The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
The aim of this package is to model gene expression with a general
linear mixed model (GLMM) as described in the R4RA study [1]. The most
widely used mainstream differential gene expression analysis tools (e.g
Limma, DESeq2, edgeR) are all
unable to fit mixed effects linear models. This package however fits
negative binomial mixed effects models at individual gene level using
the negative.binomial
function from MASS
and
the glmer
function in lme4
which enables random effect, as as well as mixed effects, to be
modelled.
install.packages("glmmSeq")
devtools::install_github("myles-lewis/glmmSeq")
Or you can source the functions individually:
functions = list.files("./R", full.names = TRUE)
invisible(lapply(functions, source))
But you will need to load in the additional libraries:
# Install CRAN packages
invisible(lapply(c("MASS", "car", "ggplot2", "ggpubr", "lme4","lmerTest",
"methods", "parallel", "plotly", "pbapply", "pbmcapply"),
function(p){
if(! p %in% rownames(installed.packages())) {
install.packages(p)
}
library(p, character.only=TRUE)
}))
# Install BioConductor packages
if (!requireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager")
invisible(lapply(c("qvalue"), function(p){
if(! p %in% rownames(installed.packages())) BiocManager::install(p)
library(p, character.only=TRUE)
}))
To get started, first we load in the package:
library(glmmSeq)
set.seed(1234)
This vignette will demonstrate the power of this package using a minimal example from the PEAC data set. Here we focus on the synovial biopsy RNA-Seq data from this cohort of patients with early rheumatoid arthritis.
data(PEAC_minimal_load)
This data contains:
These are outlined in the following subsections.
metadata$EULAR_binary = NA
metadata$EULAR_binary[metadata$EULAR_6m %in%
c("Good", "Moderate" )] = "responder"
metadata$EULAR_binary[metadata$EULAR_6m %in% c("Non-response")] = "non_responder"
kable(head(metadata), row.names = F) %>% kable_styling()
PATID | Timepoint | EULAR_6m | EULAR_binary |
---|---|---|---|
PAT300 | 6 | Good | responder |
PAT209 | 6 | Good | responder |
PAT219 | 6 | Moderate | responder |
PAT211 | 6 | Good | responder |
PAT216 | 6 | Good | responder |
PAT212 | 6 | Good | responder |
kable(head(tpm)) %>% kable_styling() %>%
scroll_box(width = "100%")
S9001 | S9002 | S9003 | S9004 | S9006 | S9007 | S9008 | S9009 | S9010 | S9011 | S9012 | S9013 | S9014 | S9016 | S9017 | S9018 | S9019 | S9020 | S9021 | S9023 | S9025 | S9029 | S9034 | S9035 | S9036 | S9038 | S9039 | S9040 | S9042 | S9043 | S9044 | S9045 | S9047 | S9048 | S9049 | S9052 | S9053 | S9054 | S9056 | S9059 | S9060 | S9063 | S9065 | S9066 | S9067 | S9068 | S9069 | S9070 | S9072 | S9073 | S9074 | S9075 | S9076 | S9077 | S9078 | S9079 | S9080 | S9081 | S9083 | S9084 | S9085 | S9086 | S9087 | S9088 | S9089 | S9090 | S9091 | S9092 | S9093 | S9094 | S9095 | S9096 | S9097 | S9098 | S9099 | S9100 | S9101 | S9102 | S9103 | S9104 | S9105 | S9106 | S9107 | S9108 | S9109 | S9110 | S9111 | S9112 | S9113 | S9114 | S9115 | S9116 | S9117 | S9119 | S9120 | S9121 | S9122 | S9123 | S9124 | S9125 | S9127 | S9128 | S9129 | S9130 | S9131 | S9132 | S9133 | S9134 | S9135 | S9136 | S9137 | S9138 | S9139 | S9140 | S9141 | S9142 | S9143 | S9144 | S9145 | S9146 | S9147 | S9148 | S9149 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MS4A1 | 1.622818 | 2.024451 | 0.6995153 | 15.742876 | 2.123731 | 57.280078 | 2.011160 | 0.580000 | 1.006783 | 0.391420 | 3.886618 | 2.746742 | 31.647637 | 20.16757 | 0.925393 | 3.4271907 | 3.130648 | 1.422480 | 63.14643 | 0.295537 | 12.7877279 | 4.817494 | 15.874491 | 0.569317 | 4.429667 | 1.060991 | 2.1850700 | 5.321541 | 3.542383 | 1.676829 | 5.471954 | 29.942195 | 4.5519540 | 7.252108 | 1.9540320 | 12.947362 | 73.430132 | 2.364819 | 5.2372870 | 12.281007 | 17.637846 | 72.557856 | 2.379427 | 0.444729 | 89.042394 | 2.4190970 | 226.612930 | 8.01254 | 5.328680 | 0.7414830 | 4.669566 | 5.218332 | 0.0676825 | 26.0579080 | 77.100135 | 23.2918620 | 50.306168 | 5.24953 | 1.342645 | 0.511810 | 0.2428008 | 7.756002 | 1.020052 | 0.602854 | 0.2444728 | 2.047680 | 2.110914 | 0.683498 | 24.664095 | 1.9789030 | 0.1702800 | 3.910493 | 6.5513870 | 0.8342158 | 31.7618280 | 1.136854 | 17.98745 | 3.369558 | 8.577294 | 1.453945 | 41.031738 | 42.991580 | 27.58865 | 14.876902 | 21.6405734 | 42.049748 | 75.6557000 | 2.501497 | 3.560322 | 32.1091249 | 7.008288 | 0.746264 | 10.0969886 | 92.3355460 | 0.5157370 | 0.8011538 | 5.075003 | 1.979931 | 0.2068106 | 2.717007 | 0.984857 | 0.7771422 | 0.000000 | 8.2769093 | 1.261793 | 2.361150 | 2.372850 | 0.6968002 | 43.9459380 | 5.0257346 | 0.281387 | 0.4190982 | 1.716238 | 16.25508 | 1.9852750 | 26.591585 | 27.994183 | 1.325606 | 1.323197 | 12.47092 | 2.3049434 | 1.4901770 | 0.229867 |
ADAM12 | 2.581805 | 1.110548 | 0.9573992 | 5.466742 | 2.645153 | 0.972897 | 0.658545 | 1.159264 | 0.462860 | 3.074193 | 10.947068 | 9.678026 | 1.205472 | 11.63376 | 1.772810 | 0.3506414 | 3.528288 | 17.416140 | 6.36844 | 4.064450 | 0.2666618 | 2.113812 | 0.473972 | 1.222569 | 30.012798 | 0.181003 | 2.4554526 | 4.136035 | 13.961315 | 4.195791 | 3.629029 | 8.362213 | 0.6999296 | 7.894137 | 0.3268513 | 2.847538 | 7.015717 | 0.717947 | 0.4396555 | 1.141057 | 1.069326 | 1.895644 | 0.486478 | 14.504778 | 1.897848 | 0.9943284 | 4.140489 | 41.30644 | 8.812227 | 0.3317777 | 8.699836 | 8.323936 | 0.0292791 | 0.9615935 | 2.512841 | 0.8960788 | 3.766372 | 7.13890 | 1.917924 | 8.893462 | 0.0966324 | 1.550900 | 4.760995 | 1.769894 | 4.6901815 | 1.200418 | 1.392691 | 0.439077 | 0.658254 | 0.3610814 | 0.2501964 | 0.610416 | 0.6842673 | 2.8749874 | 0.6717734 | 16.374299 | 1.36295 | 8.725470 | 0.258386 | 0.214470 | 3.573125 | 2.086027 | 13.44347 | 4.007794 | 0.0338254 | 1.595552 | 0.9645215 | 1.913151 | 5.780085 | 0.7098401 | 5.242844 | 1.115879 | 0.6499524 | 0.5397263 | 0.2299409 | 0.7178614 | 0.535170 | 0.282374 | 0.2003997 | 2.202211 | 0.310417 | 2.0991998 | 0.215329 | 0.1962535 | 25.010318 | 2.970828 | 1.461817 | 2.6506093 | 0.6501276 | 0.9633052 | 8.715446 | 32.4636380 | 4.281851 | 0.83041 | 0.9840191 | 2.363019 | 0.314493 | 1.179129 | 0.656344 | 1.57062 | 0.4597666 | 0.4707508 | 4.727155 |
IGHV7-4-1 | 0.992885 | 0.000000 | 2.2060400 | 26.381700 | 0.000000 | 2158.300000 | 0.644889 | 0.000000 | 0.000000 | 1.500990 | 4.945980 | 38.268000 | 55.570100 | 107.91600 | 0.000000 | 0.0000000 | 0.000000 | 1.080940 | 27.51650 | 0.000000 | 21.4136000 | 6.121120 | 15.190300 | 0.000000 | 0.597722 | 0.000000 | 0.0844527 | 1228.620000 | 51.561100 | 1.149330 | 1.434460 | 3728.700000 | 6.3708500 | 1.553570 | 0.0000000 | 165.928000 | 30.714000 | 0.000000 | 5.5235500 | 0.770965 | 1603.290000 | 53.605000 | 16.063900 | 6.209400 | 1021.480000 | 0.2965720 | 85.466200 | 9.18953 | 41.191800 | 5.0514200 | 47.140500 | 42.541900 | 0.4660800 | 835.2970000 | 1929.760000 | 57.2972000 | 39.990700 | 0.00000 | 0.000000 | 0.411695 | 0.0000000 | 26.176100 | 1.033220 | 2.273400 | 0.0000000 | 11.443300 | 0.272802 | 0.000000 | 81.135100 | 0.7083360 | 0.0000000 | 1.298760 | 0.5145140 | 0.1260250 | 13.9310000 | 2.345910 | 77.63540 | 2.181890 | 63.096300 | 0.000000 | 6.473680 | 20.211900 | 347.99200 | 39.273300 | 2.3200600 | 584.705000 | 2147.2900000 | 242.387000 | 14.263100 | 52.4861000 | 0.399860 | 0.000000 | 0.7025670 | 11.2577000 | 0.6126850 | 4.5281300 | 155.926000 | 320.086000 | 1.3791200 | 1.587010 | 0.167711 | 0.0000000 | 0.000000 | 5.6540200 | 0.000000 | 0.000000 | 0.560530 | 1.2747600 | 50.6122000 | 5.3320100 | 0.000000 | 0.0000000 | 0.757454 | 132.98900 | 3.4184700 | 18.130100 | 3.085550 | 1.183940 | 0.277095 | 135.99100 | 0.7799880 | 0.6956290 | 0.000000 |
IGHV3-49 | 0.000000 | 0.196831 | 8.7892000 | 345.493000 | 2.093480 | 858.980000 | 3.201300 | 0.000000 | 0.000000 | 0.000000 | 114.334000 | 17.150200 | 136.605000 | 1080.73000 | 0.196674 | 0.0000000 | 0.000000 | 0.931275 | 140.22000 | 0.000000 | 202.4950000 | 60.114600 | 145.421000 | 0.145099 | 32.808500 | 1.207290 | 3.5942600 | 467.534000 | 55.301200 | 0.869369 | 14.462700 | 928.660000 | 64.4575000 | 0.430536 | 0.0000000 | 80.024800 | 53.191800 | 0.000000 | 35.4998000 | 0.303541 | 1002.870000 | 127.201000 | 634.856000 | 22.119900 | 975.855000 | 0.0000000 | 623.330000 | 129.50800 | 180.819000 | 29.8933000 | 183.605000 | 170.369000 | 0.2201470 | 403.4460000 | 384.597000 | 24.9283000 | 426.619000 | 1.08364 | 0.591472 | 4768.210000 | 0.0000000 | 93.669200 | 9.291720 | 0.607172 | 0.0000000 | 9.736200 | 1.132510 | 0.000000 | 175.472000 | 1.0305600 | 0.0885169 | 0.972741 | 12.5531000 | 0.8804760 | 163.1520000 | 1.764370 | 37.22090 | 15.345300 | 401.861000 | 0.575801 | 11.926900 | 45.198600 | 317.65400 | 523.093000 | 171.4520000 | 174.163000 | 5414.9000000 | 5.045300 | 386.829000 | 1190.5200000 | 4.854510 | 0.169181 | 15.7114000 | 415.2760000 | 0.1668720 | 0.1950730 | 34.623200 | 26.949400 | 2.3880600 | 2.021500 | 0.000000 | 0.0000000 | 0.000000 | 1.5027300 | 0.000000 | 1.783170 | 49.278100 | 1.1861700 | 99.7745000 | 10.0077000 | 0.000000 | 0.1908660 | 3.835610 | 22.31070 | 2.4220200 | 22.133600 | 440.657000 | 0.000000 | 0.000000 | 22.10260 | 5.3278400 | 0.5799090 | 0.210089 |
IGHV3-23 | 0.715133 | 3.999940 | 87.6508000 | 2349.850000 | 5.962460 | 5180.460000 | 17.278900 | 0.000000 | 0.000000 | 1.437710 | 985.721000 | 123.982000 | 1374.860000 | 3568.60000 | 9.857240 | 0.5625450 | 2.900430 | 2.172310 | 5859.05000 | 0.000000 | 502.8400000 | 366.704000 | 1793.510000 | 2.294430 | 97.123900 | 11.607200 | 8.1870600 | 1080.330000 | 411.058000 | 9.718060 | 114.608000 | 2306.720000 | 317.0130000 | 7.954070 | 2.7908400 | 865.088000 | 3563.990000 | 0.123914 | 23.4808000 | 4.896920 | 1681.420000 | 1929.860000 | 2241.850000 | 26.191600 | 5228.450000 | 4.1899600 | 2807.770000 | 1213.59000 | 387.839000 | 203.5700000 | 374.506000 | 374.388000 | 0.3392100 | 1359.9900000 | 1535.600000 | 118.7600000 | 2708.140000 | 4.59234 | 0.607162 | 93.584600 | 0.3873680 | 1273.530000 | 1.666060 | 5.899820 | 1.8143100 | 18.921500 | 17.654300 | 0.567110 | 1593.270000 | 0.7579240 | 0.2794190 | 6.994180 | 216.3070000 | 4.8487200 | 1286.5300000 | 12.741600 | 167.65000 | 115.720000 | 2142.700000 | 3.020540 | 79.259200 | 6471.240000 | 2508.41000 | 4077.530000 | 802.0710000 | 1884.330000 | 5188.7400000 | 296.555000 | 1696.260000 | 3027.5700000 | 215.969000 | 0.249956 | 79.7680000 | 338.8720000 | 2.2993700 | 5.4541000 | 214.318000 | 152.085000 | 9.7046700 | 11.809000 | 0.300002 | 0.0000000 | 0.000000 | 15.5774000 | 0.217214 | 4.113890 | 229.482000 | 14.7361000 | 1145.9400000 | 35.9383000 | 0.613331 | 5.6297400 | 4.861760 | 188.38500 | 94.7553000 | 297.408000 | 3505.310000 | 19.762300 | 0.860007 | 208.00400 | 54.3620000 | 52.5728000 | 0.785236 |
ADAM12.1 | 2.581805 | 1.110548 | 0.9573992 | 5.466742 | 2.645153 | 0.972897 | 0.658545 | 1.159264 | 0.462860 | 3.074193 | 10.947068 | 9.678026 | 1.205472 | 11.63376 | 1.772810 | 0.3506414 | 3.528288 | 17.416140 | 6.36844 | 4.064450 | 0.2666618 | 2.113812 | 0.473972 | 1.222569 | 30.012798 | 0.181003 | 2.4554526 | 4.136035 | 13.961315 | 4.195791 | 3.629029 | 8.362213 | 0.6999296 | 7.894137 | 0.3268513 | 2.847538 | 7.015717 | 0.717947 | 0.4396555 | 1.141057 | 1.069326 | 1.895644 | 0.486478 | 14.504778 | 1.897848 | 0.9943284 | 4.140489 | 41.30644 | 8.812227 | 0.3317777 | 8.699836 | 8.323936 | 0.0292791 | 0.9615935 | 2.512841 | 0.8960788 | 3.766372 | 7.13890 | 1.917924 | 8.893462 | 0.0966324 | 1.550900 | 4.760995 | 1.769894 | 4.6901815 | 1.200418 | 1.392691 | 0.439077 | 0.658254 | 0.3610814 | 0.2501964 | 0.610416 | 0.6842673 | 2.8749874 | 0.6717734 | 16.374299 | 1.36295 | 8.725470 | 0.258386 | 0.214470 | 3.573125 | 2.086027 | 13.44347 | 4.007794 | 0.0338254 | 1.595552 | 0.9645215 | 1.913151 | 5.780085 | 0.7098401 | 5.242844 | 1.115879 | 0.6499524 | 0.5397263 | 0.2299409 | 0.7178614 | 0.535170 | 0.282374 | 0.2003997 | 2.202211 | 0.310417 | 2.0991998 | 0.215329 | 0.1962535 | 25.010318 | 2.970828 | 1.461817 | 2.6506093 | 0.6501276 | 0.9633052 | 8.715446 | 32.4636380 | 4.281851 | 0.83041 | 0.9840191 | 2.363019 | 0.314493 | 1.179129 | 0.656344 | 1.57062 | 0.4597666 | 0.4707508 | 4.727155 |
Using negative binomial models requires gene dispersion estimates to be made. This can be achieved in a number of ways. A common way to calculate this for gene i is to use the equation:
Dispersioni = (variancei - meani)/meani2
This can be calculated using:
disp <- apply(tpm, 1, function(x){
(var(x, na.rm=TRUE)-mean(x, na.rm=TRUE))/(mean(x, na.rm=TRUE)**2)
})
head(disp)
## MS4A1 ADAM12 IGHV7-4-1 IGHV3-49 IGHV3-23 ADAM12.1
## 3.789428 2.391912 11.686420 10.863156 3.262557 2.391912
Alternatively, we recommend using edgeR to estimate of the common, trended and tagwise dispersions across all tags:
disp <- setNames(edgeR::estimateDisp(tpm)$tagwise.dispersion, rownames(tpm))
head(disp)
or with DESeq2 using the raw counts:
dds <- DESeqDataSetFromTximport(txi = txi, colData = metadata, design = ~ 1)
dds <- DESeq(dds)
dispersions <- setNames(dispersions(dds), rownames(txi$counts))
There is also an option to include size factors for each gene. Again this can be estimated using:
sizeFactors <- colSums(tpm)
sizeFactors <- sizeFactors / mean(sizeFactors) # normalise to mean = 1
head(sizeFactors)
## S9001 S9002 S9003 S9004 S9006 S9007
## 0.20325747 0.09330435 0.09737100 3.13456671 0.24515015 4.19419297
Or using edgeR these can be calculated from the raw read counts:
sizeFactors <- calcNormFactors(counts, method="TMM")
Similarly, with DESeq2:
sizeFactors <- estimateSizeFactorsForMatrix(counts)
Note the sizeFactors
vector needs to be centred around
1, since it used directly as an offset of form
log(sizeFactors)
in the GLMM model.
To fit a model for one gene over time we use a formula such as:
gene expression ~ fixed effects + random effects
In R the formula is defined by both the fixed-effects and
random-effects part of the model, with the response on the left of a ~
operator and the terms, separated by + operators, on the right.
Random-effects terms are distinguished by vertical bars (“|”) separating
expressions for design matrices from grouping factors. For more
information see the ?lme4::glmer
.
In this case study we want to use time and response as fixed effects and the patients as random effects:
gene expression ~ time + response + (1 | patient)
To fit this model for all genes we can use the glmmSeq
function. Note that this analysis can take some time, with 4 cores:
results <- glmmSeq(~ Timepoint * EULAR_6m + (1 | PATID),
countdata = tpm,
metadata = metadata,
dispersion = disp,
progress = TRUE)
##
## n = 123 samples, 82 individuals
## Time difference of 3.152688 secs
## Errors in 4 gene(s): IL12A, FGF12, VIL1, IL26
or alternatively using two-factor classification with EULAR_binary:
results2 <- glmmSeq(~ Timepoint * EULAR_binary + (1 | PATID),
countdata = tpm,
metadata = metadata,
dispersion = disp)
##
## n = 123 samples, 82 individuals
## Time difference of 3.016724 secs
## Errors in 4 gene(s): IL12A, FGF12, VIL1, IL26
This creates a GlmmSeq object which contains the following slots:
names(attributes(results))
## [1] "info" "formula" "stats" "predict" "reduced" "countdata" "metadata"
## [8] "modelData" "optInfo" "errors" "vars" "class"
The variables used by the model are in the
@modeldata
:
kable(results@modelData) %>% kable_styling()
Timepoint | EULAR_6m |
---|---|
0 | Good |
6 | Good |
0 | Moderate |
6 | Moderate |
0 | Non-response |
6 | Non-response |
The model fit statistics can be viewed in the @stats
slot which is a list of items including fitted model coefficients, their
standard errors and the results of statistical tests on terms within the
model using Wald type 2 Chi square. To see the most significant
interactions we can order pvals
by
Timepoint:EULAR_6m
:
stats <- summary(results)
kable(stats[order(stats[, 'P_Timepoint:EULAR_6m']), ]) %>%
kable_styling() %>%
scroll_box(width = "100%", height = "400px")
Dispersion | AIC | logLik | meanExp | (Intercept) | Timepoint | EULAR_6mModerate | EULAR_6mNon-response | Timepoint:EULAR_6mModerate | Timepoint:EULAR_6mNon-response | se_(Intercept) | se_Timepoint | se_EULAR_6mModerate | se_EULAR_6mNon-response | se_Timepoint:EULAR_6mModerate | se_Timepoint:EULAR_6mNon-response | Chisq_Timepoint | Chisq_EULAR_6m | Chisq_Timepoint:EULAR_6m | Df_Timepoint | Df_EULAR_6m | Df_Timepoint:EULAR_6m | P_Timepoint | P_EULAR_6m | P_Timepoint:EULAR_6m | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
IGHV3-23 | 3.2625571 | 1587.9550 | -785.9775 | 5.9461793 | 6.8466473 | -0.0213958 | 0.1369681 | -0.8391523 | -0.3010405 | -0.4047369 | 0.4783325 | 0.0906407 | 0.5134806 | 0.6320099 | 0.1277461 | 0.1624190 | 7.6175338 | 14.2631824 | 8.8418654 | 1 | 2 | 2 | 0.0057803 | 0.0007994 | 0.0120230 |
CXCL13 | 4.4416343 | 953.3999 | -468.7000 | 2.8488723 | 3.5376946 | -0.0405699 | 0.4921167 | -1.4651369 | -0.3181048 | 0.0958172 | 0.3701902 | 0.0971787 | 0.5619716 | 0.7302593 | 0.1464648 | 0.1781329 | 4.2900227 | 4.3648596 | 6.7344833 | 1 | 2 | 2 | 0.0383367 | 0.1127672 | 0.0344846 |
FGF14 | 0.2915518 | 375.0390 | -179.5195 | 1.0784074 | -0.0846561 | 0.1148791 | -0.0436742 | 0.9233238 | -0.0035230 | -0.1731267 | 0.2014575 | 0.0467465 | 0.3090738 | 0.3176555 | 0.0711392 | 0.0783922 | 5.5445597 | 5.0815197 | 5.6637042 | 1 | 2 | 2 | 0.0185382 | 0.0788065 | 0.0589037 |
IL24 | 0.4177215 | 376.8418 | -180.4209 | 1.0076111 | 0.3478977 | -0.0321854 | 0.2217562 | -0.7615200 | -0.1166353 | 0.1298070 | 0.1978093 | 0.0500220 | 0.2721124 | 0.4427622 | 0.0793379 | 0.1003295 | 1.9439310 | 1.0333073 | 5.5708454 | 1 | 2 | 2 | 0.1632423 | 0.5965133 | 0.0617030 |
HHIP | 1.0353883 | 537.1812 | -260.5906 | 1.4454128 | 0.7998605 | -0.0399783 | -0.1533630 | 0.5663556 | 0.1881176 | 0.0332220 | 0.2089737 | 0.0569350 | 0.3219344 | 0.3888552 | 0.0826903 | 0.0975405 | 1.0348345 | 4.7912317 | 5.5680271 | 1 | 2 | 2 | 0.3090259 | 0.0911165 | 0.0617900 |
MS4A1 | 3.7894278 | 898.6829 | -441.3414 | 2.5917399 | 2.7363666 | 0.0490839 | 0.1933006 | -1.7237593 | -0.2107974 | 0.1746154 | 0.3366868 | 0.0894115 | 0.5110345 | 0.6778010 | 0.1347788 | 0.1655778 | 0.0112466 | 5.6828754 | 5.4378747 | 1 | 2 | 2 | 0.9155427 | 0.0583417 | 0.0659448 |
ADAM12 | 2.3919119 | 635.7162 | -309.8581 | 1.6675082 | 1.6569079 | -0.1236820 | -0.2683597 | -0.5047247 | -0.0347932 | 0.2699943 | 0.2756082 | 0.0750725 | 0.4213674 | 0.5491941 | 0.1146527 | 0.1351883 | 2.5418570 | 2.3034252 | 5.2104307 | 1 | 2 | 2 | 0.1108643 | 0.3160950 | 0.0738872 |
ADAM12.1 | 2.3919119 | 635.7162 | -309.8581 | 1.6675082 | 1.6569079 | -0.1236820 | -0.2683597 | -0.5047247 | -0.0347932 | 0.2699943 | 0.2756082 | 0.0750725 | 0.4213674 | 0.5491941 | 0.1146527 | 0.1351883 | 2.5418570 | 2.3034252 | 5.2104307 | 1 | 2 | 2 | 0.1108643 | 0.3160950 | 0.0738872 |
IL2RG | 0.8332758 | 1077.5836 | -530.7918 | 4.3589131 | 3.4913720 | -0.0544559 | 0.2592216 | -0.6099765 | -0.1005384 | 0.0741224 | 0.1768209 | 0.0432425 | 0.2498525 | 0.3251603 | 0.0650989 | 0.0795735 | 6.8219047 | 3.0208070 | 4.9773656 | 1 | 2 | 2 | 0.0090046 | 0.2208209 | 0.0830192 |
IL16 | 0.2419416 | 974.1912 | -479.0956 | 4.5153510 | 3.2821832 | -0.0163058 | -0.1351425 | -0.3377962 | 0.0421528 | 0.0983179 | 0.0936429 | 0.0242321 | 0.1389855 | 0.1814160 | 0.0364868 | 0.0447041 | 1.0986627 | 0.2976437 | 4.9709614 | 1 | 2 | 2 | 0.2945598 | 0.8617226 | 0.0832855 |
EMILIN3 | 2.8558506 | 522.1530 | -253.0765 | 1.2381694 | 1.0154229 | 0.1211976 | -2.0741731 | -0.8821688 | 0.2905788 | 0.0936821 | 0.3076528 | 0.0803498 | 0.5615745 | 0.6368489 | 0.1317965 | 0.1513721 | 15.7455688 | 9.3862145 | 4.8709355 | 1 | 2 | 2 | 0.0000725 | 0.0091582 | 0.0875568 |
BLK | 1.0360018 | 532.3068 | -258.1534 | 1.4610649 | 0.9405211 | 0.0152304 | 0.2889931 | -0.6186534 | -0.1477598 | 0.0407172 | 0.2366609 | 0.0545010 | 0.3164350 | 0.4438540 | 0.0838780 | 0.1061424 | 0.6098286 | 2.2049350 | 4.1711539 | 1 | 2 | 2 | 0.4348524 | 0.3320507 | 0.1242354 |
IGHV1-69 | 6.1631087 | 1150.4929 | -567.2465 | 3.6446738 | 4.5052838 | 0.0254377 | 1.0678755 | 0.3278992 | -0.1788186 | -0.3840284 | 0.4260744 | 0.1132977 | 0.6470204 | 0.8341665 | 0.1701410 | 0.2070231 | 2.1903776 | 4.5563275 | 3.6032048 | 1 | 2 | 2 | 0.1388753 | 0.1024722 | 0.1650342 |
PADI4 | 2.0736630 | 472.8051 | -228.4025 | 1.0912063 | 0.2320863 | 0.1335275 | 0.3673813 | 0.1562910 | -0.2084779 | -0.1075547 | 0.2903619 | 0.0735494 | 0.4303320 | 0.5600252 | 0.1128728 | 0.1359462 | 0.6800223 | 0.2066687 | 3.4338579 | 1 | 2 | 2 | 0.4095790 | 0.9018254 | 0.1796169 |
LILRA5 | 0.8432028 | 787.5680 | -385.7840 | 2.8996321 | 2.1304753 | -0.0337206 | 0.3077720 | -0.0538474 | -0.0772630 | 0.0741083 | 0.1682070 | 0.0451020 | 0.2531455 | 0.3301611 | 0.0677629 | 0.0815717 | 2.3877870 | 0.6639482 | 3.3402241 | 1 | 2 | 2 | 0.1222866 | 0.7175059 | 0.1882260 |
IGHV5-10-1 | 5.5424948 | 1103.9302 | -543.9651 | 3.3881684 | 4.8972304 | -0.0222759 | 0.3631280 | -0.0880610 | -0.2792955 | -0.0040168 | 0.6691549 | 0.1111489 | 0.6495654 | 0.8664366 | 0.1672584 | 0.2171123 | 2.8322683 | 0.3035545 | 3.0813079 | 1 | 2 | 2 | 0.0923878 | 0.8591797 | 0.2142410 |
IGHV3OR16-8 | 4.4604808 | 728.3564 | -356.1782 | 1.8706896 | 2.9350507 | -0.1123000 | -0.2194363 | -0.3427264 | -0.1967506 | 0.1245432 | 0.4522157 | 0.0999647 | 0.5628228 | 0.7216137 | 0.1486832 | 0.1890461 | 5.6767433 | 2.1920958 | 3.0625257 | 1 | 2 | 2 | 0.0171912 | 0.3341892 | 0.2162624 |
PHOSPHO1 | 1.5924621 | 697.7595 | -340.8798 | 2.1552363 | 1.4569268 | 0.0953195 | 0.0654148 | 0.0650941 | -0.1432879 | -0.0867006 | 0.2317083 | 0.0605645 | 0.3511832 | 0.4523094 | 0.0922446 | 0.1113749 | 0.4904949 | 1.0829818 | 2.4703240 | 1 | 2 | 2 | 0.4837066 | 0.5818801 | 0.2907876 |
S100B | 3.9902943 | 1068.8305 | -526.4153 | 3.4429454 | 2.6698463 | -0.0027976 | 0.4409051 | -0.0676109 | -0.1150445 | 0.1545318 | 0.3455381 | 0.0918899 | 0.5240035 | 0.6768250 | 0.1380280 | 0.1673433 | 0.0514070 | 0.6091648 | 2.4356546 | 1 | 2 | 2 | 0.8206329 | 0.7374313 | 0.2958723 |
IGHV2-70D | 6.4682516 | 857.1816 | -420.5908 | 2.3395373 | 3.7263964 | -0.1188104 | 0.3457869 | -0.8728989 | -0.2362598 | -0.2549742 | 0.4369557 | 0.1163299 | 0.6635831 | 0.8571720 | 0.1751114 | 0.2152755 | 10.2774050 | 5.8449029 | 2.3829431 | 1 | 2 | 2 | 0.0013467 | 0.0538016 | 0.3037739 |
PPIL4 | 0.1705260 | 779.2111 | -381.6056 | 3.2865169 | 2.2892504 | -0.0074724 | -0.0643473 | -0.0248330 | 0.0481026 | 0.0498523 | 0.0961397 | 0.0244635 | 0.1450737 | 0.1868843 | 0.0362900 | 0.0440609 | 1.5034278 | 0.5850044 | 2.2272561 | 1 | 2 | 2 | 0.2201447 | 0.7463936 | 0.3283655 |
IGHJ3P | 4.7990172 | 1085.2659 | -534.6329 | 3.4861371 | 4.9831232 | -0.0810362 | -0.0437042 | -1.6508369 | -0.2109033 | -0.0303276 | 0.3759413 | 0.0999966 | 0.5711055 | 0.7377189 | 0.1503431 | 0.1829906 | 5.8423701 | 9.6857792 | 2.1043333 | 1 | 2 | 2 | 0.0156447 | 0.0078842 | 0.3491804 |
IGHV7-4-1 | 11.6864201 | 1101.3138 | -542.6569 | 3.0586094 | 5.3345103 | -0.0825370 | 0.3334439 | -2.6497953 | -0.2951205 | -0.3087896 | 0.5861759 | 0.1559168 | 0.8904806 | 1.1502771 | 0.2342605 | 0.2878086 | 5.5348827 | 16.9828417 | 2.0270663 | 1 | 2 | 2 | 0.0186410 | 0.0002052 | 0.3629344 |
LILRB3 | 0.4876740 | 945.3343 | -464.6671 | 3.9474519 | 2.8953372 | -0.0258468 | 0.2114848 | -0.1435780 | -0.0203999 | 0.0663273 | 0.1263695 | 0.0337764 | 0.1909106 | 0.2488511 | 0.0505310 | 0.0614439 | 0.8158759 | 1.2121573 | 1.9058332 | 1 | 2 | 2 | 0.3663887 | 0.5454857 | 0.3856147 |
IL36RN | 32.6380418 | 500.2509 | -242.1254 | 0.3962182 | 0.9057894 | -0.3373192 | -1.8591000 | -1.0185519 | 0.5013854 | 0.0103691 | 0.9858035 | 0.2684523 | 1.5254092 | 1.9455086 | 0.4019578 | 0.5027249 | 0.7092169 | 0.6065049 | 1.7620973 | 1 | 2 | 2 | 0.3997039 | 0.7384127 | 0.4143482 |
IGHV3OR16-12 | 12.1178160 | 539.6728 | -261.8364 | 0.8508034 | 1.5129747 | -0.0122481 | -0.6073245 | -0.9450944 | -0.3231954 | -0.1338251 | 0.6024029 | 0.1602493 | 0.9189728 | 1.1916279 | 0.2498545 | 0.2984661 | 1.7312000 | 4.0960562 | 1.6732410 | 1 | 2 | 2 | 0.1882577 | 0.1289890 | 0.4331720 |
IGHV5-78 | 5.5798767 | 569.8859 | -276.9429 | 1.1452612 | 1.0630323 | 0.0397579 | -0.0398071 | 0.6148506 | -0.1990246 | -0.1458526 | 0.4174605 | 0.1105884 | 0.6345932 | 0.8092152 | 0.1691994 | 0.2013966 | 0.5850495 | 1.7295021 | 1.4883376 | 1 | 2 | 2 | 0.4443399 | 0.4211564 | 0.4751291 |
IGHV3-49 | 10.8631558 | 1271.1690 | -627.5845 | 3.9774695 | 5.7635604 | -0.1677969 | -0.4705138 | 0.4518068 | -0.2392902 | -0.2599216 | 0.5652409 | 0.1503381 | 0.8587381 | 1.1067198 | 0.2259735 | 0.2743113 | 9.0576243 | 2.5620700 | 1.4849116 | 1 | 2 | 2 | 0.0026160 | 0.2777497 | 0.4759437 |
IGHV1OR15-4 | 4.1384009 | 737.1263 | -360.5631 | 1.9435728 | 2.4925095 | -0.0853148 | 0.8616507 | -0.8866376 | -0.1479020 | 0.0087225 | 0.3523523 | 0.0940646 | 0.5335425 | 0.6969554 | 0.1411093 | 0.1736246 | 4.7041753 | 6.3140910 | 1.3100148 | 1 | 2 | 2 | 0.0300894 | 0.0425513 | 0.5194382 |
IL2RA | 1.1303114 | 545.7334 | -264.8667 | 1.5164121 | 1.3234092 | -0.1238205 | 0.0366304 | -0.7791815 | -0.0168110 | 0.1045126 | 0.2320175 | 0.0578359 | 0.3155440 | 0.4380156 | 0.0864420 | 0.1086981 | 8.0196412 | 2.5247446 | 1.2479947 | 1 | 2 | 2 | 0.0046273 | 0.2829819 | 0.5357984 |
EMILIN2 | 0.2149030 | 1022.9549 | -503.4775 | 4.8723536 | 3.4282169 | -0.0478693 | 0.1907900 | 0.2159081 | 0.0307185 | 0.0370946 | 0.0852933 | 0.0229787 | 0.1287306 | 0.1654155 | 0.0341139 | 0.0412203 | 3.7233248 | 9.7663063 | 1.1782527 | 1 | 2 | 2 | 0.0536574 | 0.0075731 | 0.5548118 |
CXCL11 | 4.3308929 | 558.9347 | -271.4674 | 1.2009946 | 1.4333300 | -0.0924072 | -0.1022289 | -1.4166330 | -0.1214451 | 0.0706083 | 0.3665977 | 0.0986193 | 0.5577862 | 0.7597702 | 0.1509614 | 0.1891941 | 3.2760631 | 4.5591179 | 1.1209216 | 1 | 2 | 2 | 0.0702974 | 0.1023293 | 0.5709459 |
IGHV1OR21-1 | 7.6550929 | 357.7987 | -170.8994 | 0.4791891 | -0.7429909 | 0.1076602 | 1.1516429 | -0.9438997 | -0.2080242 | -0.1730854 | 0.5357072 | 0.1379439 | 0.7790812 | 1.1726661 | 0.2039685 | 0.2979735 | 0.0006757 | 5.1554210 | 1.1160140 | 1 | 2 | 2 | 0.9792619 | 0.0759477 | 0.5723486 |
CXCL9 | 7.7483868 | 1111.5068 | -547.7534 | 3.2358534 | 4.1831440 | -0.1589647 | -0.1505768 | -1.9470604 | -0.0796054 | 0.1738691 | 0.4778487 | 0.1271852 | 0.7259615 | 0.9396472 | 0.1911665 | 0.2327504 | 3.2587761 | 4.3825426 | 1.1034721 | 1 | 2 | 2 | 0.0710421 | 0.1117746 | 0.5759491 |
IL36G | 55.6403102 | 592.4912 | -288.2456 | 0.3500668 | 0.9983391 | -0.3974202 | -2.2326598 | -1.8715276 | 0.5421133 | 0.1857025 | 1.2833185 | 0.3479235 | 1.9795707 | 2.5460467 | 0.5217738 | 0.6460743 | 0.5065694 | 0.7179775 | 1.0879014 | 1 | 2 | 2 | 0.4766277 | 0.6983822 | 0.5804505 |
SAA1 | 28.3095252 | 964.5999 | -474.2999 | 1.7170262 | 3.3639676 | -0.2882037 | -1.3730549 | -0.6174882 | 0.0034016 | 0.4195829 | 0.9130145 | 0.2432002 | 1.3883874 | 1.7883085 | 0.3665894 | 0.4431598 | 1.5819814 | 2.4808846 | 1.0261291 | 1 | 2 | 2 | 0.2084755 | 0.2892562 | 0.5986582 |
EAF2 | 0.5728653 | 724.8370 | -354.4185 | 2.6574912 | 2.0987532 | -0.0752533 | 0.2348372 | -0.3563569 | -0.0430362 | 0.0245403 | 0.1639929 | 0.0392425 | 0.2172068 | 0.2901849 | 0.0587958 | 0.0730532 | 10.6659261 | 3.5062734 | 0.9427034 | 1 | 2 | 2 | 0.0010913 | 0.1732297 | 0.6241580 |
IGHV7-27 | 14.5870583 | 478.5468 | -231.2734 | 0.5865966 | 0.9619084 | -0.4094644 | -0.3547719 | -0.9275209 | 0.0653310 | 0.3182143 | 0.6635349 | 0.1904674 | 1.0110864 | 1.3177309 | 0.2856316 | 0.3366545 | 6.4310429 | 0.0762873 | 0.9125184 | 1 | 2 | 2 | 0.0112143 | 0.9625747 | 0.6336496 |
CILP | 3.4124368 | 1167.6923 | -575.8462 | 3.9198405 | 3.5693809 | 0.1148879 | -0.8956625 | 0.2112677 | 0.0958712 | -0.0338922 | 0.4055484 | 0.0914020 | 0.5413721 | 0.6810569 | 0.1336378 | 0.1646109 | 5.5764552 | 2.8853109 | 0.7728507 | 1 | 2 | 2 | 0.0182035 | 0.2362994 | 0.6794815 |
IGHJ6 | 6.8375817 | 1218.9556 | -601.4778 | 3.8318813 | 6.0208224 | -0.0985782 | -0.2121991 | -0.0204935 | -0.1566467 | -0.1585515 | 0.9091690 | 0.1323640 | 0.8037477 | 1.0769099 | 0.2003718 | 0.2552463 | 2.4592121 | 0.9099440 | 0.7343401 | 1 | 2 | 2 | 0.1168374 | 0.6344657 | 0.6926919 |
FGFR2 | 4.6484751 | 484.1123 | -234.0562 | 0.8968766 | 0.8562658 | -0.0725830 | -0.9483749 | -1.1838893 | 0.1214805 | 0.1107619 | 0.3862808 | 0.1041300 | 0.6084195 | 0.8076027 | 0.1594249 | 0.1983454 | 0.0203936 | 3.1938868 | 0.6806884 | 1 | 2 | 2 | 0.8864434 | 0.2025146 | 0.7115254 |
IGLV4-3 | 12.6762412 | 578.4695 | -281.2348 | 0.9284219 | 1.1862192 | 0.0748321 | -0.4837409 | -1.0268216 | -0.1506973 | -0.2101672 | 0.6179164 | 0.1638830 | 0.9425678 | 1.2285077 | 0.2483898 | 0.3082778 | 0.0235014 | 3.2907505 | 0.6188439 | 1 | 2 | 2 | 0.8781603 | 0.1929401 | 0.7338711 |
SAA2 | 59.8447169 | 871.9089 | -427.9545 | 0.8633720 | 2.4771413 | -0.3747888 | -2.0207013 | -1.8018215 | 0.1545014 | 0.3539452 | 1.3276104 | 0.3542967 | 2.0219601 | 2.6062629 | 0.5349296 | 0.6463979 | 1.1134331 | 1.1183830 | 0.3091668 | 1 | 2 | 2 | 0.2913369 | 0.5716711 | 0.8567720 |
FGFRL1 | 0.4980641 | 705.6527 | -344.8264 | 2.5933500 | 1.8343691 | 0.0371586 | -0.2538998 | -0.0556572 | 0.0160323 | 0.0082694 | 0.1459866 | 0.0369363 | 0.2165394 | 0.2760841 | 0.0557414 | 0.0668920 | 3.1425845 | 1.7555806 | 0.0832211 | 1 | 2 | 2 | 0.0762729 | 0.4157005 | 0.9592433 |
FGF2 | 0.5313473 | 506.2867 | -245.1434 | 1.5782689 | 0.6276046 | 0.0754127 | 0.1511292 | 0.0584818 | 0.0153345 | 0.0146872 | 0.1770025 | 0.0443837 | 0.2634760 | 0.3428858 | 0.0652600 | 0.0802985 | 8.2319678 | 0.9794959 | 0.0656301 | 1 | 2 | 2 | 0.0041159 | 0.6127808 | 0.9677175 |
IGHV7-40 | 15.9375305 | 492.4418 | -238.2209 | 0.6102728 | 1.3965106 | -0.2999772 | -1.0354265 | -1.8729132 | 0.0202320 | 0.0876576 | 0.6899486 | 0.1877131 | 1.0563185 | 1.3922542 | 0.2887295 | 0.3614414 | 4.5933524 | 2.9065704 | 0.0589747 | 1 | 2 | 2 | 0.0320962 | 0.2338009 | 0.9709432 |
Summary statistics on a single gene can be shown specifying the
argument gene
.
summary(results, gene = "MS4A1")
## Generalised linear mixed model
## Method: lme4
## Family: Negative Binomial
## Formula: count ~ Timepoint + EULAR_6m + (1 | PATID) + Timepoint:EULAR_6m
## Dispersion AIC logLik meanExp
## 3.789428 898.682864 -441.341432 2.591740
##
## Fixed effects:
## Estimate Std. Error
## (Intercept) 2.73637 0.33669
## Timepoint 0.04908 0.08941
## EULAR_6mModerate 0.19330 0.51103
## EULAR_6mNon-response -1.72376 0.67780
## Timepoint:EULAR_6mModerate -0.21080 0.13478
## Timepoint:EULAR_6mNon-response 0.17462 0.16558
##
## Analysis of Deviance Table (Type II Wald chisquare tests)
## Chisq Df Pr(>Chisq)
## Timepoint 0.01125 1 0.91554
## EULAR_6m 5.68288 2 0.05834
## Timepoint:EULAR_6m 5.43787 2 0.06594
Estimated means based on each gene’s fitted model to show fixed
effects and their 95% confidence intervals can be seen in the
@predict
slot:
predict = data.frame(results@predict)
kable(predict) %>%
kable_styling() %>%
scroll_box(width = "100%", height = "400px")
y_0_Good | y_6_Good | y_0_Moderate | y_6_Moderate | y_0_Non.response | y_6_Non.response | LCI_0_Good | LCI_6_Good | LCI_0_Moderate | LCI_6_Moderate | LCI_0_Non.response | LCI_6_Non.response | UCI_0_Good | UCI_6_Good | UCI_0_Moderate | UCI_6_Moderate | UCI_0_Non.response | UCI_6_Non.response | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MS4A1 | 15.4308165 | 20.7152501 | 18.7213987 | 7.0949707 | 2.7527690 | 10.5360538 | 7.9761875 | 9.1362861 | 8.8123057 | 2.8391654 | 0.8690157 | 3.2873828 | 29.852621 | 46.968930 | 39.7728791 | 17.730073 | 8.719908 | 33.768026 |
ADAM12 | 5.2430737 | 2.4963164 | 4.0090258 | 1.5491357 | 3.1650953 | 7.6145225 | 3.0548055 | 1.2417443 | 2.1464867 | 0.6925006 | 1.2474757 | 2.9782353 | 8.998878 | 5.018421 | 7.4877183 | 3.465443 | 8.030480 | 19.468225 |
IGHV7-4-1 | 207.3711708 | 126.3793894 | 289.4417955 | 30.0243655 | 14.6540239 | 1.4003967 | 65.7332940 | 30.2740093 | 77.7802350 | 6.1747981 | 2.1061575 | 0.1747709 | 654.201241 | 527.573006 | 1077.0930810 | 145.990606 | 101.958387 | 11.221040 |
IGHV3-49 | 318.4802290 | 116.3704819 | 198.9486219 | 17.2968396 | 500.3797001 | 38.4383698 | 105.1815920 | 29.3401887 | 56.0305175 | 3.7578080 | 77.5070454 | 5.4682432 | 964.328970 | 461.554259 | 706.4106482 | 79.615738 | 3230.413998 | 270.197980 |
IGHV3-23 | 940.7216984 | 827.3870548 | 1078.8117590 | 155.8662025 | 406.4638638 | 31.5224184 | 368.3802249 | 216.1259312 | 479.9200884 | 50.9259112 | 116.6317075 | 4.5833076 | 2402.293212 | 3167.455819 | 2425.0595869 | 477.051319 | 1416.534801 | 216.800388 |
ADAM12.1 | 5.2430737 | 2.4963164 | 4.0090258 | 1.5491357 | 3.1650953 | 7.6145225 | 3.0548055 | 1.2417443 | 2.1464867 | 0.6925006 | 1.2474757 | 2.9782353 | 8.998878 | 5.018421 | 7.4877183 | 3.465443 | 8.030480 | 19.468225 |
FGFRL1 | 6.2611828 | 7.8249778 | 4.8572349 | 6.6833212 | 5.9222232 | 7.7778506 | 4.7031640 | 5.4424398 | 3.4727956 | 4.5342807 | 3.7175132 | 4.8018096 | 8.335327 | 11.250520 | 6.7935847 | 9.850908 | 9.434460 | 12.598367 |
IL36G | 2.7137709 | 0.2500280 | 0.2910324 | 0.6933905 | 0.4176179 | 0.1172444 | 0.2193767 | 0.0099191 | 0.0151667 | 0.0211411 | 0.0056096 | 0.0010308 | 33.570354 | 6.302371 | 5.5845859 | 22.741957 | 31.090509 | 13.335847 |
BLK | 2.5613159 | 2.8064025 | 3.4195679 | 1.5439398 | 1.3797023 | 1.9300642 | 1.6106950 | 1.6207458 | 2.1312914 | 0.8267426 | 0.6368195 | 0.8505196 | 4.072986 | 4.859426 | 5.4865537 | 2.883304 | 2.989196 | 4.379850 |
SAA1 | 28.9036424 | 5.1281536 | 7.3222136 | 1.3259118 | 15.5876583 | 34.2866094 | 4.8281301 | 0.5508635 | 0.9425296 | 0.1098707 | 0.7653814 | 1.4752343 | 173.031906 | 47.739519 | 56.8839540 | 16.001015 | 317.456229 | 796.871112 |
CILP | 35.4946119 | 70.7185855 | 14.4937624 | 51.3298849 | 43.8444724 | 71.2805236 | 16.0307054 | 29.1753805 | 5.4851887 | 19.4941384 | 13.9480147 | 21.5622062 | 78.590894 | 171.415702 | 38.2975244 | 135.156375 | 137.821604 | 235.639757 |
EMILIN3 | 2.7605305 | 5.7122239 | 0.3468891 | 4.1037785 | 1.1425403 | 4.1476108 | 1.5104738 | 2.7596692 | 0.1381292 | 1.8195270 | 0.3830247 | 1.4660145 | 5.045125 | 11.823700 | 0.8711557 | 9.255701 | 3.408130 | 11.734315 |
EMILIN2 | 30.8216346 | 23.1270044 | 37.3005036 | 33.6529884 | 38.2492888 | 35.8547740 | 26.0766974 | 18.7030941 | 30.8774326 | 26.7788797 | 28.9721406 | 26.7968846 | 36.429965 | 28.597318 | 45.0596910 | 42.291673 | 50.497066 | 47.974413 |
IGHJ6 | 411.9172371 | 228.0017937 | 333.1601604 | 72.0438020 | 403.5615024 | 86.2759658 | 69.3281680 | 24.1760209 | 61.9255246 | 6.2351369 | 64.6936801 | 4.6733772 | 2447.429597 | 2150.263608 | 1792.4061715 | 832.429107 | 2517.431161 | 1592.754427 |
CXCL9 | 65.5716886 | 25.2633747 | 56.4055334 | 13.4791866 | 9.3566156 | 10.2318955 | 25.7017909 | 7.8711090 | 19.3246013 | 3.7026566 | 1.9161150 | 1.9545700 | 167.289757 | 81.086173 | 164.6390605 | 49.069760 | 45.689459 | 53.562517 |
IGHV3OR16-12 | 4.5402163 | 4.2185263 | 2.4735396 | 0.3305456 | 1.7645228 | 0.7345045 | 1.3941223 | 0.9711074 | 0.6347234 | 0.0547623 | 0.2352107 | 0.0838919 | 14.786051 | 18.325433 | 9.6394722 | 1.995175 | 13.237241 | 6.430857 |
IGHV1OR21-1 | 0.4756891 | 0.9075291 | 1.5047880 | 0.8240433 | 0.1850942 | 0.1250000 | 0.1664639 | 0.2635246 | 0.4965519 | 0.2081891 | 0.0239578 | 0.0120623 | 1.359334 | 3.125360 | 4.5602221 | 3.261686 | 1.430009 | 1.295361 |
IGHV1-69 | 90.4940260 | 105.4155442 | 263.2645407 | 104.8860184 | 125.6101523 | 14.6090165 | 39.2588920 | 37.3270484 | 101.3602448 | 33.2849004 | 30.8025681 | 3.3414820 | 208.593985 | 297.704679 | 683.7810874 | 330.512537 | 512.227108 | 63.870870 |
IL2RA | 3.7562053 | 1.7869069 | 3.8963475 | 1.6757324 | 1.7232769 | 1.5347695 | 2.3837025 | 0.9628603 | 2.4156890 | 0.8829030 | 0.8100605 | 0.6772097 | 5.918976 | 3.316199 | 6.2845522 | 3.180507 | 3.666002 | 3.478269 |
IGHV2-70D | 41.5291831 | 20.3592259 | 58.6849465 | 6.9710229 | 17.3483513 | 1.8418858 | 17.6363681 | 7.0058072 | 22.0499942 | 2.1252117 | 4.0882417 | 0.3851985 | 97.790715 | 59.164928 | 156.1870225 | 22.866033 | 73.617294 | 8.807260 |
IGHV5-10-1 | 133.9183643 | 117.1640246 | 192.5504939 | 31.5297033 | 122.6297203 | 104.7328705 | 36.0781271 | 25.3006880 | 51.2885084 | 7.4553695 | 17.4016401 | 7.9938842 | 497.091444 | 542.570569 | 722.8849865 | 133.343115 | 864.174193 | 1372.170766 |
S100B | 14.4377496 | 14.1974270 | 22.4378966 | 11.0640242 | 13.4938676 | 33.5367082 | 7.3345173 | 6.1165212 | 10.3671028 | 4.3513003 | 4.3126849 | 10.2548275 | 28.420223 | 32.954506 | 48.5631535 | 28.132426 | 42.220674 | 109.676227 |
IL24 | 1.4160874 | 1.1674074 | 1.7676552 | 0.7237782 | 0.6612507 | 1.1878055 | 0.9609734 | 0.7059607 | 1.1821741 | 0.3847163 | 0.2982339 | 0.5877232 | 2.086742 | 1.930476 | 2.6431004 | 1.361665 | 1.466140 | 2.400589 |
IGHV3OR16-8 | 18.8224569 | 9.5950843 | 15.1138928 | 2.3662614 | 13.3607901 | 14.3792157 | 7.7578712 | 2.9290911 | 6.1522410 | 0.7459544 | 3.7615084 | 2.2117728 | 45.667797 | 31.431471 | 37.1295201 | 7.506080 | 47.457215 | 93.482406 |
FGFR2 | 2.3543526 | 1.5231307 | 0.9120056 | 1.2229624 | 0.7206342 | 0.9061504 | 1.1042379 | 0.5817560 | 0.3629698 | 0.4152740 | 0.1794752 | 0.2196150 | 5.019730 | 3.987801 | 2.2915246 | 3.601567 | 2.893513 | 3.738855 |
FGF14 | 0.9188282 | 1.8305534 | 0.8795628 | 1.7156739 | 2.3132829 | 1.6309814 | 0.6190849 | 1.2487274 | 0.5555778 | 1.1138378 | 1.4294500 | 0.9296847 | 1.363699 | 2.683473 | 1.3924796 | 2.642698 | 3.743592 | 2.861293 |
IGHJ3P | 145.9294371 | 89.7390368 | 139.6890608 | 24.2346133 | 28.0022900 | 14.3550764 | 69.8449824 | 35.8887019 | 60.1444962 | 8.7705922 | 8.0703361 | 3.8967415 | 304.895210 | 224.390805 | 324.4358992 | 66.964291 | 97.161783 | 52.882188 |
FGF2 | 1.8731183 | 2.9449178 | 2.1787119 | 3.7554829 | 1.9859282 | 3.4099108 | 1.3240295 | 1.9939340 | 1.4861792 | 2.4858794 | 1.1168334 | 1.9938050 | 2.649920 | 4.349462 | 3.1939523 | 5.673506 | 3.531333 | 5.831810 |
IL16 | 26.6338572 | 24.1515439 | 23.2671102 | 27.1702545 | 18.9990127 | 31.0767442 | 22.1678520 | 19.2600942 | 18.9118883 | 21.1415003 | 13.9463343 | 22.4649453 | 31.999598 | 30.285266 | 28.6252968 | 34.918181 | 25.882248 | 42.989823 |
LILRA5 | 8.4188674 | 6.8767861 | 11.4529494 | 5.8846392 | 7.9775228 | 10.1650340 | 6.0544255 | 4.5387996 | 7.9046755 | 3.6963449 | 4.5712739 | 5.7288427 | 11.706698 | 10.419096 | 16.5939829 | 9.368438 | 13.921911 | 18.036438 |
CXCL11 | 4.1926376 | 2.4082176 | 3.7852093 | 1.0491573 | 1.0168372 | 0.8921720 | 2.0437751 | 0.9690135 | 1.6605102 | 0.3627796 | 0.2759225 | 0.2244879 | 8.600854 | 5.984965 | 8.6285584 | 3.034159 | 3.747276 | 3.545718 |
IGHV7-40 | 4.0410745 | 0.6680766 | 1.4348842 | 0.2678342 | 0.6210134 | 0.1737184 | 1.0452033 | 0.1166984 | 0.2991980 | 0.0345152 | 0.0580428 | 0.0110776 | 15.624026 | 3.824613 | 6.8813716 | 2.078363 | 6.644364 | 2.724252 |
PHOSPHO1 | 4.2927466 | 7.6052889 | 4.5829437 | 3.4367675 | 4.5814744 | 4.8246311 | 2.7258452 | 4.3937329 | 2.7321974 | 1.8230721 | 2.1396778 | 2.1835113 | 6.760352 | 13.164300 | 7.6873556 | 6.478828 | 9.809845 | 10.660382 |
EAF2 | 8.1559946 | 5.1925955 | 10.3149093 | 5.0726017 | 5.7110124 | 4.2127624 | 5.9140279 | 3.5052660 | 7.3785031 | 3.3609542 | 3.4581956 | 2.4307341 | 11.247875 | 7.692155 | 14.4199105 | 7.655947 | 9.431411 | 7.301238 |
IGHV5-78 | 2.8951365 | 3.6750970 | 2.7821533 | 1.0699636 | 5.3542086 | 2.8329389 | 1.2773781 | 1.3373735 | 1.0902916 | 0.3290647 | 1.3759852 | 0.6715812 | 6.561734 | 10.099152 | 7.0993643 | 3.479018 | 20.834200 | 11.950220 |
CXCL13 | 34.3875502 | 26.9578739 | 56.2502960 | 6.5388640 | 7.9451183 | 11.0678173 | 16.6451992 | 10.9322716 | 24.5594487 | 2.3809991 | 2.3135614 | 3.0653257 | 71.041722 | 66.475385 | 128.8341540 | 17.957479 | 27.284732 | 39.962010 |
IGHV7-27 | 2.6166853 | 0.2242760 | 1.8351688 | 0.2327794 | 1.0349855 | 0.5986291 | 0.7127532 | 0.0362055 | 0.4114229 | 0.0312680 | 0.1111337 | 0.0552486 | 9.606469 | 1.389284 | 8.1858470 | 1.732965 | 9.638792 | 6.486256 |
PPIL4 | 9.8675383 | 9.4349051 | 9.2525866 | 11.8069073 | 9.6255151 | 12.4124137 | 8.1728411 | 7.4612844 | 7.4435374 | 9.1550596 | 7.0032677 | 9.0262444 | 11.913643 | 11.930578 | 11.5013003 | 15.226887 | 13.229616 | 17.068894 |
IGLV4-3 | 3.2746770 | 5.1305456 | 2.0187496 | 1.2805470 | 1.1728042 | 0.5206835 | 0.9754104 | 1.1457196 | 0.5002862 | 0.2351746 | 0.1463548 | 0.0544524 | 10.993844 | 22.974642 | 8.1460375 | 6.972694 | 9.398189 | 4.978869 |
IL36RN | 2.4738840 | 0.3268918 | 0.3854628 | 1.0315749 | 0.8933628 | 0.1256238 | 0.3582997 | 0.0269224 | 0.0393643 | 0.0708579 | 0.0333675 | 0.0029092 | 17.080959 | 3.969121 | 3.7745225 | 15.018036 | 23.918386 | 5.424689 |
IL2RG | 32.8309600 | 23.6801432 | 42.5463280 | 16.7873895 | 17.8391493 | 20.0733867 | 23.2151011 | 15.4606283 | 29.0283527 | 10.4067217 | 10.2232165 | 10.8570804 | 46.429775 | 36.269495 | 62.3593782 | 27.080233 | 31.128681 | 37.113187 |
IGHV1OR15-4 | 12.0915817 | 7.2472411 | 28.6215571 | 7.0629254 | 4.9822015 | 3.1465857 | 6.0611466 | 3.0540928 | 13.0514886 | 2.7158823 | 1.5330688 | 0.9037637 | 24.121896 | 17.197416 | 62.7662910 | 18.367849 | 16.191271 | 10.955300 |
HHIP | 2.2252305 | 1.7506563 | 1.9088433 | 4.6428720 | 3.9204878 | 3.7647380 | 1.4773826 | 1.0307931 | 1.1811760 | 2.7695040 | 2.0615802 | 1.9186382 | 3.351637 | 2.973242 | 3.0847926 | 7.783437 | 7.455555 | 7.387142 |
PADI4 | 1.2612285 | 2.8101880 | 1.8211490 | 1.1615614 | 1.4745861 | 1.7232541 | 0.7138925 | 1.4650901 | 0.9772170 | 0.5264347 | 0.5768278 | 0.6580193 | 2.228203 | 5.390219 | 3.3939069 | 2.562948 | 3.769590 | 4.512945 |
SAA2 | 11.9071767 | 1.2565988 | 1.5784447 | 0.4209318 | 1.9646612 | 1.7337013 | 0.8825190 | 0.0485258 | 0.0794404 | 0.0110056 | 0.0242233 | 0.0175383 | 160.654742 | 32.540205 | 31.3629807 | 16.099376 | 159.346366 | 171.380603 |
LILRB3 | 18.0895994 | 15.4909569 | 22.3499024 | 16.9343137 | 15.6701735 | 19.9782091 | 14.1208561 | 11.3557725 | 16.8836572 | 12.0341979 | 10.2941943 | 12.9525110 | 23.173779 | 21.131961 | 29.5858968 | 23.829671 | 23.853672 | 30.814785 |
The q-values from each of the p-value columns can be calculated using
glmmQvals
. This will print a significance table based on
the cut-off (default p=0.05) and add a matrix named qvals
to the @stats
slot:
results <- glmmQvals(results)
##
## Timepoint
## ---------
## Not Significant Significant
## 29 17
##
## EULAR_6m
## --------
## Not Significant Significant
## 41 5
##
## Timepoint:EULAR_6m
## ------------------
## Not Significant
## 46
The glmmTMB
package is an alternative to
lme4
for fitting negative binomial GLMM models. Note, that
this package optimises the dispersion parameter for each GLMM model.
This has the advantage that a predefined list of dispersions for each
gene is not required. But it also means that model fitting is
significantly slower than a negative binomial GLMM fit by
lme4::glmer
with family function
MASS::negative.binomial
for which the dispersion parameter
must be pre-specified. Each glmmTMB
model takes about 0.8
seconds, so that even with 8 cores, a typical transcriptome of 20,000
genes would take about 30 minutes, although this will vary depending on
the complexity of the design formula. In comparison, the standard
glmer
pipeline with known dispersions supplied takes about
2 minutes on 8 cores.
Although glmmTMB
is slower than lme::glmer
with known dispersion, glmmTMB
is still faster than the
equivalent lme4
function glmer.nb
when the
dispersion is unknown.
Setting method = "glmmTMB"
when calling
glmmSeq()
switches from using lme4::glmer
(the
default) to the glmmTMB
package. The
dispersion
argument is then no longer required. The
family
argument can be used to specify different family
functions and glmmTMB
provides nbinom1
and
nbinom2
(glmmSeq
uses the latter by default).
Other family functions e.g. poisson
can be used.
An alternative to fitting negative binomial GLMM is to use
transformed data and fit gaussian LMM. The lmmSeq
function
will fit many LMM across genes (or other data) where random
effects/mixed effects models are useful. It is almost 3x faster than
glmmSeq
. For example, gaussian normalised DNA methylation
data can be analysed using this method. In the example below the RNA-Seq
gene expression data is log transformed so that it is approximately
Gaussian. Alternatively variance stabilising transformation (VST) can be
applied to count data through DESeq2 or the voom transformation in limma
voom.
logtpm <- log2(tpm + 1)
lmmres <- lmmSeq(~ Timepoint * EULAR_6m + (1 | PATID),
maindata = logtpm,
metadata = metadata,
progress = TRUE)
##
## n = 123 samples, 82 individuals
## Time difference of 0.7561669 secs
summary(lmmres, "MS4A1")
## Linear mixed model
## Formula: gene ~ Timepoint + EULAR_6m + (1 | PATID) + Timepoint:EULAR_6m
## AIC logLik meanExp
## 503.415984 -243.707992 2.590358
##
## Fixed effects:
## Estimate Std. Error
## (Intercept) 2.614919 0.30012
## Timepoint 0.024789 0.06841
## EULAR_6mModerate 0.860136 0.45592
## EULAR_6mNon-response -0.983157 0.58504
## Timepoint:EULAR_6mModerate -0.256884 0.10233
## Timepoint:EULAR_6mNon-response -0.009612 0.12407
##
## Analysis of Deviance Table (Type II Wald chisquare tests)
## Chisq Df Pr(>Chisq)
## Timepoint 2.321 1 0.12767
## EULAR_6m 6.098 2 0.04740
## Timepoint:EULAR_6m 7.134 2 0.02823
By default, p-values for each model term are computed using Wald type
2 Chi-squared test as per car::Anova()
. The underlying code
for this has been optimised for speed.
For LMM via lmmSeq()
, an alternative to the Wald type 2
Chi-squared test is an F-test with Satterthwaite denominator degrees of
freedom, which has been implemented using the lmerTest
package and is enabled using test.stat = "F"
. This is not
available for GLMM.
However, if a reduced model formula is specified by setting
reduced
, then a likelihood ratio test is performed instead
using anova
. This will double computation time since two
(G)LMM have to be fitted for each gene. For further information on
inference testing on GLMM, we recommend Ben
Bolker’s GLMM FAQ page.
glmmLRT <- glmmSeq(~ Timepoint * EULAR_6m + (1 | PATID),
reduced = ~ Timepoint + EULAR_6m + (1 | PATID),
countdata = tpm,
metadata = metadata,
dispersion = disp, verbose = FALSE)
summary(glmmLRT, "MS4A1")
## Generalised linear mixed model
## Method: lme4
## Family: Negative Binomial
## Formula: count ~ Timepoint + EULAR_6m + (1 | PATID) + Timepoint:EULAR_6m
## Dispersion AIC logLik meanExp
## 3.789428 898.682864 -441.341432 2.591740
##
## Fixed effects:
## Estimate Std. Error
## (Intercept) 2.73637 0.33669
## Timepoint 0.04908 0.08941
## EULAR_6mModerate 0.19330 0.51103
## EULAR_6mNon-response -1.72376 0.67780
## Timepoint:EULAR_6mModerate -0.21080 0.13478
## Timepoint:EULAR_6mNon-response 0.17462 0.16558
##
## Likelihood ratio test
## Reduced formula: count ~ Timepoint + EULAR_6m + (1 | PATID)
## Chisq Df Pr(>Chisq)
## 4.85 2 0.08846
Similarly you can run the script for an individual gene (make sure
you use drop = FALSE
to maintain countdata
as
a matrix).
MS4A1glmm <- glmmSeq(~ Timepoint * EULAR_6m + (1 | PATID),
countdata = tpm["MS4A1", , drop = FALSE],
metadata = metadata,
dispersion = disp,
verbose = FALSE)
The (g)lmer or glmmTMB fitted object for a single gene can be
obtained using the function glmmRefit()
:
fit <- glmmRefit(results, gene = "MS4A1")
## boundary (singular) fit: see help('isSingular')
fit
## Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) [
## glmerMod]
## Family: Negative Binomial(0.2639) ( log )
## Formula: count ~ Timepoint + EULAR_6m + (1 | PATID) + Timepoint:EULAR_6m
## Data: data
## Offset: offset
## AIC BIC logLik deviance df.resid
## 898.6829 921.1803 -441.3414 882.6829 115
## Random effects:
## Groups Name Std.Dev.
## PATID (Intercept) 0
## Number of obs: 123, groups: PATID, 82
## Fixed Effects:
## (Intercept) Timepoint
## 2.73637 0.04908
## EULAR_6mModerate EULAR_6mNon-response
## 0.19330 -1.72376
## Timepoint:EULAR_6mModerate Timepoint:EULAR_6mNon-response
## -0.21080 0.17462
## optimizer (bobyqa) convergence code: 0 (OK) ; 0 optimizer warnings; 1 lme4 warnings
These (g)lmer objects can be passed to other packages notably
emmeans
for visualising estimated marginal means. Note
these are based on the model, not directly on the data.
library(emmeans)
emmeans(fit, ~ Timepoint | EULAR_6m)
## EULAR_6m = Good:
## Timepoint emmean SE df asymp.LCL asymp.UCL
## 0 2.74 0.337 Inf 2.08 3.40
## 6 3.03 0.418 Inf 2.21 3.85
##
## EULAR_6m = Moderate:
## Timepoint emmean SE df asymp.LCL asymp.UCL
## 0 2.93 0.384 Inf 2.18 3.68
## 6 1.96 0.467 Inf 1.04 2.88
##
## EULAR_6m = Non-response:
## Timepoint emmean SE df asymp.LCL asymp.UCL
## 0 1.01 0.588 Inf -0.14 2.17
## 6 2.35 0.594 Inf 1.19 3.52
##
## Results are given on the log (not the response) scale.
## Confidence level used: 0.95
emmip(fit, ~ Timepoint | EULAR_6m)
glmmRefit()
allows a different model to be fitted using
the original data. The example below shows how to refit the model
without the interaction term and then perform a likelihood ratio test
using anova
. Note for glmmSeq()
objects the
LHS of the reduced formula must be "count"
, while for
lmmSeq()
objects the LHS must be "gene"
. For
glmmTMB analyses, the GLM family can also be changed.
fit2 <- glmmRefit(results, gene = "MS4A1",
formula = count ~ Timepoint + EULAR_6m + (1 | PATID))
anova(fit, fit2)
## Data: data
## Models:
## fit2: count ~ Timepoint + EULAR_6m + (1 | PATID)
## fit: count ~ Timepoint + EULAR_6m + (1 | PATID) + Timepoint:EULAR_6m
## npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
## fit2 6 899.53 916.41 -443.77 887.53
## fit 8 898.68 921.18 -441.34 882.68 4.8505 2 0.08846 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
For variables such as time, which are matched according to an ID (the random effect), we can examine the fitted model using plots which show estimated means and confidence intervals based on coefficients for the fitted regression model, overlaid upon the underlying data. In this case the samples are matched longitudinally over time.
Plots can be viewed using either ggplot or base graphics. We can start looking at the gene with the most significant interaction IGHV3-23:
plotColours <- c("skyblue", "goldenrod1", "mediumseagreen")
modColours <- c("dodgerblue3", "goldenrod3", "seagreen4")
shapes <- c(17, 19, 18)
ggmodelPlot(results,
geneName = "IGHV3-23",
x1var = "Timepoint",
x2var="EULAR_6m",
xlab="Time",
colours = plotColours,
shapes = shapes,
lineColours = plotColours,
modelColours = modColours,
modelSize = 10)
Alternatively plots can be generated using base graphics, here with
or without the model fit overlaid. By default p-value labels are taken
from the column names of the pvals
object in the
stats
slot of the S4 result object. These can be relabelled
using the plab
argument.
oldpar <- par(mfrow=c(1, 2))
modelPlot(results2,
geneName = "FGF14",
x1var = "Timepoint",
x2var="EULAR_binary",
fontSize=0.65,
colours=c("coral", "mediumseagreen"),
modelColours = c("coral", "mediumseagreen"),
modelLineColours = "black",
modelSize = 2)
modelPlot(results,
geneName = "EMILIN3",
x1var = "Timepoint",
x2var = "EULAR_6m",
colours = plotColours,
plab = c("time", "response", "time:response"),
addModel = FALSE)
par(oldpar)
To plot the model fits alone set addPoints = FALSE
.
library(ggpubr)
p1 <- ggmodelPlot(results,
"ADAM12",
x1var="Timepoint",
x2var="EULAR_6m",
xlab="Time",
addPoints = FALSE,
colours = plotColours)
p2 <- ggmodelPlot(results,
"EMILIN3",
x1var="Timepoint",
x2var="EULAR_6m",
xlab="Time",
fontSize=8,
x2Offset=1,
addPoints = FALSE,
colours = plotColours)
ggarrange(p1, p2, ncol=2, common.legend = T, legend="bottom")
The comparative fold change (for x1var
variables)
between conditions (x2var
and x2Values
variables) can be plotted using an fcPlot
for all genes to
highlight significance. This type of plot is most suited to look for
interaction between time (x1var
) and a two-level factor
(x2var
), looking at change between two timepoints. In the
example below from the R4RA study [1], gene expression pre- and
post-drug treatment is compared between two drugs (rituximab &
tocilizumab), using the design formula
gene_counts ~ time * drug
. By setting
graphics = "plotly"
this can be viewed interactively.
r4ra_glmm <- glmmSeq(~ time * drug + (1 | Patient_ID),
countdata = tpmdata, metadata,
dispersion = dispersions, cores = 8, removeSingles = T)
r4ra_glmm <- glmmQvals(r4ra_glmm)
labels = c(..) # Genes to label
fcPlot(r4ra_glmm, x1var = "time", x2var = "drug", graphics = "plotly",
pCutoff = 0.05, useAdjusted = TRUE,
labels = labels,
colours = c('grey', 'green3', 'gold3', 'blue'))
Log2 fold change between the two time points for individuals treated with rituximab on the x axis and individuals treated with tocilizumab on the y axis with each point representing a gene. Genes showing an interaction between time and drug are coloured blue or gold depending on whether their fold change is greater post-rituximab (blue) or post-tocilizumab (gold). Genes without interaction, but changing significantly over time are coloured green and tend to lie along the line of identity. See the Longitudinal tab in https://r4ra.hpc.qmul.ac.uk for an interactive version of the above plot.
An MA plot is an application of a Bland–Altman plot. The plot visualizes the differences between measurements taken in two samples, by transforming the data onto M (log ratio) and A (mean average) scales, then plotting these values.
labels = c('MS4A1', 'FGF14', 'IL2RG', 'IGHV3-23', 'ADAM12', 'IL36G',
'BLK', 'SAA1', 'CILP', 'EMILIN3', 'EMILIN2', 'IGHJ6',
'CXCL9', 'CXCL13')
maPlots <- maPlot(results,
x1var="Timepoint",
x2var="EULAR_6m",
x2Values=c("Good", "Non-response"),
colours=c('grey', 'midnightblue',
'mediumseagreen', 'goldenrod'),
labels=labels,
graphics="ggplot")
maPlots$combined
Mixed effects models are tricky to fit and lme4::glmer
sometimes returns errors. In fact, a significant amount of code in
glmmSeq
is devoted to catching and handling errors to allow
parallelisation to continue. Errors in genes are stored in the
errors
slot.
results@errors[1] # first gene error
## IL12A
## "Error in (function (fr, X, reTrms, family, nAGQ = 1L, verbose = 0L, maxit = 100L, : \n PIRLS loop resulted in NaN value\n"
Sometimes glmmSeq
returns errors in all genes. This
usually means a problem with not enough samples in each timepoint or a
mistake in the formula. Since version 0.5.5 glmmSeq
now
returns a vector of the error messages for all genes, which can be
useful for debugging. In the example below, only timepoint 0 is
specified.
results3 <- glmmSeq(~ Timepoint * EULAR_6m + (1 | PATID),
countdata = tpm[, metadata$Timepoint == 0],
metadata = metadata[metadata$Timepoint == 0, ],
dispersion = disp)
##
## n = 72 samples, 72 individuals
## All genes returned an error. Check call. Check sufficient data in each group
## MS4A1
## "fixed-effect model matrix is rank deficient so dropping 3 columns / coefficients"
If there are errors which are not caught by the error checking core
mechanism, this can lead to problems with grouping results after the
core models have been fit. Setting returnList=TRUE
when
calling glmmSeq
returns the list output direct from
mclapply
(or parLapply
on windows). This can
be helpful for debugging unforeseeen problems in the core loop.
glmmSeq was developed by the bioinformatics team at the Experimental Medicine & Rheumatology department and Centre for Translational Bioinformatics at Queen Mary University London.
If you use this package please cite as:
citation("glmmSeq")
##
## To cite package 'glmmSeq' in publications use:
##
## Lewis M, Goldmann K, Sciacca E (????). _glmmSeq: General Linear Mixed Models
## for Gene-Level Differential Expression_.
## https://myles-lewis.github.io/glmmSeq/,
## https://github.com/myles-lewis/glmmSeq.
##
## A BibTeX entry for LaTeX users is
##
## @Manual{,
## title = {glmmSeq: General Linear Mixed Models for Gene-Level Differential Expression},
## author = {Myles Lewis and Katriona Goldmann and Elisabetta Sciacca},
## note = {https://myles-lewis.github.io/glmmSeq/, https://github.com/myles-lewis/glmmSeq},
## }
Statistical software used in this package:
lme4: Douglas Bates, Martin Maechler, Ben Bolker, Steve Walker (2015). Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software, 67(1), 1-48. doi: 10.18637/jss.v067.i01.
car: John Fox and Sanford Weisberg (2019). An {R} Companion to Applied Regression, Third Edition. Thousand Oaks CA: Sage. URL: https://socialsciences.mcmaster.ca/jfox/Books/Companion/
MASS: Venables, W. N. & Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth Edition. Springer, New York. ISBN 0-387-95457-0
glmmTMB: Mollie Brooks, Ben Bolker, Kasper Kristensen, Martin Maechler, Arni Magnusson (2022). glmmTMB: Generalized Linear Mixed Models using Template Model Builder
qvalue: John D. Storey, Andrew J. Bass, Alan Dabney and David Robinson (2020). qvalue: Q-value estimation for false discovery rate control. R package version 2.22.0. https://github.com/StoreyLab/qvalue
lmerTest: Alexandra Kuznetsova, Per Brockhoff, Rune Christensen, Sofie Jensen. lmerTest: Tests in Linear Mixed Effects Models
emmeans: Russell V. Lenth, Paul Buerkner, Maxime Herve, Jonathon Love, Fernando Miguez, Hannes Riebl, Henrik Singmann. emmeans: Estimated Marginal Means, aka Least-Squares Means
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.