The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

Type: Package
Title: New Data Visualisations for SOMs Networks
Version: 0.4.0
Description: The aim of this package is to offer more variability of graphics based on the self-organizing maps.
License: MIT + file LICENSE
LazyData: true
Encoding: UTF-8
Depends: R (≥ 3.4.0)
Imports: dplyr, magrittr, tidyr, ggplot2, kohonen, assertthat, data.table, entropy, tibble
Suggests: devtools, knitr, rmarkdown
URL: https://github.com/oldlipe/ggsom
RoxygenNote: 7.0.0
Collate: 'ggsom.R' 'ggsom_aes.R' 'ggsom_entropy.R' 'ggsom_plot.R' 'ggsom_utils.R' 'zzz.R'
NeedsCompilation: no
Packaged: 2020-01-15 20:21:31 UTC; felipe
Author: Felipe Carvalho [aut, cre], Rafael Santos [ctb], Karine Reis [ctb]
Maintainer: Felipe Carvalho <lipecaso@gmail.com>
Repository: CRAN
Date/Publication: 2020-01-15 20:40:02 UTC

Visualization in parallelels coordinates in matrix of each attribute

Description

Visualization of the classes corresponding to each neuron of the SOM

Usage

geom_class(object_som, class = NULL, x_o = 3, y_o = 5.5, x_e = 3, y_e = 6.3)

Arguments

object_som

object of Kohonen package

class

categorical vector corresponding to the class of the dataset

x_o

x-axis to map the number of observations of each neuron

y_o

y-axis to map the number of observations of each neuron

x_e

x-axis to map the entropy of each neuron

y_e

y-axis to map the entropy of each neuron

Value

ggplot2 object

Author(s)

Felipe Carvalho, lipecaso@gmail.com

References

'ggplot2' package (https://CRAN.R-project.org/package=ggplot2)

Examples


# Creating SOM object
iris_som <- kohonen::som(X = as.matrix(iris[1:4]),
                         grid =  kohonen::somgrid(xdim = 5,
                                                   ydim = 5,
                                                   neighbourhood.fct = "gaussian",
                                                   topo = "rectangular"),
                         rlen = 100)

# Creating ggsom class plot
geom_class(iris_som, class = iris$Species,
           x_o = 1, y_o = 6,
           x_e = 1.1, y_e = 7.4)


ggsom

Description

The aim of this package is to offer more variability of graphics based on the self-organizing maps


kohonen package object modeling

Description

Function to map each SOM neuron with its corresponding class

Usage

ggsom_aes(object_som, class)

Arguments

object_som

object of kohonen package

class

categorical vector corresponding to the class of the dataset

Value

data.table model used in visualizations

Author(s)

Felipe Carvalho, lipecaso@gmail.com

References

'Kohonen'package (https://CRAN.R-project.org/package=kohonen)


Function to obtain the purity of each neuron in the SOM network

Description

Entropy calculation using the maximum likelihood method

Usage

ggsom_entropy(ggsom_aes)

Arguments

ggsom_aes

kohonen package object modeling

Value

Data set with the purity attribute added in Tibble

Author(s)

Felipe Carvalho, felipe.carvalho@inpe.br


verifies that the object inherits kohonen object

Description

if object inherits kohonen class return TRUE otherwise FALSE

Usage

is.kohonen(object_som)

Arguments

object_som

object of Kohonen package

Value

Boolean value

Author(s)

Felipe Carvalho, lipecaso@gmail.com

References

'Kohonen'package (https://CRAN.R-project.org/package=kohonen)

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.