
Package ‘gipsDA’
February 3, 2026

Title Training DA Models Utilizing 'gips'

Version 0.1.2

URL https://AntoniKingston.github.io/gipsDA/,

https://github.com/AntoniKingston/gipsDA

BugReports https://github.com/AntoniKingston/gipsDA/issues

Description Extends classical linear and quadratic discriminant analysis
by incorporating permutation group symmetries into covariance matrix
estimation. The package leverages methodology from the 'gips'
framework to identify and impose permutation structures that act as a
form of regularization, improving stability and interpretability in
settings with symmetric or exchangeable features. Several discriminant
analysis variants are provided, including pooled and class-specific
covariance models, as well as multi-class extensions with shared or
independent symmetry structures. For more details about 'gips' methodology see
and Graczyk et al. (2022) <doi:10.1214/22-AOS2174> and Chojecki, Morgen,
Kołodziejek (2025, <doi:10.18637/jss.v112.i07>).

License GPL-3

Imports dplyr, ggplot2, gips, jsonlite, lattice, patchwork,
permutations, rlang, tibble, tidyr, MASS, numbers, stringi

Suggests mockery, testthat, roxygen2

Depends R (>= 2.10)

Encoding UTF-8

RoxygenNote 7.3.3

NeedsCompilation no

Author Antoni Zbigniew Kingston [aut],
Norbert Maksymilian Frydrysiak [aut, cre],
Adam Przemysław Chojecki [ctb] (ORCID:
<https://orcid.org/0009-0008-2902-4096>)

Maintainer Norbert Maksymilian Frydrysiak <norbert.frydrysiak@proton.me>

Repository CRAN

Date/Publication 2026-02-03 13:30:02 UTC

1

https://AntoniKingston.github.io/gipsDA/
https://github.com/AntoniKingston/gipsDA
https://github.com/AntoniKingston/gipsDA/issues
https://doi.org/10.1214/22-AOS2174
https://doi.org/10.18637/jss.v112.i07
https://orcid.org/0009-0008-2902-4096

2 find_MAP

Contents
find_MAP . 2
get_probabilities_from_gipsmult . 5
gipslda . 6
gipsmult . 8
gipsmultqda . 10
gipsqda . 13
log_posteriori_of_gipsmult . 15
plot.gipsmult . 16
print.gipsmult . 19

Index 21

find_MAP Find the Maximum A Posteriori Estimation

Description

Use one of the optimization algorithms to find the permutation that maximizes a posteriori proba-
bility based on observed data. Not all optimization algorithms will always find the MAP, but they
try to find a significant value.

Usage

find_MAP(
g,
max_iter = NA,
optimizer = NA,
show_progress_bar = TRUE,
save_all_perms = FALSE,
return_probabilities = FALSE

)

Arguments

g Object of a gipsmult class.

max_iter The number of iterations for an algorithm to perform. At least 2. For optimizer
= "BF", it is not used; for optimizer = "MH", it has to be finite; for optimizer
= "HC", it can be infinite.

optimizer The optimizer for the search of the maximum posteriori:

• "BF" (the default for unoptimized g with perm size <= 9) - Brute Force;
• "MH" (the default for unoptimized g with perm size > 10) - Metropolis-

Hastings;
• "HC" - Hill Climbing;
• "continue" (the default for optimized g) - The same as the g was optimized

by (see Examples).

find_MAP 3

See the Possible algorithms to use as optimizers section below for more de-
tails.

show_progress_bar

A boolean. Indicate whether or not to show the progress bar:

• When max_iter is infinite, show_progress_bar has to be FALSE;
• When return_probabilities = TRUE, then shows an additional progress

bar for the time when the probabilities are calculated.

save_all_perms A boolean. TRUE indicates saving a list of all permutations visited during opti-
mization. This can be useful sometimes but needs a lot more RAM.

return_probabilities

A boolean. TRUE can only be provided only when save_all_perms = TRUE. For:

• optimizer = "MH" - use Metropolis-Hastings results to estimate posterior
probabilities;

• optimizer = "BF" - use brute force results to calculate exact posterior prob-
abilities.

These additional calculations are costly, so a second and third progress bar is
shown (when show_progress_bar = TRUE).
To examine probabilities after optimization, call get_probabilities_from_gipsmult().

Details

find_MAP() can produce a warning when:

• the optimizer "hill_climbing" gets to the end of its max_iter without converging.

• the optimizer will find the permutation with smaller n0 than number_of_observations

Value

Returns an optimized object of a gipsmult class.

Possible algorithms to use as optimizers

For every algorithm, there are some aliases available.

• "brute_force", "BF", "full" - use the Brute Force algorithm that checks the whole per-
mutation space of a given size. This algorithm will find the actual Maximum A Posteriori
Estimation, but it is very computationally expensive for bigger spaces. We recommend Brute
Force only for p <= 9.

• "Metropolis_Hastings", "MH" - use the Metropolis-Hastings algorithm; see Wikipedia.
The algorithm will draw a random transposition in every iteration and consider changing the
current state (permutation). When the max_iter is reached, the algorithm will return the best
permutation calculated as the MAP Estimator. This algorithm used in this context is a special
case of the Simulated Annealing the user may be more familiar with; see Wikipedia.

• "hill_climbing", "HC" - use the hill climbing algorithm; see Wikipedia. The algorithm
will check all transpositions in every iteration and go to the one with the biggest a posteriori
value. The optimization ends when all neighbors will have a smaller a posteriori value. If
the max_iter is reached before the end, then the warning is shown, and it is recommended to

https://en.wikipedia.org/wiki/Metropolis%E2%80%93Hastings_algorithm
https://en.wikipedia.org/wiki/Simulated_annealing
https://en.wikipedia.org/wiki/Hill_climbing

4 find_MAP

continue the optimization on the output of the find_MAP() with optimizer = "continue";
see examples. Remember that p*(p-1)/2 transpositions will be checked in every iteration.
For bigger p, this may be costly.

See Also

• gipsmult() - The constructor of a gipsmult class. The gipsmult object is used as the g
parameter of find_MAP().

• plot.gipsmult() - Practical plotting function for visualizing the optimization process.

• get_probabilities_from_gipsmult() - When find_MAP(return_probabilities = TRUE)
was called, probabilities can be extracted with this function.

• log_posteriori_of_gipsmult() - The function that the optimizers of find_MAP() tries to
find the argmax of.

Examples

require("MASS") # for mvrnorm()

perm_size <- 6
mu1 <- runif(6, -10, 10)
mu2 <- runif(6, -10, 10) # Assume we don't know the means
sigma1 <- matrix(

data = c(
1.0, 0.8, 0.6, 0.4, 0.6, 0.8,
0.8, 1.0, 0.8, 0.6, 0.4, 0.6,
0.6, 0.8, 1.0, 0.8, 0.6, 0.4,
0.4, 0.6, 0.8, 1.0, 0.8, 0.6,
0.6, 0.4, 0.6, 0.8, 1.0, 0.8,
0.8, 0.6, 0.4, 0.6, 0.8, 1.0

),
nrow = perm_size, byrow = TRUE

)
sigma2 <- matrix(

data = c(
1.0, 0.5, 0.2, 0.0, 0.2, 0.5,
0.5, 1.0, 0.5, 0.2, 0.0, 0.2,
0.2, 0.5, 1.0, 0.5, 0.2, 0.0,
0.0, 0.2, 0.5, 1.0, 0.5, 0.2,
0.2, 0.0, 0.2, 0.5, 1.0, 0.5,
0.5, 0.2, 0.0, 0.2, 0.5, 1.0

),
nrow = perm_size, byrow = TRUE

)
sigma1 and sigma2 are matrices invariant under permutation (1,2,3,4,5,6)
numbers_of_observations <- c(21, 37)
Z1 <- MASS::mvrnorm(numbers_of_observations[1], mu = mu1, Sigma = sigma1)
Z2 <- MASS::mvrnorm(numbers_of_observations[2], mu = mu2, Sigma = sigma2)
S1 <- cov(Z1)
S2 <- cov(Z2) # Assume we have to estimate the mean

g <- gipsmult(list(S1, S2), numbers_of_observations)

get_probabilities_from_gipsmult 5

g_map <- find_MAP(g, max_iter = 5, show_progress_bar = FALSE, optimizer = "Metropolis_Hastings")
g_map

g_map2 <- find_MAP(g_map, max_iter = 5, show_progress_bar = FALSE, optimizer = "continue")

if (require("graphics")) {
plot(g_map2, type = "both", logarithmic_x = TRUE)

}

g_map_BF <- find_MAP(g, show_progress_bar = FALSE, optimizer = "brute_force")

get_probabilities_from_gipsmult

Extract probabilities for gipsmult object optimized with
return_probabilities = TRUE

Description

After the gipsmult object was optimized with the find_MAP(return_probabilities = TRUE)
function, then those calculated probabilities can be extracted with this function.

Usage

get_probabilities_from_gipsmult(g)

Arguments

g An object of class gipsmult. A result of a find_MAP(return_probabilities
= TRUE).

Value

Returns a numeric vector, calculated values of probabilities. Names contain permutations this
probabilities represent. For gipsmult object optimized with find_MAP(return_probabilities
= FALSE), it returns a NULL object. It is sorted according to the probability.

See Also

• find_MAP() - The get_probabilities_from_gipsmult() is called on the output of find_MAP(return_probabilities
= TRUE, save_all_perms = TRUE).

Examples

Ss <- list(
matrix(c(1, 0.5, 0.5, 2), nrow = 2, byrow = TRUE),
matrix(c(2, 1, 3, 7), nrow = 2, byrow = TRUE)

)
noo <- c(10, 13)

6 gipslda

g <- gipsmult(Ss, noo)
g_map <- find_MAP(g,

optimizer = "BF", show_progress_bar = FALSE,
return_probabilities = TRUE, save_all_perms = TRUE

)

get_probabilities_from_gipsmult(g_map)

gipslda Linear Discriminant Analysis with gips Covariance Projection

Description

Linear discriminant analysis (LDA) using covariance matrices projected via the gips framework to
enforce permutation symmetry and improve numerical stability.

Usage

gipslda(x, ...)

S3 method for class 'formula'
gipslda(formula, data, ..., subset, na.action)

Default S3 method:
gipslda(x, grouping, prior = proportions,
tol = 1e-4, weighted_avg = FALSE,
MAP = TRUE, optimizer = NULL, max_iter = NULL, ...)

S3 method for class 'data.frame'
gipslda(x, ...)

S3 method for class 'matrix'
gipslda(x, grouping, ..., subset, na.action)

Arguments

x (required if no formula is given as the principal argument) a matrix or data frame
or Matrix containing the explanatory variables.

... Arguments passed to or from other methods.

formula A formula of the form groups ~ x1 + x2 + The response is the grouping
factor and the right-hand side specifies the (non-factor) discriminators.

data An optional data frame, list or environment from which variables specified in
formula are preferentially taken.

grouping (required if no formula principal argument is given) a factor specifying the class
for each observation.

prior The prior probabilities of class membership. If unspecified, the class proportions
for the training set are used.

gipslda 7

tol A tolerance to decide if a matrix is singular; variables whose variance is less
than tol^2 are rejected.

subset An index vector specifying the cases to be used in the training sample. (NOTE:
must be named.)

na.action A function specifying the action for NAs. #’ @param weighted_avg Logical; if
TRUE, uses a weighted average of class-specific covariance matrices instead of
the pooled covariance.

MAP Logical; whether to compute a Maximum A Posteriori gips projection of the
covariance matrix.

optimizer Character; optimization method used by gips (e.g. "BF" or "MH").

max_iter Maximum number of iterations for the optimizer.

weighted_avg Logical; Whether to compute scatter from all classes at once or to compute
them within classes and compute the main one as average weighted by class
proportions.

Details

This function is a minor modification of lda, replacing the classical sample covariance estimators
by projected covariance matrices obtained using project_covs().

Unlike classical LDA, the within-class covariance matrix is first projected onto a permutation-
invariant structure using the gips framework. This can stabilize covariance estimation in high di-
mensions or when symmetry assumptions are justified.

The choice of optimizer and MAP estimation affects both the covariance estimate and the resulting
discriminant directions.

See Chojecki et al. (2025) for theoretical background.

Value

An object of class "gipslda" containing:

• prior: prior class probabilities

• counts: number of observations per class

• means: group means

• scaling: linear discriminant coefficients

• svd: singular values of the between-class scatter

• N: number of observations

• optimization_info: information about the gips optimization

• call: matched call

Note

This function is inspired by lda but is not a drop-in replacement. The covariance estimator, opti-
mization procedure, and returned object differ substantially.

8 gipsmult

References

Chojecki, A., et al. (2025). Learning Permutation Symmetry of a Gaussian Vector with gips in R.
Journal of Statistical Software, 112(7), 1–38. doi:10.18637/jss.v112.i07

See Also

lda, gips

Examples

Iris <- data.frame(rbind(iris3[, , 1], iris3[, , 2], iris3[, , 3]),
Sp = rep(c("s", "c", "v"), rep(50, 3))

)
train <- sample(1:150, 75)
z <- gipslda(Sp ~ ., Iris, prior = c(1, 1, 1) / 3, subset = train)
predict(z, Iris[-train,])$class
(z1 <- update(z, . ~ . - Petal.W.))

gipsmult The constructor of a gipsmult class.

Description

Create a gipsmult object. This object will contain initial data and all other information needed
to find the most likely invariant permutation. It will not perform optimization. One must call the
find_MAP() function to do it. See the examples below.

Usage

gipsmult(
Ss,
numbers_of_observations,
delta = 3,
D_matrices = NULL,
was_mean_estimated = TRUE,
perm = ""

)

new_gipsmult(
list_of_gips_perm,
Ss,
numbers_of_observations,
delta,
D_matrices,
was_mean_estimated,
optimization_info

)

https://doi.org/10.18637/jss.v112.i07

gipsmult 9

Arguments

Ss A list of matrices; empirical covariance matrices. When Z is the observed data
from single class:

• if one does not know the theoretical mean and has to estimate it with the ob-
served mean, use S = cov(Z), and leave parameter was_mean_estimated =
TRUE as default;

• if one know the theoretical mean is 0, use S = (t(Z) %*% Z) / number_of_observations,
and set parameter was_mean_estimated = FALSE.

numbers_of_observations

Numbers of data points that Ss is based on.

delta A number, hyper-parameter of a Bayesian model. It has to be strictly bigger than
1. See the Hyperparameters section below.

D_matrices A list of symmetric, positive-definite matrices of the same size as matrices in Ss.
Hyper-parameter of a Bayesian model. When NULL, the (hopefully) reasonable
one is derived from the data. For more details, see the Hyperparameters section
below.

was_mean_estimated

A boolean.

• Set TRUE (default) when your S parameter is a result of a stats::cov()
function.

• Set FALSE when your S parameter is a result of a (t(Z) %*% Z) / number_of_observations
calculation.

perm An optional permutation to be the base for the gipsmult object. It can be of a
gips_perm or a permutation class, or anything the function permutations::permutation()
can handle. It can also be of a gipsmult class, but it will be interpreted as the
underlying gips_perm.

list_of_gips_perm

A list with a single element of a gips_perm class. The base object for the
gipsmult object.

optimization_info

For internal use only. NULL or the list with information about the optimization
process.

Value

gipsmult() returns an object of a gipsmult class after the safety checks.

new_gipsmult() returns an object of a gipsmult class without the safety checks.

Functions

• new_gipsmult(): Constructor. It is only intended for low-level use.

Methods for a gipsmult class

• plot.gipsmult()

• print.gipsmult()

10 gipsmultqda

Hyperparameters

We encourage the user to try D_matrix = d * I, where I is an identity matrix of a size p x p and d >
0 for some different d. When d is small compared to the data (e.g., d = 0.1 * mean(diag(S))), big-
ger structures will be found. When d is big compared to the data (e.g., d = 100 * mean(diag(S))),
the posterior distribution does not depend on the data.

Taking D_matrix = d * I is equivalent to setting S <- S / d.

The default for D_matrix is D_matrix = d * I, where d = mean(diag(S)), which is equivalent to
modifying S so that the mean value on the diagonal is 1.

In the Bayesian model, the prior distribution for the covariance matrix is a generalized case of
Wishart distribution.

See Also

• stats::cov() – The Ss parameter, as a list of empirical covariance matrices, is most of the
time a result of the cov() function. For more information, see Wikipedia - Estimation of
covariance matrices.

• find_MAP() – The function that finds the Maximum A Posteriori (MAP) Estimator for a given
gipsmult object.

• gips::gips_perm() – The constructor of a gips_perm class. The gips_perm object is used
as the base object for the gipsmult object.

Examples

perm_size <- 5
numbers_of_observations <- c(15, 18, 19)
Sigma <- diag(rep(1, perm_size))
n_matrices <- 3
df <- 20
Ss <- rWishart(n = n_matrices, df = df, Sigma = Sigma)
Ss <- lapply(1:n_matrices, function(x) Ss[, , x])
g <- gipsmult(Ss, numbers_of_observations)

g_map <- find_MAP(g, show_progress_bar = FALSE, optimizer = "brute_force")
g_map

print(g_map)

if (require("graphics")) {
plot(g_map, type = "MLE", logarithmic_x = TRUE)

}

gipsmultqda Quadratic Discriminant Analysis with multiple gips-projected covari-
ances

https://en.wikipedia.org/wiki/Wishart_distribution
https://en.wikipedia.org/wiki/Estimation_of_covariance_matrices
https://en.wikipedia.org/wiki/Estimation_of_covariance_matrices

gipsmultqda 11

Description

Quadratic Discriminant Analysis (QDA) in which each class covariance matrix is projected using
the gipsmult framework, allowing for structured permutation symmetry across multiple covariance
matrices.

Usage

gipsmultqda(x, ...)

S3 method for class 'formula'
gipsmultqda(formula, data, ..., subset, na.action)

Default S3 method:
gipsmultqda(x, grouping, prior = proportions,
nu = 5, MAP = TRUE, optimizer = NULL, max_iter = NULL, ...)

S3 method for class 'data.frame'
gipsmultqda(x, ...)

S3 method for class 'matrix'
gipsmultqda(x, grouping, ..., subset, na.action)

Arguments

x (required if no formula is given as the principal argument) a matrix or data frame
containing the explanatory variables.

... Arguments passed to or from other methods.

formula A formula of the form groups ~ x1 + x2 + The response is the grouping
factor and the right-hand side specifies the (non-factor) discriminators.

data An optional data frame, list or environment from which variables specified in
formula are preferentially taken.

grouping A factor specifying the class for each observation.

prior Prior probabilities of class membership. Must sum to one.

nu Degrees of freedom parameter used internally during covariance projection.

MAP Logical; if TRUE, a maximum a posteriori covariance projection is used.

optimizer Character string specifying the optimization method used for covariance projec-
tion. If NULL, a default choice is made based on the problem dimension.

max_iter Maximum number of iterations for stochastic optimizers.

subset An index vector specifying the cases to be used in the training sample. (NOTE:
must be named.)

na.action A function specifying the action to be taken if NAs are found.

12 gipsmultqda

Details

This function is a modification of qda in which the class-specific covariance matrices are jointly
projected to improve numerical stability and exploit shared symmetry assumptions.

In contrast to classical QDA, which estimates each class covariance matrix independently, gipsmultqda
performs a joint projection of all class covariance matrices using the gipsmult framework. This
allows the incorporation of shared permutation symmetries and can improve classification perfor-
mance in high-dimensional or small-sample regimes.

Several classification rules are available via predict.gipsmultqda, including plug-in, predictive,
debiased, and leave-one-out cross-validation.

Value

An object of class "gipsmultqda" containing:

• prior: prior probabilities of the groups

• counts: number of observations per group

• means: group means

• scaling: array of group-specific scaling matrices derived from the projected covariance ma-
trices

• ldet: log-determinants of the projected covariance matrices

• lev: class labels

• N: total number of observations

• optimization_info: information returned by the covariance projection optimizer

• call: the matched call

Note

This function is not a drop-in replacement for qda. The covariance estimation, returned object, and
classification rules differ substantially.

The theoretical background and details of the covariance projection are documented in the gipsmult
package.

See Also

qda, predict.gipsmultqda, gipsqda, gipslda

Examples

tr <- sample(1:50, 25)
train <- rbind(iris3[tr, , 1], iris3[tr, , 2], iris3[tr, , 3])
test <- rbind(iris3[-tr, , 1], iris3[-tr, , 2], iris3[-tr, , 3])
cl <- factor(c(rep("s", 25), rep("c", 25), rep("v", 25)))
z <- gipsmultqda(train, cl)
predict(z, test)$class

gipsqda 13

gipsqda Quadratic Discriminant Analysis with gips covariance projection

Description

Quadratic discriminant analysis (QDA) using covariance matrices projected via the gips framework
to enforce permutation symmetry and improve numerical stability.

Usage

gipsqda(x, ...)

S3 method for class 'formula'
gipsqda(formula, data, ..., subset, na.action)

Default S3 method:
gipsqda(x, grouping, prior = proportions,
nu = 5, MAP = TRUE, optimizer = NULL, max_iter = NULL, ...)

S3 method for class 'data.frame'
gipsqda(x, ...)

S3 method for class 'matrix'
gipsqda(x, grouping, ..., subset, na.action)

Arguments

x (required if no formula is given as the principal argument) a matrix or data frame
containing the explanatory variables.

... Arguments passed to or from other methods.
formula A formula of the form groups ~ x1 + x2 + The response is the grouping

factor and the right-hand side specifies the (non-factor) discriminators.
data An optional data frame, list or environment from which variables specified in

formula are preferentially taken.
grouping (required if no formula is given) a factor specifying the class for each observa-

tion.
prior The prior probabilities of class membership. Must sum to one and have length

equal to the number of groups.
nu Degrees of freedom parameter used internally by covariance projection.
MAP Logical; if TRUE, maximum a posteriori covariance projection is used.
optimizer Character string specifying the optimization method used for covariance projec-

tion. If NULL, a default choice depending on the problem dimension is used.
max_iter Maximum number of iterations for stochastic optimizers.
subset An index vector specifying the cases to be used in the training sample. (NOTE:

must be named.)
na.action A function specifying the action to be taken if NAs are found.

14 gipsqda

Details

This function is a minor modification of qda, replacing the classical sample covariance estimators
by projected covariance matrices obtained using project_covs().

Quadratic discriminant analysis models each class with its own covariance matrix. In gipsqda,
these covariance matrices are projected using the gips framework, which enforces permutation sym-
metry and mitigates singularity and overfitting in high-dimensional or small-sample settings.

Classification can be performed using plug-in, predictive, debiased, or leave-one-out cross-validation
rules via predict.gipsqda.

Value

An object of class "gipsqda" containing the following components:

• prior: prior probabilities of the groups
• counts: number of observations in each group
• means: group means
• scaling: group-specific scaling matrices derived from the projected covariance matrices
• ldet: log-determinants of the projected covariance matrices
• lev: class labels
• N: total number of observations
• optimization_info: information returned by the covariance projection optimizer
• call: the matched call

Note

The function may be called with either a formula interface or with a matrix and grouping factor.
Arguments subset and na.action, if used, must be named.

References

Chojecki, A., et al. (2025). Learning Permutation Symmetry of a Gaussian Vector with gips in R.
Journal of Statistical Software, 112(7), 1–38. doi:10.18637/jss.v112.i07

Venables, W. N. and Ripley, B. D. (2002). Modern Applied Statistics with S. Fourth edition.
Springer.

See Also

qda, predict.gipsqda, gipslda, lda

Examples

tr <- sample(1:50, 25)
train <- rbind(iris3[tr, , 1], iris3[tr, , 2], iris3[tr, , 3])
test <- rbind(iris3[-tr, , 1], iris3[-tr, , 2], iris3[-tr, , 3])
cl <- factor(c(rep("s", 25), rep("c", 25), rep("v", 25)))
z <- gipsqda(train, cl)
predict(z, test)$class

https://doi.org/10.18637/jss.v112.i07

log_posteriori_of_gipsmult 15

log_posteriori_of_gipsmult

A log of a posteriori that the covariance matrix is invariant under
permutation

Description

More precisely, it is the logarithm of an unnormalized posterior probability. It is the goal function
for optimization algorithms in the find_MAP() function. The perm_proposal that maximizes this
function is the Maximum A Posteriori (MAP) Estimator.

Usage

log_posteriori_of_gipsmult(g)

Arguments

g An object of a gipsmult class.

Details

It is calculated using formulas (33) and (27) from references.

If Inf or NaN is reached, it produces a warning.

Value

Returns a value of the logarithm of an unnormalized A Posteriori.

References

Piotr Graczyk, Hideyuki Ishi, Bartosz Kołodziejek, Hélène Massam. "Model selection in the space
of Gaussian models invariant by symmetry." The Annals of Statistics, 50(3) 1747-1774 June 2022.
arXiv link; doi:10.1214/22AOS2174

See Also

• find_MAP() - The function that optimizes the log_posteriori_of_gips function.

• gips::compare_posteriories_of_perms() - Uses log_posteriori_of_gips() to com-
pare a posteriori of two permutations.

Examples

In the space with p = 2, there is only 2 permutations:
perm1 <- permutations::as.cycle("(1)(2)")
perm2 <- permutations::as.cycle("(1,2)")
S1 <- matrix(c(1, 0.5, 0.5, 2), nrow = 2, byrow = TRUE)
S2 <- matrix(c(2, 1, 3, 7), nrow = 2, byrow = TRUE)
g1 <- gipsmult(list(S1, S2), c(100, 100), perm = perm1)

https://arxiv.org/abs/2004.03503
https://arxiv.org/abs/2004.03503
https://doi.org/10.1214/22-AOS2174

16 plot.gipsmult

g2 <- gipsmult(list(S1, S2), c(100, 100), perm = perm2)
log_posteriori_of_gipsmult(g1) # -354.4394, this is the MAP Estimator
log_posteriori_of_gipsmult(g2) # -380.0079

exp(log_posteriori_of_gipsmult(g1) - log_posteriori_of_gipsmult(g2)) # 127131902082
g1 is 127131902082 times more likely than g2.
This is the expected outcome because S1[1,1] and S2[1,1]
differ significantly from S1[2,2] and S2[2,2] respectively.

==

S3 <- matrix(c(1, 0.5, 0.5, 1.1), nrow = 2, byrow = TRUE)
S4 <- matrix(c(2, 1, 3, 2.137), nrow = 2, byrow = TRUE)
g1 <- gipsmult(list(S3, S4), c(100, 100), perm = perm1)
g2 <- gipsmult(list(S3, S4), c(100, 100), perm = perm2)
log_posteriori_of_gipsmult(g1) # -148.6485
log_posteriori_of_gipsmult(g2) # -145.3019, this is the MAP Estimator

exp(log_posteriori_of_gipsmult(g2) - log_posteriori_of_gipsmult(g1)) # 28.406
g2 is 28.406 times more likely than g1.
This is the expected outcome because S1[1,1] and S2[1,1]
are very close to S1[2,2] and S2[2,2] respectively.

plot.gipsmult Plot optimized matrix or optimization gipsmult object

Description

Plot heatmaps of the MAP covariance matrices estimator or the convergence of the optimization
method. The plot depends on the type argument.

Usage

S3 method for class 'gipsmult'
plot(
x,
type = NA,
logarithmic_y = TRUE,
logarithmic_x = FALSE,
color = NULL,
title_text = "Convergence plot",
xlabel = NULL,
ylabel = NULL,
show_legend = TRUE,
ylim = NULL,
xlim = NULL,
...

)

plot.gipsmult 17

Arguments

x Object of a gipsmult class.

type A character vector of length 1. One of c("heatmap", "MLE", "best", "all",
"both", "n0", "block_heatmap"):

• "heatmap", "MLE" - Plots heatmaps of the Maximum Likelihood Estimator
of the covariance matrices given the permutation. That is, the Ss matrices
inside the gipsmult object projected on the permutation in the gipsmult
object.

• "best" - Plots the line of the biggest a posteriori found over time.
• "all" - Plots the line of a posteriori for all visited states.
• "both" - Plots both lines from "all" and "best".
• "n0" - Plots the line of n0s that were spotted during optimization (only for

"MH" optimization).
• "block_heatmap" - Plots heatmaps of diagonally block representation of
Ss. Non-block entries (equal to 0) are white for better clarity.

The default value is NA, which will be changed to "heatmap" for non-optimized
gipsmult objects and to "both" for optimized ones. Using the default produces
a warning. All other arguments are ignored for the type = "heatmap", type =
"MLE", or type = "block_heatmap".

logarithmic_y, logarithmic_x
A boolean. Sets the axis of the plots in logarithmic scale.

color Vector of colors to be used to plot lines.

title_text Text to be in the title of the plot.

xlabel Text to be on the bottom of the plot.

ylabel Text to be on the left of the plot.

show_legend A boolean. Whether or not to show a legend.

ylim Limits of the y axis. When NULL, the minimum, and maximum of the log_posteriori_of_gipsmult()
are taken.

xlim Limits of the x axis. When NULL, the whole optimization process is shown.

... Additional arguments passed to other various elements of the plot.

Value

When type is one of "best", "all", "both" or "n0", returns an invisible NULL. When type is one
of "heatmap", "MLE" or "block_heatmap", returns an object of class ggplot.

See Also

• find_MAP() - Usually, the plot.gipsmult() is called on the output of find_MAP().

• gipsmult() - The constructor of a gipsmult class. The gipsmult object is used as the x
parameter.

18 plot.gipsmult

Examples

require("MASS") # for mvrnorm()

perm_size <- 6
mu1 <- runif(6, -10, 10)
mu2 <- runif(6, -10, 10) # Assume we don't know the means
sigma1 <- matrix(

data = c(
1.0, 0.8, 0.6, 0.4, 0.6, 0.8,
0.8, 1.0, 0.8, 0.6, 0.4, 0.6,
0.6, 0.8, 1.0, 0.8, 0.6, 0.4,
0.4, 0.6, 0.8, 1.0, 0.8, 0.6,
0.6, 0.4, 0.6, 0.8, 1.0, 0.8,
0.8, 0.6, 0.4, 0.6, 0.8, 1.0

),
nrow = perm_size, byrow = TRUE

)
sigma2 <- matrix(

data = c(
1.0, 0.5, 0.2, 0.0, 0.2, 0.5,
0.5, 1.0, 0.5, 0.2, 0.0, 0.2,
0.2, 0.5, 1.0, 0.5, 0.2, 0.0,
0.0, 0.2, 0.5, 1.0, 0.5, 0.2,
0.2, 0.0, 0.2, 0.5, 1.0, 0.5,
0.5, 0.2, 0.0, 0.2, 0.5, 1.0

),
nrow = perm_size, byrow = TRUE

)
sigma1 and sigma2 are matrices invariant under permutation (1,2,3,4,5,6)
numbers_of_observations <- c(21, 37)
Z1 <- MASS::mvrnorm(numbers_of_observations[1], mu = mu1, Sigma = sigma1)
Z2 <- MASS::mvrnorm(numbers_of_observations[2], mu = mu2, Sigma = sigma2)
S1 <- cov(Z1)
S2 <- cov(Z2) # Assume we have to estimate the mean

g <- gipsmult(list(S1, S2), numbers_of_observations)
if (require("graphics")) {

plot(g, type = "MLE")
}

g_map <- find_MAP(g, max_iter = 30, show_progress_bar = FALSE, optimizer = "hill_climbing")
if (require("graphics")) {

plot(g_map, type = "both", logarithmic_x = TRUE)
}

if (require("graphics")) {
plot(g_map, type = "MLE")

}
Now, the output is (most likely) different because the permutation
`g_map[[1]]` is (most likely) not an identity permutation.

g_map_MH <- find_MAP(g, max_iter = 30, show_progress_bar = FALSE, optimizer = "MH")

print.gipsmult 19

if (require("graphics")) {
plot(g_map_MH, type = "n0")

}

print.gipsmult Printing gipsmult object

Description

Printing function for a gipsmult class.

Usage

S3 method for class 'gipsmult'
print(
x,
digits = 3,
compare_to_original = TRUE,
log_value = FALSE,
oneline = FALSE,
...

)

Arguments

x An object of a gipsmult class.

digits The number of digits after the comma for a posteriori to be presented. It can be
negative. By default, Inf. It is passed to base::round().

compare_to_original

A logical. Whether to print how many times more likely is the current permuta-
tion compared to:

• the identity permutation () (for unoptimized gipsmult object);
• the starting permutation (for optimized gipsmult object).

log_value A logical. Whether to print the logarithmic value. Default to FALSE.

oneline A logical. Whether to print in one or multiple lines. Default to FALSE.

... The additional arguments passed to base::cat().

Value

Returns an invisible NULL.

See Also

• find_MAP() - The function that makes an optimized gipsmult object out of the unoptimized
one.

20 print.gipsmult

Examples

Ss <- list(
matrix(c(1, 0.5, 0.5, 2), nrow = 2, byrow = TRUE),
matrix(c(2, 1, 3, 7), nrow = 2, byrow = TRUE)

)
noo <- c(10, 13)
g <- gipsmult(Ss, noo, perm = "(12)")
print(g, digits = 4, oneline = TRUE)

Index

∗ classification
gipsmultqda, 10
gipsqda, 13

∗ multivariate
gipslda, 6
gipsmultqda, 10
gipsqda, 13

base::cat(), 19
base::round(), 19

coef.gipslda (gipslda), 6

find_MAP, 2
find_MAP(), 5, 8, 10, 15, 17, 19

get_probabilities_from_gipsmult, 5
get_probabilities_from_gipsmult(), 3, 4
gips, 8
gips::compare_posteriories_of_perms(),

15
gips::gips_perm(), 10
gipslda, 6, 12, 14
gipsmult, 8
gipsmult(), 4, 17
gipsmultqda, 10
gipsqda, 12, 13

lda, 7, 8, 14
log_posteriori_of_gipsmult, 15
log_posteriori_of_gipsmult(), 4, 17

model.frame.gipslda (gipslda), 6
model.frame.gipsmultqda (gipsmultqda),

10
model.frame.gipsqda (gipsqda), 13

new_gipsmult (gipsmult), 8

pairs.gipslda (gipslda), 6
permutations::permutation(), 9

plot.gipslda (gipslda), 6
plot.gipsmult, 16
plot.gipsmult(), 4, 9
predict.gipsmultqda, 12
predict.gipsmultqda (gipsmultqda), 10
predict.gipsqda, 14
predict.gipsqda (gipsqda), 13
print.gipslda (gipslda), 6
print.gipsmult, 19
print.gipsmult(), 9
print.gipsmultqda (gipsmultqda), 10
print.gipsqda (gipsqda), 13

qda, 12, 14

stats::cov(), 9, 10

21

	find_MAP
	get_probabilities_from_gipsmult
	gipslda
	gipsmult
	gipsmultqda
	gipsqda
	log_posteriori_of_gipsmult
	plot.gipsmult
	print.gipsmult
	Index

