed or broad applicability. When fitting lasso models we wanted to compare these to standard
stepwise regression models. Keeping a more modern approach we tune by either number of terms included in
the model (James, Witten, Hastie and Tibshirani, An Introduction to Statistical Learning with applications
in R, 2nd ed., Springer, New York, 2021) or by the p critical value for model inclusion, as this too is a
common tuning parameter when fitting stepwise models.

When fitting lasso models we often use one-hot coding for predictor factors when setting up the design matrix.
This allows lasso to identify and add to the model a term for any one group that might be particularly different
from the others. By the penalty lasso stabilizes the model coefficients and keeps them from going to infinity,
while ridge will generally uniquely identify coefficients despite any strict collinearities.

Before writing this program we tried different available packages to fit stepwise models for the Cox repression
framework but all we tried had difficulties with numerical stability for the large and wide clinical datasets we
were working with, and which involved one-hot coding. There may well be a package that would be stable
for the data we were analyzing but we decided to write this small function to be able to tune for stability.

This program is slow but our goal was not for routine usage but to use the stepwise procedure on occasion
as a reference for the lasso models. For many clinical datasets the lasso clearly outperformed the step-
wise procedure, and ran much faster. For many simulated data sets with simplified covariance structures,
i.e. independence of the underlying predictors, the lasso did not appear to do much better than the stepwise
procedure tuned by number of model terms or p.

Data requirements

The data requirements for stepreg() and cv.stepreg() are similar to those of cv.glmnetr() and we refer to the
Using glmnetr vignette for a description.

An example dataset

To demonstrate usage of cv.stepreg we first generate a data set for analysis, run an analysis and evaluate.
Following the Using glmnetr vignette, the code

# Simulate data for use in an example survival model fit
# first, optionally, assign a seed for random number generation to get applicable results
set.seed(116291950)
simdata=glmnetr.simdata(nrows=1000, ncols=100, beta=NULL)
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generates simulated data for analysis. We extract data in the format required for input to the cv.stepreg
(and glmnetr) programs.

# Extract simulated survival data
xs = simdata$xs # matrix of predictors
y_ = simdata$yt # vector of survival times
event = simdata$event # indicator of event vs. censoring

Inspecting the predictor matrix we see

# Check the sample size and number of predictors
print(dim(xs))

## [1] 1000 100

# Check the rank of the design matrix, i.e. the degrees of freedom in the predictors
Matrix::rankMatrix(xs)[[1]]

## [1] 94

# Inspect the first few rows and some select columns
print(round(xs[1:10,c(1:12,18:20)],digits=6))

## X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X18 X19 X20
## [1,] 1 0 0 0 1 0 1 0 0 0 0 0 -1.208898 0.056971 -0.565631
## [2,] 1 1 0 0 0 0 0 0 1 0 0 0 0.395354 0.427313 0.185235
## [3,] 1 0 0 1 0 1 0 0 0 0 0 0 1.044608 -0.746960 0.964274
## [4,] 1 1 0 0 0 0 0 1 0 0 0 0 0.028859 -1.277651 0.203243
## [5,] 1 0 0 1 0 1 0 0 0 0 0 0 -1.205172 -1.287454 -1.698229
## [6,] 1 0 0 0 1 0 1 0 0 0 0 0 -1.158210 -0.068841 1.458800
## [7,] 1 0 0 0 1 0 0 0 1 0 0 0 0.151713 1.095396 1.476831
## [8,] 1 0 0 1 0 0 1 0 0 0 0 0 -0.139246 -0.424550 0.073340
## [9,] 1 1 0 0 0 0 0 1 0 0 0 0 -0.069326 0.172792 1.039656
## [10,] 1 0 0 1 0 0 1 0 0 0 0 0 0.677420 1.185946 -1.473551

Cross validation (CV) informed stepwise model fit

To fit stepwise regression models where the number of model terms are informed by cross validation to select
df, the number of model terms, and p, the entry threshold, we can use the function cv.stepreg() function.

# Fit a relaxed lasso model informed by cross validation
cv.stepwise.fit = cv.stepreg(xs,NULL,y_,event,family="cox",folds_n=5,steps_n=30,track=0)

Note, in the derivation of the stepwise regression models, individual coefficients may be unstable even when
the model may be stable which elicits warning messages. Thus we “wrapped” the call to cv.stepreg() within
the suppressWarnings() function to suppress excessive warning messages in this vignette. The first term in
the call to cv.stepreg(), xs, is the design matrix for predictors. The second input term, here NULL, is for
the start time in case (start, stop) time data setup is used in a Cox survival model. The third term is the
outcome variable for the linear regression or logistic regression model and the time of event or censoring in
case of the Cox model, and finally the forth term is the event indicator variable for the Cox model taking
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the value 1 in case of an event or 0 in case of censoring at time y_. The forth term would be NULL for
either linear or logistic regression. Currently the options for family are “guassian” for linear regression,
“binomial” for logistic regression (both using the stats glm() function) and “cox” for the Cox proportional
hazards regression model using the coxph() function of the R survival package. If one sets track=1 the
program will update progress in the R console. For track=0 it will not. To summarize the model fit and
inspect the coefficient estimates we use the summary() function.

# summarize model fit ...
summary(cv.stepwise.fit)

##
## CV best df = 16, CV best p enter = 0.01 for 16 predictors
## in the full data model, from 100 candidate predictors
##
## df loglik.null loglik pvalue concordance std X2
## 1 16 -3709.825 -3705.723 0.004178366 0.8796415 0.005219351 -2.544254
## 2 16 -3709.825 -3705.723 0.004178366 0.8796415 0.005219351 -2.544254
## X3 X7 X10 X11 X12 X14 X16
## 1 -0.4123862 -0.5812514 0.6538633 -0.4939628 0.4246715 -1.387424 -1.647604
## 2 -0.4123862 -0.5812514 0.6538633 -0.4939628 0.4246715 -1.387424 -1.647604
## X18 X19 X20 X21 X23 X24 X25
## 1 0.7966722 -1.150425 -0.4928893 -0.1818494 1.075441 0.7174526 -0.4877742
## 2 0.7966722 -1.150425 -0.4928893 -0.1818494 1.075441 0.7174526 -0.4877742
## X62
## 1 -0.1259569
## 2 -0.1259569

To extract beta’s or calculate predicteds we use the predict() function.

# get betas ...
betas = predict(cv.stepwise.fit)
t( betas[1:20,] )

## X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11
## df 0 -2.544254 -0.4123862 0 0 0 -0.5812514 0 0 0.6538633 -0.4939628
## p 0 -2.544254 -0.4123862 0 0 0 -0.5812514 0 0 0.6538633 -0.4939628
## X12 X13 X14 X15 X16 X17 X18 X19 X20
## df 0.4246715 0 -1.387424 0 -1.647604 0 0.7966722 -1.150425 -0.4928893
## p 0.4246715 0 -1.387424 0 -1.647604 0 0.7966722 -1.150425 -0.4928893

# predicteds ...
preds = predict(cv.stepwise.fit, xs)
t( preds[1:14,] )

## [,1] [,2] [,3] [,4] [,5] [,6] [,7]
## df -4.652185 -2.777916 -1.515435 -0.979273 0.3337369 -5.318352 -1.121909
## p -4.652185 -2.777916 -1.515435 -0.979273 0.3337369 -5.318352 -1.121909
## [,8] [,9] [,10] [,11] [,12] [,13] [,14]
## df -2.543347 -2.617922 -4.385983 -0.4020953 -4.200559 5.43046 -3.462096
## p -2.543347 -2.617922 -4.385983 -0.4020953 -4.200559 5.43046 -3.462096
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Nested cross validation

Because the values for lambda and gamma informed by CV are specifically chosen to give a best fit, model fit
statistics for the CV derived model will be biased. To address this one can perform a CV on the CV derived
estimates, that is a nested cross validation as argued for in SRDM (Simon R, Radmacher MD, Dobbin K,
McShane LM. Pitfalls in the Use of DNA Microarray Data for Diagnostic and Prognostic Classification. J
Natl Cancer Inst (2003) 95 (1): 14-18. https://academic.oup.com/jnci/article/95/1/14/2520188). This is
done here by the nested.glmnetr() function.

# A nested cross validation to evaluate a cross validation informed stepwise fit
#nested.cox.fit = nested.glmnetr(xs,NULL,y_,event,family="cox",
# dostep=1,doaic=1,folds_n=5,steps_n=30,track=0)
y_ = simdata$y_
nested.gau.fit = nested.glmnetr(xs,NULL,y_,NULL,family="gaussian",

dostep=1,doaic=1,folds_n=3,steps_n=30,track=1)

#names(nested.gau.fit)
summary(nested.gau.fit)

## Sample information including number of records, number of columns in
## design (predictor, X) matrix, and df (rank) of design matrix:
## family n xs.columns xs.df null.dev/n
## gaussian 1000 100 94 7.96
##
## For LASSO, Stepwise regression tuned by df and p, and AIC, average (Ave) model
## performance measures from the 3-fold (nested) cross validation are given together
## with naive summaries calculated using all data without cross validation
##
## Ave DevRat Ave Int Ave Slope Ave R-square Ave Non Zero
## LASSO min 0.8705 -0.0407 1.0317 0.8715 51.3333
## LASSO minR 0.8687 -0.0107 1.0157 0.8696 29.3333
## LASSO minR.G0 0.8704 0.0051 0.9989 0.8707 13.3333
## Ridge 0.8539 -0.1241 1.0979 0.8608 99.0000
## Naive DevRat Naive R-square Non Zero
## LASSO min 0.8863 0.9420 51
## LASSO minR 0.8769 0.9364 13
## LASSO minR.G0 0.8769 0.9364 13
## Ridge 0.8919 0.9448 99
##
## Ave DevRat Ave Int Ave Slope Ave R-square Ave Non Zero
## Stepwise df tuned 0.8671 0.0052 0.9940 0.8674 16.6667
## Stepwise p tuned 0.8627 0.0282 0.9839 0.8631 24.0000
## Stepwise AIC 0.8629 0.0293 0.9803 0.8632 30.0000
## Naive DevRat Naive R-square Non Zero
## Stepwise df tuned 0.8827 0.9395 19
## Stepwise p tuned 0.8833 0.9399 20
## Stepwise AIC 0.8878 0.9422 30

For this example we use 3 folds. We would generally using between 5 or 10 folds in practice, to get reasonable
run times and to better allow variability in variable selection.

Before providing analysis results the output first reports sample size and since this is for a Cox regression, the
number of events, followed by the number of predictors and the df (degrees of freedom) of the design matrix,
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as well as some information on “Tuning parameters” to compare the lasso model with stepwise procedures
as described in JWHT (James, Witten, Hastie and Tibshirani, An Introduction to Statistical Learning with
applications in R, Springer, New York, 2021). In general we have found in practice that the lasso performs
better.

Next are the nested cross validation results. First are the per record (or per event in case of the Cox model)
log-likelihoods which reflect the amount of information in each observation. Since we are not using large
sample theory to base inferences we feel the per record are more intuitive, and they allow comparisons between
datasets with unequal sample sizes. Next are the average number of model terms which reflect the complexity
of the different models, even if in a naive sense, followed by the agreement statistics, concordance or r-square.
These nested cross validated concordances should be essentially unbiased for the given design, unlike the
naive concordances where the same data are used to derive the model and calculate the concordances (see
SRDM).

In addition to evaluating the CV informed model fits using another layer of CV, the nested.glmnetr() function
does the CV fits based upon the whole data set. Here we see, not unexpectedly, that the concordances
estimated from the nested CV are slightly smaller than the concordances naively calculated using the original
dataset. Depending on the data the nested CV and naive agreement measures can be very similar or disparate.

Fit information for the CV fit can be gotten by extracting the object$cv.stepreg.fit object and calling the
summary() and predict() functions.

# Summary of a CV model fit from a nested CV output object
summary(nested.gau.fit$cv.stepreg.fit)

##
## CV best df = 19, CV best p enter = 0.03 for 20 predictors
## in the full data model, from 100 candidate predictors
##
## df loglik.null loglik pvalue rsquare rsquareadj Int X2
## 1 19 -2456.327 -1384.781 0.01532871 0.8827085 0.8804345 0.7934083 -2.374707
## 2 20 -2456.327 -1382.101 0.02060680 0.8833355 0.8809522 0.7951200 -2.373546
## X3 X4 X6 X8 X10 X12 X14
## 1 -0.2896507 0.3961826 0.5041838 0.2439999 0.7493202 0.4179345 -1.623983
## 2 -0.2901617 0.3946920 0.5111328 0.2397952 0.7451425 0.4111942 -1.624389
## X17 X18 X19 X20 X21 X23 X24
## 1 1.747628 0.8906858 -1.102188 -0.5406626 -0.1252505 1.090738 0.6988531
## 2 1.746315 0.8919730 -1.105330 -0.5425721 -0.1270239 1.090795 0.6985010
## X25 X28 X43 X62 X79
## 1 -0.4341470 0.07509635 0.00000000 -0.08267686 -0.07654123
## 2 -0.4287512 0.07668351 0.07283277 -0.08163437 -0.07438254

# get betas ...
betas = predict(nested.gau.fit$cv.stepreg.fit)
t( betas[1:10,] )

## Int X1 X2 X3 X4 X5 X6 X7 X8 X9
## df 0.7934083 0 -2.374707 -0.2896507 0.3961826 0 0.5041838 0 0.2439999 0
## p 0.7951200 0 -2.373546 -0.2901617 0.3946920 0 0.5111328 0 0.2397952 0

# get predicteds ...
preds = predict(nested.gau.fit$cv.stepreg.fit,xs)
t( preds[1:8,] )
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## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
## df -2.063766 -0.2322597 1.603771 1.830213 3.245500 -2.49770 1.462672 0.7644801
## p -2.130016 -0.1919559 1.643084 1.777001 3.244594 -2.48281 1.389711 0.6710150
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