The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
While glmmTMB
is primarily designed for maximum likelihood estimation (or restricted ML), there are certain situations where it is convenient to be able to add priors for particular parameters or sets of parameters, e.g.:
tmbstan
package as part of a fully Bayesian analysis (see below)See Banner, Irvine, and Rodhouse (2020) and Sarma and Kay (2020) for some opinions/discussion of priors.
When priors are specified, glmmTMB
will fit a maximum a posteriori (MAP) estimate. In other words, unlike most Bayesian estimate procedures that use Markov chain Monte Carlo to sample the entire parameter space and compute (typically) posterior mean or median value of the parameters, glmmTMB
will find the mode of the posterior distribution or the most likely value. The MAP estimate is theoretically less useful than the posterior mean or median, but is often a useful approximation.
One can apply tmbstan
to a fitted glmmTMB
model that specifies priors (see the MCMC vignette in order to get samples from the posterior distribution as in a more typical Bayesian analysis.
library(glmmTMB)
library(lme4)
library(blme)
library(broom.mixed)
library(purrr)
library(dplyr)
library(ggplot2)
theme_set(theme_bw())
OkIt <- unname(palette.colors(n = 8, palette = "Okabe-Ito"))[-1]
From Bolker (2015), an example where we can regularize nearly complete separation: see the more complete description here.
For comparison, we'll fit (1) unpenalized/prior-free glmer
and glmmTMB
models; (2) blme::bglmer()
, which adds a prior to a glmer
model; (3) glmmTMB
with priors.
We read the data and drop one observation that is identified as having an extremely large residual:
cdat <- readRDS(system.file("vignette_data", "culcita.rds", package = "glmmTMB"))
cdatx <- cdat[-20,]
Fit glmer
, glmmTMB
without priors, as well as a bglmer
model with regularizing priors (mean 0, SD 3, expressed as a 4 \(\times\) 4 diagonal covariance matrix with diagonal elements (variances) equal to 9:
form <- predation~ttt + (1 | block)
cmod_glmer <- glmer(form, data = cdatx, family = binomial)
cmod_glmmTMB <- glmmTMB(form, data = cdatx, family = binomial)
cmod_bglmer <- bglmer(form,
data = cdatx, family = binomial,
fixef.prior = normal(cov = diag(9, 4))
)
Specify the same priors for glmmTMB
: note that we have to specify regularizing priors for the intercept and the remaining fixed-effect priors separately
cprior <- data.frame(prior = rep("normal(0,3)", 2),
class = rep("fixef", 2),
coef = c("(Intercept)", ""))
print(cprior)
## prior class coef
## 1 normal(0,3) fixef (Intercept)
## 2 normal(0,3) fixef
cmod_glmmTMB_p <- update(cmod_glmmTMB, priors = cprior)
Check (approximate) equality of estimated coefficients:
stopifnot(all.equal(coef(summary(cmod_bglmer)),
coef(summary(cmod_glmmTMB_p))$cond,
tolerance = 5e-2))
Pack the models into a list and get the coefficients:
cmods <- ls(pattern = "cmod_[bg].*")
cmod_list <- mget(cmods) |> setNames(gsub("cmod_", "", cmods))
cres <- (purrr::map_dfr(cmod_list,
~ tidy(., conf.int = TRUE, effects = "fixed"),
.id = "model"
)
|> select(model, term, estimate, lwr = conf.low, upr = conf.high)
|> mutate(across(
model,
~ factor(., levels = c(
"glmer", "glmmTMB",
"glmmTMB_p", "bglmer"
))
))
)
ggplot(cres, aes(x = estimate, y = term, colour = model)) +
geom_pointrange(aes(xmin = lwr, xmax = upr),
position = position_dodge(width = 0.5)
) +
scale_colour_manual(values = OkIt)
Also from Bolker (2015):
gdat <- readRDS(system.file("vignette_data", "gophertortoise.rds", package = "glmmTMB"))
form <- shells~prev + offset(log(Area)) + factor(year) + (1 | Site)
gmod_glmer <- glmer(form, family = poisson, data = gdat)
## boundary (singular) fit: see help('isSingular')
gmod_bglmer <- bglmer(form, family = poisson, data = gdat)
## cov.prior = gamma(shape = 2.5, rate = 0, common.scale = TRUE, posterior.scale = "sd"))
gmod_glmmTMB <- glmmTMB(form, family = poisson, data = gdat) ## 1e-5
## bglmer default corresponds to gamma(Inf, 2.5)
gprior <- data.frame(prior = "gamma(1e8, 2.5)",
class = "ranef",
coef = "")
gmod_glmmTMB_p <- update(gmod_glmmTMB, priors = gprior)
vc1 <- c(VarCorr(gmod_glmmTMB_p)$cond$Site)
vc2 <- c(VarCorr(gmod_bglmer)$Site)
stopifnot(all.equal(vc1, vc2, tolerance = 5e-4))
Pack the models into a list and get the coefficients:
gmods <- ls(pattern = "gmod_[bg].*")
gmod_list <- mget(gmods) |> setNames(gsub("gmod_", "", gmods))
The code for extracting CIs is currently a little bit ugly (because profile confidence intervals aren't quite working for glmmTMB
objects with broom.mixed::tidy()
, and because profile CIs can be fussy in any case)
blme
defaults: Wishart(dim + 2.5), or gamma(2.5). For dim = 1 (scalar), Wishart(n) corresponds to chi-squared(n), or gamma(shape = n/2, scale = n/2). Chung et al propose gamma(2, Inf)
; not sure why blme
uses gamma(2.5)
instead? or if specified via Wishart, shape = 3.5 → gamma shape of 1.75?
up2date
might get annoying ...bglmer
profile CI failing (in broom.mixed
, but not externally?)blme
default priors_cor
or _sd
on the R side (will pick out sd-specific or cor-specific elements)It seems useful to use the API/user interface from brms
brms
has lots of downstream dependencies that glmmTMB
doesn't
rd <- \(x) tools::package_dependencies("brms", recursive = TRUE)[[x]]
## rd <- \(x) packrat:::recursivePackageDependencies(x, ignores = "", lib.loc = .libPaths()[1])
## not sure why packrat and tools get different answers, but difference
## doesn't matter much
brms_dep <- rd("brms")
glmmTMB_dep <- rd("glmmTMB")
length(setdiff(brms_dep, glmmTMB_dep))
## requires brms to evaluate, wanted to avoid putting it in Suggests: ...
bprior <- c(prior_string("normal(0,10)", class = "b"),
prior(normal(1,2), class = b, coef = treat),
prior_(~cauchy(0,2), class = ~sd,
group = ~subject, coef = ~Intercept))
str(bprior)
## Classes 'brmsprior' and 'data.frame': 3 obs. of 10 variables:
## $ prior : chr "normal(0,10)" "normal(1, 2)" "cauchy(0, 2)"
## $ class : chr "b" "b" "sd"
## $ coef : chr "" "treat" "Intercept"
## $ group : chr "" "" "subject"
## $ resp : chr "" "" ""
## $ dpar : chr "" "" ""
## $ nlpar : chr "" "" ""
## $ lb : chr NA NA NA
## $ ub : chr NA NA NA
## $ source: chr "user" "user" "user"
We probably only need to pay attention to the columns prior
, class
, coef
, group
. For our purposes, prior
is the name and parameters; class
will be the name of the parameter vector; coef
will specify an index within the vector (could be a number or name?)
TMB
-side data structure:
enum
, .valid_priors
: see make-enum
in the Makefileprior_p1
, prior_p2
, prior_p3
(do any prior families have more than two parameters? What about non-scalar parameters, e.g. Wishart priors ... ???)enum
?) (beta
, theta
, thetaf
... b
?)each index (corresponding to coef
) is scalar, either NA (prior over all elements) or integer (a specific element)
new loop after loglik loop to add (negative log-)prior components: loop over prior spec
add theta_corr
, theta_sd
as enum options (synonyms: ranef_corr
, ranef_sd
) to specify penalizing only SD vector or only corr vector from a particular element?
colnames(X)
of corresponding componenttheta
vectorranef_corr
, ranef_sd
: find indices ... (depends on RE structure)
Bolker, Benjamin M. 2015. “Linear and Generalized Linear Mixed Models.” In Ecological Statistics: Contemporary Theory and Application, edited by Gordon A. Fox, Simoneta Negrete-Yankelevich, and Vinicio J. Sosa. Oxford University Press.
Chung, Yeojin, Sophia Rabe-Hesketh, Vincent Dorie, Andrew Gelman, and Jingchen Liu. 2013. “A Nondegenerate Penalized Likelihood Estimator for Variance Parameters in Multilevel Models.” Psychometrika 78 (4): 685–709. doi:10.1007/s11336-013-9328-2.
Sarma, Abhraneel, and Matthew Kay. 2020. “Prior Setting in Practice: Strategies and Rationales Used in Choosing Prior Distributions for Bayesian Analysis.” In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, 1–12. CHI ’20. New York, NY, USA: Association for Computing Machinery. doi:10.1145/3313831.3376377.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.