
Package ‘ggplot2’
July 16, 2025

Version 3.5.2

Title Create Elegant Data Visualisations Using the Grammar of Graphics

Description A system for 'declaratively' creating graphics, based on ``The
Grammar of Graphics''. You provide the data, tell 'ggplot2' how to map
variables to aesthetics, what graphical primitives to use, and it
takes care of the details.

License MIT + file LICENSE

URL https://ggplot2.tidyverse.org,

https://github.com/tidyverse/ggplot2

BugReports https://github.com/tidyverse/ggplot2/issues

Depends R (>= 3.5)

Imports cli, glue, grDevices, grid, gtable (>= 0.1.1), isoband,
lifecycle (> 1.0.1), MASS, mgcv, rlang (>= 1.1.0), scales (>=
1.3.0), stats, tibble, vctrs (>= 0.6.0), withr (>= 2.5.0)

Suggests covr, dplyr, ggplot2movies, hexbin, Hmisc, knitr, mapproj,
maps, multcomp, munsell, nlme, profvis, quantreg, ragg (>=
1.2.6), RColorBrewer, rmarkdown, rpart, sf (>= 0.7-3), svglite
(>= 2.1.2), testthat (>= 3.1.2), vdiffr (>= 1.0.6), xml2

Enhances sp

VignetteBuilder knitr

Config/Needs/website ggtext, tidyr, forcats, tidyverse/tidytemplate

Config/testthat/edition 3

Encoding UTF-8

LazyData true

RoxygenNote 7.3.2

Collate 'ggproto.R' 'ggplot-global.R' 'aaa-.R'
'aes-colour-fill-alpha.R' 'aes-evaluation.R'
'aes-group-order.R' 'aes-linetype-size-shape.R'
'aes-position.R' 'compat-plyr.R' 'utilities.R' 'aes.R'
'utilities-checks.R' 'legend-draw.R' 'geom-.R'

1

https://ggplot2.tidyverse.org
https://github.com/tidyverse/ggplot2
https://github.com/tidyverse/ggplot2/issues


2

'annotation-custom.R' 'annotation-logticks.R' 'geom-polygon.R'
'geom-map.R' 'annotation-map.R' 'geom-raster.R'
'annotation-raster.R' 'annotation.R' 'autolayer.R' 'autoplot.R'
'axis-secondary.R' 'backports.R' 'bench.R' 'bin.R' 'coord-.R'
'coord-cartesian-.R' 'coord-fixed.R' 'coord-flip.R'
'coord-map.R' 'coord-munch.R' 'coord-polar.R'
'coord-quickmap.R' 'coord-radial.R' 'coord-sf.R'
'coord-transform.R' 'data.R' 'docs_layer.R' 'facet-.R'
'facet-grid-.R' 'facet-null.R' 'facet-wrap.R' 'fortify-lm.R'
'fortify-map.R' 'fortify-multcomp.R' 'fortify-spatial.R'
'fortify.R' 'stat-.R' 'geom-abline.R' 'geom-rect.R'
'geom-bar.R' 'geom-bin2d.R' 'geom-blank.R' 'geom-boxplot.R'
'geom-col.R' 'geom-path.R' 'geom-contour.R' 'geom-count.R'
'geom-crossbar.R' 'geom-segment.R' 'geom-curve.R'
'geom-defaults.R' 'geom-ribbon.R' 'geom-density.R'
'geom-density2d.R' 'geom-dotplot.R' 'geom-errorbar.R'
'geom-errorbarh.R' 'geom-freqpoly.R' 'geom-function.R'
'geom-hex.R' 'geom-histogram.R' 'geom-hline.R' 'geom-jitter.R'
'geom-label.R' 'geom-linerange.R' 'geom-point.R'
'geom-pointrange.R' 'geom-quantile.R' 'geom-rug.R' 'geom-sf.R'
'geom-smooth.R' 'geom-spoke.R' 'geom-text.R' 'geom-tile.R'
'geom-violin.R' 'geom-vline.R' 'ggplot2-package.R'
'grob-absolute.R' 'grob-dotstack.R' 'grob-null.R' 'grouping.R'
'theme-elements.R' 'guide-.R' 'guide-axis.R'
'guide-axis-logticks.R' 'guide-axis-stack.R'
'guide-axis-theta.R' 'guide-legend.R' 'guide-bins.R'
'guide-colorbar.R' 'guide-colorsteps.R' 'guide-custom.R'
'layer.R' 'guide-none.R' 'guide-old.R' 'guides-.R'
'guides-grid.R' 'hexbin.R' 'import-standalone-obj-type.R'
'import-standalone-types-check.R' 'labeller.R' 'labels.R'
'layer-sf.R' 'layout.R' 'limits.R' 'margins.R' 'performance.R'
'plot-build.R' 'plot-construction.R' 'plot-last.R' 'plot.R'
'position-.R' 'position-collide.R' 'position-dodge.R'
'position-dodge2.R' 'position-identity.R' 'position-jitter.R'
'position-jitterdodge.R' 'position-nudge.R' 'position-stack.R'
'quick-plot.R' 'reshape-add-margins.R' 'save.R' 'scale-.R'
'scale-alpha.R' 'scale-binned.R' 'scale-brewer.R'
'scale-colour.R' 'scale-continuous.R' 'scale-date.R'
'scale-discrete-.R' 'scale-expansion.R' 'scale-gradient.R'
'scale-grey.R' 'scale-hue.R' 'scale-identity.R'
'scale-linetype.R' 'scale-linewidth.R' 'scale-manual.R'
'scale-shape.R' 'scale-size.R' 'scale-steps.R' 'scale-type.R'
'scale-view.R' 'scale-viridis.R' 'scales-.R' 'stat-align.R'
'stat-bin.R' 'stat-bin2d.R' 'stat-bindot.R' 'stat-binhex.R'
'stat-boxplot.R' 'stat-contour.R' 'stat-count.R'
'stat-density-2d.R' 'stat-density.R' 'stat-ecdf.R'
'stat-ellipse.R' 'stat-function.R' 'stat-identity.R'
'stat-qq-line.R' 'stat-qq.R' 'stat-quantilemethods.R'



Contents 3

'stat-sf-coordinates.R' 'stat-sf.R' 'stat-smooth-methods.R'
'stat-smooth.R' 'stat-sum.R' 'stat-summary-2d.R'
'stat-summary-bin.R' 'stat-summary-hex.R' 'stat-summary.R'
'stat-unique.R' 'stat-ydensity.R' 'summarise-plot.R'
'summary.R' 'theme.R' 'theme-defaults.R' 'theme-current.R'
'utilities-break.R' 'utilities-grid.R' 'utilities-help.R'
'utilities-matrix.R' 'utilities-patterns.R'
'utilities-resolution.R' 'utilities-tidy-eval.R' 'zxx.R'
'zzz.R'

NeedsCompilation no

Author Hadley Wickham [aut] (ORCID: <https://orcid.org/0000-0003-4757-117X>),
Winston Chang [aut] (ORCID: <https://orcid.org/0000-0002-1576-2126>),
Lionel Henry [aut],
Thomas Lin Pedersen [aut, cre] (ORCID:

<https://orcid.org/0000-0002-5147-4711>),
Kohske Takahashi [aut],
Claus Wilke [aut] (ORCID: <https://orcid.org/0000-0002-7470-9261>),
Kara Woo [aut] (ORCID: <https://orcid.org/0000-0002-5125-4188>),
Hiroaki Yutani [aut] (ORCID: <https://orcid.org/0000-0002-3385-7233>),
Dewey Dunnington [aut] (ORCID: <https://orcid.org/0000-0002-9415-4582>),
Teun van den Brand [aut] (ORCID:

<https://orcid.org/0000-0002-9335-7468>),
Posit, PBC [cph, fnd]

Maintainer Thomas Lin Pedersen <thomas.pedersen@posit.co>

Repository CRAN

Date/Publication 2025-04-09 09:40:10 UTC

Contents
+.gg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
aes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
aes_colour_fill_alpha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
aes_eval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
aes_group_order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
aes_linetype_size_shape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
aes_position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
annotate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
annotation_custom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
annotation_logticks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
annotation_map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
annotation_raster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
autolayer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
automatic_plotting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
autoplot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
borders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
CoordSf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

https://orcid.org/0000-0003-4757-117X
https://orcid.org/0000-0002-1576-2126
https://orcid.org/0000-0002-5147-4711
https://orcid.org/0000-0002-7470-9261
https://orcid.org/0000-0002-5125-4188
https://orcid.org/0000-0002-3385-7233
https://orcid.org/0000-0002-9415-4582
https://orcid.org/0000-0002-9335-7468


4 Contents

coord_cartesian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
coord_fixed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
coord_flip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
coord_map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
coord_polar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
coord_trans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
cut_interval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
diamonds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
draw_key . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
economics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
expand_limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
facet_grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
facet_wrap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
faithfuld . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
fortify . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
geom_abline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
geom_bar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
geom_bin_2d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
geom_blank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
geom_boxplot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
geom_contour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
geom_count . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
geom_crossbar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
geom_density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
geom_density_2d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
geom_dotplot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
geom_errorbarh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
geom_freqpoly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
geom_function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
geom_hex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
geom_jitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
geom_label . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
geom_map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
geom_path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
geom_point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
geom_polygon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
geom_qq_line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
geom_quantile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
geom_raster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
geom_ribbon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
geom_rug . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
geom_segment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
geom_smooth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
geom_spoke . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
geom_violin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
get_alt_text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188



Contents 5

ggplot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
ggproto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
ggsave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
ggtheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
guides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
guide_axis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
guide_axis_logticks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
guide_axis_stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
guide_axis_theta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
guide_bins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
guide_colourbar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
guide_coloursteps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
guide_custom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
guide_legend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
guide_none . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
hmisc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
labeller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
labellers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
label_bquote . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
labs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
layer_geoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
layer_positions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
layer_stats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
lims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
luv_colours . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
mean_se . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
midwest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
mpg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
msleep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
position_dodge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
position_identity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
position_jitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
position_jitterdodge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
position_nudge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
position_stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
presidential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
print.ggplot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
print.ggproto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
qplot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
scale_alpha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
scale_binned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
scale_colour_brewer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
scale_colour_continuous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
scale_colour_discrete . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
scale_colour_gradient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
scale_colour_grey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
scale_colour_hue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270



6 +.gg

scale_colour_steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
scale_colour_viridis_d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
scale_continuous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
scale_date . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
scale_identity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
scale_linetype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
scale_linewidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
scale_manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
scale_shape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
scale_size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
scale_x_discrete . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304
seals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
sec_axis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
stat_ecdf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310
stat_ellipse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
stat_identity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316
stat_sf_coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
stat_summary_2d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320
stat_summary_bin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324
stat_unique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
theme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
theme_get . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341
txhousing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
vars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344

Index 346

+.gg Add components to a plot

Description

+ is the key to constructing sophisticated ggplot2 graphics. It allows you to start simple, then get
more and more complex, checking your work at each step.

Usage

## S3 method for class 'gg'
e1 + e2

e1 %+% e2

Arguments

e1 An object of class ggplot() or a theme().

e2 A plot component, as described below.



aes 7

What can you add?

You can add any of the following types of objects:

• An aes() object replaces the default aesthetics.

• A layer created by a geom_ or stat_ function adds a new layer.

• A scale overrides the existing scale.

• A theme() modifies the current theme.

• A coord overrides the current coordinate system.

• A facet specification overrides the current faceting.

To replace the current default data frame, you must use %+%, due to S3 method precedence issues.

You can also supply a list, in which case each element of the list will be added in turn.

See Also

theme()

Examples

base <-
ggplot(mpg, aes(displ, hwy)) +
geom_point()

base + geom_smooth()

# To override the data, you must use %+%
base %+% subset(mpg, fl == "p")

# Alternatively, you can add multiple components with a list.
# This can be useful to return from a function.
base + list(subset(mpg, fl == "p"), geom_smooth())

aes Construct aesthetic mappings

Description

Aesthetic mappings describe how variables in the data are mapped to visual properties (aesthetics)
of geoms. Aesthetic mappings can be set in ggplot() and in individual layers.

Usage

aes(x, y, ...)



8 aes

Arguments

x, y, ... <data-masking> List of name-value pairs in the form aesthetic = variable
describing which variables in the layer data should be mapped to which aes-
thetics used by the paired geom/stat. The expression variable is evaluated
within the layer data, so there is no need to refer to the original dataset (i.e., use
ggplot(df, aes(variable)) instead of ggplot(df, aes(df$variable))). The
names for x and y aesthetics are typically omitted because they are so common;
all other aesthetics must be named.

Details

This function also standardises aesthetic names by converting color to colour (also in substrings,
e.g., point_color to point_colour) and translating old style R names to ggplot names (e.g., pch
to shape and cex to size).

Value

A list with class uneval. Components of the list are either quosures or constants.

Quasiquotation

aes() is a quoting function. This means that its inputs are quoted to be evaluated in the context of
the data. This makes it easy to work with variables from the data frame because you can name those
directly. The flip side is that you have to use quasiquotation to program with aes(). See a tidy
evaluation tutorial such as the dplyr programming vignette to learn more about these techniques.

See Also

vars() for another quoting function designed for faceting specifications.

Run vignette("ggplot2-specs") to see an overview of other aesthetics that can be modified.

Delayed evaluation for working with computed variables.

Other aesthetics documentation: aes_colour_fill_alpha, aes_group_order, aes_linetype_size_shape,
aes_position

Examples

aes(x = mpg, y = wt)
aes(mpg, wt)

# You can also map aesthetics to functions of variables
aes(x = mpg ^ 2, y = wt / cyl)

# Or to constants
aes(x = 1, colour = "smooth")

# Aesthetic names are automatically standardised
aes(col = x)
aes(fg = x)
aes(color = x)

https://dplyr.tidyverse.org/articles/programming.html


aes_colour_fill_alpha 9

aes(colour = x)

# aes() is passed to either ggplot() or specific layer. Aesthetics supplied
# to ggplot() are used as defaults for every layer.
ggplot(mpg, aes(displ, hwy)) + geom_point()
ggplot(mpg) + geom_point(aes(displ, hwy))

# Tidy evaluation ----------------------------------------------------
# aes() automatically quotes all its arguments, so you need to use tidy
# evaluation to create wrappers around ggplot2 pipelines. The
# simplest case occurs when your wrapper takes dots:
scatter_by <- function(data, ...) {

ggplot(data) + geom_point(aes(...))
}
scatter_by(mtcars, disp, drat)

# If your wrapper has a more specific interface with named arguments,
# you need the "embrace operator":
scatter_by <- function(data, x, y) {

ggplot(data) + geom_point(aes({{ x }}, {{ y }}))
}
scatter_by(mtcars, disp, drat)

# Note that users of your wrapper can use their own functions in the
# quoted expressions and all will resolve as it should!
cut3 <- function(x) cut_number(x, 3)
scatter_by(mtcars, cut3(disp), drat)

aes_colour_fill_alpha Colour related aesthetics: colour, fill, and alpha

Description

These aesthetics parameters change the colour (colour and fill) and the opacity (alpha) of geom
elements on a plot. Almost every geom has either colour or fill (or both), as well as can have their
alpha modified. Modifying colour on a plot is a useful way to enhance the presentation of data,
often especially when a plot graphs more than two variables.

Colour and fill

The colour aesthetic is used to draw lines and strokes, such as in geom_point() and geom_line(),
but also the line contours of geom_rect() and geom_polygon(). The fill aesthetic is used to
colour the inside areas of geoms, such as geom_rect() and geom_polygon(), but also the insides
of shapes 21-25 of geom_point().

Colours and fills can be specified in the following ways:

• A name, e.g., "red". R has 657 built-in named colours, which can be listed with grDevices::colors().
• An rgb specification, with a string of the form "#RRGGBB" where each of the pairs RR, GG, BB

consists of two hexadecimal digits giving a value in the range 00 to FF. You can optionally
make the colour transparent by using the form "#RRGGBBAA".



10 aes_colour_fill_alpha

• An NA, for a completely transparent colour.

Alpha

Alpha refers to the opacity of a geom. Values of alpha range from 0 to 1, with lower values
corresponding to more transparent colors.

Alpha can additionally be modified through the colour or fill aesthetic if either aesthetic provides
color values using an rgb specification ("#RRGGBBAA"), where AA refers to transparency values.

See Also

• Other options for modifying colour: scale_colour_brewer(), scale_colour_gradient(),
scale_colour_grey(), scale_colour_hue(), scale_colour_identity(), scale_colour_manual(),
scale_colour_viridis_d()

• Other options for modifying fill: scale_fill_brewer(), scale_fill_gradient(), scale_fill_grey(),
scale_fill_hue(), scale_fill_identity(), scale_fill_manual(), scale_fill_viridis_d()

• Other options for modifying alpha: scale_alpha(), scale_alpha_manual(), scale_alpha_identity()

• Run vignette("ggplot2-specs") to see an overview of other aesthetics that can be modi-
fied.

Other aesthetics documentation: aes(), aes_group_order, aes_linetype_size_shape, aes_position

Examples

# Bar chart example
p <- ggplot(mtcars, aes(factor(cyl)))
# Default plotting
p + geom_bar()
# To change the interior colouring use fill aesthetic
p + geom_bar(fill = "red")
# Compare with the colour aesthetic which changes just the bar outline
p + geom_bar(colour = "red")
# Combining both, you can see the changes more clearly
p + geom_bar(fill = "white", colour = "red")
# Both colour and fill can take an rgb specification.
p + geom_bar(fill = "#00abff")
# Use NA for a completely transparent colour.
p + geom_bar(fill = NA, colour = "#00abff")

# Colouring scales differ depending on whether a discrete or
# continuous variable is being mapped. For example, when mapping
# fill to a factor variable, a discrete colour scale is used.
ggplot(mtcars, aes(factor(cyl), fill = factor(vs))) + geom_bar()

# When mapping fill to continuous variable a continuous colour
# scale is used.
ggplot(faithfuld, aes(waiting, eruptions)) +

geom_raster(aes(fill = density))

# Some geoms only use the colour aesthetic but not the fill



aes_eval 11

# aesthetic (e.g. geom_point() or geom_line()).
p <- ggplot(economics, aes(x = date, y = unemploy))
p + geom_line()
p + geom_line(colour = "green")
p + geom_point()
p + geom_point(colour = "red")

# For large datasets with overplotting the alpha
# aesthetic will make the points more transparent.
set.seed(1)
df <- data.frame(x = rnorm(5000), y = rnorm(5000))
p <- ggplot(df, aes(x,y))
p + geom_point()
p + geom_point(alpha = 0.5)
p + geom_point(alpha = 1/10)

# Alpha can also be used to add shading.
p <- ggplot(economics, aes(x = date, y = unemploy)) + geom_line()
p
yrng <- range(economics$unemploy)
p <- p +

geom_rect(
aes(NULL, NULL, xmin = start, xmax = end, fill = party),
ymin = yrng[1], ymax = yrng[2], data = presidential

)
p
p + scale_fill_manual(values = alpha(c("blue", "red"), .3))

aes_eval Control aesthetic evaluation

Description

Most aesthetics are mapped from variables found in the data. Sometimes, however, you want to
delay the mapping until later in the rendering process. ggplot2 has three stages of the data that
you can map aesthetics from, and three functions to control at which stage aesthetics should be
evaluated.

after_stat() replaces the old approaches of using either stat(), e.g. stat(density), or sur-
rounding the variable names with .., e.g. ..density...

Usage

# These functions can be used inside the `aes()` function
# used as the `mapping` argument in layers, for example:
# geom_density(mapping = aes(y = after_stat(scaled)))

after_stat(x)



12 aes_eval

after_scale(x)

stage(start = NULL, after_stat = NULL, after_scale = NULL)

Arguments

x <data-masking> An aesthetic expression using variables calculated by the stat
(after_stat()) or layer aesthetics (after_scale()).

start <data-masking> An aesthetic expression using variables from the layer data.

after_stat <data-masking> An aesthetic expression using variables calculated by the stat.

after_scale <data-masking> An aesthetic expression using layer aesthetics.

Staging

Below follows an overview of the three stages of evaluation and how aesthetic evaluation can be
controlled.

Stage 1: direct input:
The default is to map at the beginning, using the layer data provided by the user. If you want to
map directly from the layer data you should not do anything special. This is the only stage where
the original layer data can be accessed.

# 'x' and 'y' are mapped directly
ggplot(mtcars) + geom_point(aes(x = mpg, y = disp))

Stage 2: after stat transformation:
The second stage is after the data has been transformed by the layer stat. The most common exam-
ple of mapping from stat transformed data is the height of bars in geom_histogram(): the height
does not come from a variable in the underlying data, but is instead mapped to the count computed
by stat_bin(). In order to map from stat transformed data you should use the after_stat()
function to flag that evaluation of the aesthetic mapping should be postponed until after stat trans-
formation. Evaluation after stat transformation will have access to the variables calculated by the
stat, not the original mapped values. The ’computed variables’ section in each stat lists which
variables are available to access.

# The 'y' values for the histogram are computed by the stat
ggplot(faithful, aes(x = waiting)) +
geom_histogram()

# Choosing a different computed variable to display, matching up the
# histogram with the density plot
ggplot(faithful, aes(x = waiting)) +
geom_histogram(aes(y = after_stat(density))) +
geom_density()

Stage 3: after scale transformation:
The third and last stage is after the data has been transformed and mapped by the plot scales. An
example of mapping from scaled data could be to use a desaturated version of the stroke colour
for fill. You should use after_scale() to flag evaluation of mapping for after data has been



aes_eval 13

scaled. Evaluation after scaling will only have access to the final aesthetics of the layer (including
non-mapped, default aesthetics).

# The exact colour is known after scale transformation
ggplot(mpg, aes(cty, colour = factor(cyl))) +
geom_density()

# We re-use colour properties for the fill without a separate fill scale
ggplot(mpg, aes(cty, colour = factor(cyl))) +
geom_density(aes(fill = after_scale(alpha(colour, 0.3))))

Complex staging:
If you want to map the same aesthetic multiple times, e.g. map x to a data column for the stat, but
remap it for the geom, you can use the stage() function to collect multiple mappings.

# Use stage to modify the scaled fill
ggplot(mpg, aes(class, hwy)) +
geom_boxplot(aes(fill = stage(class, after_scale = alpha(fill, 0.4))))

# Using data for computing summary, but placing label elsewhere.
# Also, we're making our own computed variable to use for the label.
ggplot(mpg, aes(class, displ)) +
geom_violin() +
stat_summary(
aes(
y = stage(displ, after_stat = 8),
label = after_stat(paste(mean, "±", sd))

),
geom = "text",
fun.data = ~ round(data.frame(mean = mean(.x), sd = sd(.x)), 2)

)

Examples

# Default histogram display
ggplot(mpg, aes(displ)) +

geom_histogram(aes(y = after_stat(count)))

# Scale tallest bin to 1
ggplot(mpg, aes(displ)) +

geom_histogram(aes(y = after_stat(count / max(count))))

# Use a transparent version of colour for fill
ggplot(mpg, aes(class, hwy)) +

geom_boxplot(aes(colour = class, fill = after_scale(alpha(colour, 0.4))))

# Use stage to modify the scaled fill
ggplot(mpg, aes(class, hwy)) +

geom_boxplot(aes(fill = stage(class, after_scale = alpha(fill, 0.4))))

# Making a proportional stacked density plot



14 aes_group_order

ggplot(mpg, aes(cty)) +
geom_density(
aes(

colour = factor(cyl),
fill = after_scale(alpha(colour, 0.3)),
y = after_stat(count / sum(n[!duplicated(group)]))

),
position = "stack", bw = 1

) +
geom_density(bw = 1)

# Imitating a ridgeline plot
ggplot(mpg, aes(cty, colour = factor(cyl))) +

geom_ribbon(
stat = "density", outline.type = "upper",
aes(

fill = after_scale(alpha(colour, 0.3)),
ymin = after_stat(group),
ymax = after_stat(group + ndensity)

)
)

# Labelling a bar plot
ggplot(mpg, aes(class)) +

geom_bar() +
geom_text(

aes(
y = after_stat(count + 2),
label = after_stat(count)

),
stat = "count"

)

# Labelling the upper hinge of a boxplot,
# inspired by June Choe
ggplot(mpg, aes(displ, class)) +

geom_boxplot(outlier.shape = NA) +
geom_text(

aes(
label = after_stat(xmax),
x = stage(displ, after_stat = xmax)

),
stat = "boxplot", hjust = -0.5

)

aes_group_order Aesthetics: grouping



aes_group_order 15

Description

The group aesthetic is by default set to the interaction of all discrete variables in the plot. This
choice often partitions the data correctly, but when it does not, or when no discrete variable is used
in the plot, you will need to explicitly define the grouping structure by mapping group to a variable
that has a different value for each group.

Details

For most applications the grouping is set implicitly by mapping one or more discrete variables to
x, y, colour, fill, alpha, shape, size, and/or linetype. This is demonstrated in the examples
below.

There are three common cases where the default does not display the data correctly.

1. geom_line() where there are multiple individuals and the plot tries to connect every observa-
tion, even across individuals, with a line.

2. geom_line() where a discrete x-position implies groups, whereas observations span the dis-
crete x-positions.

3. When the grouping needs to be different over different layers, for example when computing a
statistic on all observations when another layer shows individuals.

The examples below use a longitudinal dataset, Oxboys, from the nlme package to demonstrate
these cases. Oxboys records the heights (height) and centered ages (age) of 26 boys (Subject),
measured on nine occasions (Occasion).

See Also

• Geoms commonly used with groups: geom_bar(), geom_histogram(), geom_line()

• Run vignette("ggplot2-specs") to see an overview of other aesthetics that can be modi-
fied.

Other aesthetics documentation: aes(), aes_colour_fill_alpha, aes_linetype_size_shape,
aes_position

Examples

p <- ggplot(mtcars, aes(wt, mpg))
# A basic scatter plot
p + geom_point(size = 4)
# Using the colour aesthetic
p + geom_point(aes(colour = factor(cyl)), size = 4)
# Using the shape aesthetic
p + geom_point(aes(shape = factor(cyl)), size = 4)

# Using fill
p <- ggplot(mtcars, aes(factor(cyl)))
p + geom_bar()
p + geom_bar(aes(fill = factor(cyl)))
p + geom_bar(aes(fill = factor(vs)))



16 aes_linetype_size_shape

# Using linetypes
ggplot(economics_long, aes(date, value01)) +

geom_line(aes(linetype = variable))

# Multiple groups with one aesthetic
p <- ggplot(nlme::Oxboys, aes(age, height))
# The default is not sufficient here. A single line tries to connect all
# the observations.
p + geom_line()
# To fix this, use the group aesthetic to map a different line for each
# subject.
p + geom_line(aes(group = Subject))

# Different groups on different layers
p <- p + geom_line(aes(group = Subject))
# Using the group aesthetic with both geom_line() and geom_smooth()
# groups the data the same way for both layers
p + geom_smooth(aes(group = Subject), method = "lm", se = FALSE)
# Changing the group aesthetic for the smoother layer
# fits a single line of best fit across all boys
p + geom_smooth(aes(group = 1), size = 2, method = "lm", se = FALSE)

# Overriding the default grouping
# Sometimes the plot has a discrete scale but you want to draw lines
# that connect across groups. This is the strategy used in interaction
# plots, profile plots, and parallel coordinate plots, among others.
# For example, we draw boxplots of height at each measurement occasion.
p <- ggplot(nlme::Oxboys, aes(Occasion, height)) + geom_boxplot()
p
# There is no need to specify the group aesthetic here; the default grouping
# works because occasion is a discrete variable. To overlay individual
# trajectories, we again need to override the default grouping for that layer
# with aes(group = Subject)
p + geom_line(aes(group = Subject), colour = "blue")

aes_linetype_size_shape

Differentiation related aesthetics: linetype, size, shape

Description

The linetype, linewidth, size, and shape aesthetics modify the appearance of lines and/or
points. They also apply to the outlines of polygons (linetype and linewidth) or to text (size).

Linetype

The linetype aesthetic can be specified with either an integer (0-6), a name (0 = blank, 1 = solid, 2
= dashed, 3 = dotted, 4 = dotdash, 5 = longdash, 6 = twodash), a mapping to a discrete variable, or a
string of an even number (up to eight) of hexadecimal digits which give the lengths in consecutive
positions in the string. See examples for a hex string demonstration.



aes_linetype_size_shape 17

Linewidth and stroke

The linewidth aesthetic sets the widths of lines, and can be specified with a numeric value (for
historical reasons, these units are about 0.75 millimetres). Alternatively, they can also be set via
mapping to a continuous variable. The stroke aesthetic serves the same role for points, but is
distinct for discriminating points from lines in geoms such as geom_pointrange().

Size

The size aesthetic control the size of points and text, and can be specified with a numerical value
(in millimetres) or via a mapping to a continuous variable.

Shape

The shape aesthetic controls the symbols of points, and can be specified with an integer (between
0 and 25), a single character (which uses that character as the plotting symbol), a . to draw the
smallest rectangle that is visible (i.e., about one pixel), an NA to draw nothing, or a mapping to a
discrete variable. Symbols and filled shapes are described in the examples below.

See Also

• geom_line() and geom_point() for geoms commonly used with these aesthetics.

• aes_group_order() for using linetype, size, or shape for grouping.

• Scales that can be used to modify these aesthetics: scale_linetype(), scale_linewidth(),
scale_size(), and scale_shape().

• Run vignette("ggplot2-specs") to see an overview of other aesthetics that can be modi-
fied.

Other aesthetics documentation: aes(), aes_colour_fill_alpha, aes_group_order, aes_position

Examples

df <- data.frame(x = 1:10 , y = 1:10)
p <- ggplot(df, aes(x, y))
p + geom_line(linetype = 2)
p + geom_line(linetype = "dotdash")

# An example with hex strings; the string "33" specifies three units on followed
# by three off and "3313" specifies three units on followed by three off followed
# by one on and finally three off.
p + geom_line(linetype = "3313")

# Mapping line type from a grouping variable
ggplot(economics_long, aes(date, value01)) +

geom_line(aes(linetype = variable))

# Linewidth examples
ggplot(economics, aes(date, unemploy)) +

geom_line(linewidth = 2, lineend = "round")
ggplot(economics, aes(date, unemploy)) +

geom_line(aes(linewidth = uempmed), lineend = "round")



18 aes_position

# Size examples
p <- ggplot(mtcars, aes(wt, mpg))
p + geom_point(size = 4)
p + geom_point(aes(size = qsec))
p + geom_point(size = 2.5) +

geom_hline(yintercept = 25, size = 3.5)

# Shape examples
p + geom_point()
p + geom_point(shape = 5)
p + geom_point(shape = "k", size = 3)
p + geom_point(shape = ".")
p + geom_point(shape = NA)
p + geom_point(aes(shape = factor(cyl)))

# A look at all 25 symbols
df2 <- data.frame(x = 1:5 , y = 1:25, z = 1:25)
p <- ggplot(df2, aes(x, y))
p + geom_point(aes(shape = z), size = 4) +

scale_shape_identity()
# While all symbols have a foreground colour, symbols 19-25 also take a
# background colour (fill)
p + geom_point(aes(shape = z), size = 4, colour = "Red") +

scale_shape_identity()
p + geom_point(aes(shape = z), size = 4, colour = "Red", fill = "Black") +

scale_shape_identity()

aes_position Position related aesthetics: x, y, xmin, xmax, ymin, ymax, xend, yend

Description

The following aesthetics can be used to specify the position of elements: x, y, xmin, xmax, ymin,
ymax, xend, yend.

Details

x and y define the locations of points or of positions along a line or path.

x, y and xend, yend define the starting and ending points of segment and curve geometries.

xmin, xmax, ymin and ymax can be used to specify the position of annotations and to represent
rectangular areas.

In addition, there are position aesthetics that are contextual to the geometry that they’re used
in. These are xintercept, yintercept, xmin_final, ymin_final, xmax_final, ymax_final,
xlower, lower, xmiddle, middle, xupper, upper, x0 and y0. Many of these are used and automat-
ically computed in geom_boxplot().



aes_position 19

See Also

• Geoms that commonly use these aesthetics: geom_crossbar(), geom_curve(), geom_errorbar(),
geom_line(), geom_linerange(), geom_path(), geom_point(), geom_pointrange(), geom_rect(),
geom_segment()

• Scales that can be used to modify positions: scale_continuous(), scale_discrete(),
scale_binned(), scale_date().

• See also annotate() for placing annotations.

Other aesthetics documentation: aes(), aes_colour_fill_alpha, aes_group_order, aes_linetype_size_shape

Examples

# Generate data: means and standard errors of means for prices
# for each type of cut
dmod <- lm(price ~ cut, data = diamonds)
cut <- unique(diamonds$cut)
cuts_df <- data.frame(

cut,
predict(dmod, data.frame(cut), se = TRUE)[c("fit", "se.fit")]

)
ggplot(cuts_df) +

aes(
x = cut,
y = fit,
ymin = fit - se.fit,
ymax = fit + se.fit,
colour = cut
) +
geom_pointrange()

# Using annotate
p <- ggplot(mtcars, aes(x = wt, y = mpg)) + geom_point()
p
p + annotate(

"rect", xmin = 2, xmax = 3.5, ymin = 2, ymax = 25,
fill = "dark grey", alpha = .5

)

# Geom_segment examples
p + geom_segment(

aes(x = 2, y = 15, xend = 2, yend = 25),
arrow = arrow(length = unit(0.5, "cm"))

)
p + geom_segment(

aes(x = 2, y = 15, xend = 3, yend = 15),
arrow = arrow(length = unit(0.5, "cm"))

)
p + geom_segment(

aes(x = 5, y = 30, xend = 3.5, yend = 25),
arrow = arrow(length = unit(0.5, "cm"))

)



20 annotate

# You can also use geom_segment() to recreate plot(type = "h")
# from base R:
set.seed(1)
counts <- as.data.frame(table(x = rpois(100, 5)))
counts$x <- as.numeric(as.character(counts$x))
with(counts, plot(x, Freq, type = "h", lwd = 10))

ggplot(counts, aes(x = x, y = Freq)) +
geom_segment(aes(yend = 0, xend = x), size = 10)

annotate Create an annotation layer

Description

This function adds geoms to a plot, but unlike a typical geom function, the properties of the geoms
are not mapped from variables of a data frame, but are instead passed in as vectors. This is useful
for adding small annotations (such as text labels) or if you have your data in vectors, and for some
reason don’t want to put them in a data frame.

Usage

annotate(
geom,
x = NULL,
y = NULL,
xmin = NULL,
xmax = NULL,
ymin = NULL,
ymax = NULL,
xend = NULL,
yend = NULL,
...,
na.rm = FALSE

)

Arguments

geom name of geom to use for annotation
x, y, xmin, ymin, xmax, ymax, xend, yend

positioning aesthetics - you must specify at least one of these.

... Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through
.... Unknown arguments that are not part of the 4 categories below are ignored.



annotate 21

• Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red" or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

• When constructing a layer using a stat_*() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area", outline.type = "both"). The
geom’s documentation lists which parameters it can accept.

• Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density", adjust = 0.5). The
stat’s documentation lists which parameters it can accept.

• The key_glyph argument of layer() may also be passed on through ....
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

Details

Note that all position aesthetics are scaled (i.e. they will expand the limits of the plot so they are
visible), but all other aesthetics are set. This means that layers created with this function will never
affect the legend.

Unsupported geoms

Due to their special nature, reference line geoms geom_abline(), geom_hline(), and geom_vline()
can’t be used with annotate(). You can use these geoms directly for annotations.

See Also

The custom annotations section of the online ggplot2 book.

Examples

p <- ggplot(mtcars, aes(x = wt, y = mpg)) + geom_point()
p + annotate("text", x = 4, y = 25, label = "Some text")
p + annotate("text", x = 2:5, y = 25, label = "Some text")
p + annotate("rect", xmin = 3, xmax = 4.2, ymin = 12, ymax = 21,

alpha = .2)
p + annotate("segment", x = 2.5, xend = 4, y = 15, yend = 25,

colour = "blue")
p + annotate("pointrange", x = 3.5, y = 20, ymin = 12, ymax = 28,

colour = "red", size = 2.5, linewidth = 1.5)

p + annotate("text", x = 2:3, y = 20:21, label = c("my label", "label 2"))

https://ggplot2-book.org/annotations#sec-custom-annotations


22 annotation_custom

p + annotate("text", x = 4, y = 25, label = "italic(R) ^ 2 == 0.75",
parse = TRUE)

p + annotate("text", x = 4, y = 25,
label = "paste(italic(R) ^ 2, \" = .75\")", parse = TRUE)

annotation_custom Annotation: Custom grob

Description

This is a special geom intended for use as static annotations that are the same in every panel. These
annotations will not affect scales (i.e. the x and y axes will not grow to cover the range of the grob,
and the grob will not be modified by any ggplot settings or mappings).

Usage

annotation_custom(grob, xmin = -Inf, xmax = Inf, ymin = -Inf, ymax = Inf)

Arguments

grob grob to display

xmin, xmax x location (in data coordinates) giving horizontal location of raster

ymin, ymax y location (in data coordinates) giving vertical location of raster

Details

Most useful for adding tables, inset plots, and other grid-based decorations.

Note

annotation_custom() expects the grob to fill the entire viewport defined by xmin, xmax, ymin,
ymax. Grobs with a different (absolute) size will be center-justified in that region. Inf values can be
used to fill the full plot panel (see examples).

Examples

# Dummy plot
df <- data.frame(x = 1:10, y = 1:10)
base <- ggplot(df, aes(x, y)) +

geom_blank() +
theme_bw()

# Full panel annotation
base + annotation_custom(

grob = grid::roundrectGrob(),
xmin = -Inf, xmax = Inf, ymin = -Inf, ymax = Inf

)



annotation_logticks 23

# Inset plot
df2 <- data.frame(x = 1 , y = 1)
g <- ggplotGrob(ggplot(df2, aes(x, y)) +

geom_point() +
theme(plot.background = element_rect(colour = "black")))

base +
annotation_custom(grob = g, xmin = 1, xmax = 10, ymin = 8, ymax = 10)

annotation_logticks Annotation: log tick marks

Description

[Superseded]

This function is superseded by using guide_axis_logticks().

This annotation adds log tick marks with diminishing spacing. These tick marks probably make
sense only for base 10.

Usage

annotation_logticks(
base = 10,
sides = "bl",
outside = FALSE,
scaled = TRUE,
short = unit(0.1, "cm"),
mid = unit(0.2, "cm"),
long = unit(0.3, "cm"),
colour = "black",
linewidth = 0.5,
linetype = 1,
alpha = 1,
color = NULL,
...,
size = deprecated()

)

Arguments

base the base of the log (default 10)

sides a string that controls which sides of the plot the log ticks appear on. It can be set
to a string containing any of "trbl", for top, right, bottom, and left.

outside logical that controls whether to move the log ticks outside of the plot area.
Default is off (FALSE). You will also need to use coord_cartesian(clip =
"off"). See examples.



24 annotation_logticks

scaled is the data already log-scaled? This should be TRUE (default) when the data is
already transformed with log10() or when using scale_y_log10(). It should
be FALSE when using coord_trans(y = "log10").

short a grid::unit() object specifying the length of the short tick marks

mid a grid::unit() object specifying the length of the middle tick marks. In base
10, these are the "5" ticks.

long a grid::unit() object specifying the length of the long tick marks. In base 10,
these are the "1" (or "10") ticks.

colour Colour of the tick marks.

linewidth Thickness of tick marks, in mm.

linetype Linetype of tick marks (solid, dashed, etc.)

alpha The transparency of the tick marks.

color An alias for colour.

... Other parameters passed on to the layer

size [Deprecated]

See Also

scale_y_continuous(), scale_y_log10() for log scale transformations.

coord_trans() for log coordinate transformations.

Examples

# Make a log-log plot (without log ticks)
a <- ggplot(msleep, aes(bodywt, brainwt)) +
geom_point(na.rm = TRUE) +
scale_x_log10(
breaks = scales::trans_breaks("log10", function(x) 10^x),
labels = scales::trans_format("log10", scales::math_format(10^.x))

) +
scale_y_log10(

breaks = scales::trans_breaks("log10", function(x) 10^x),
labels = scales::trans_format("log10", scales::math_format(10^.x))

) +
theme_bw()

a + annotation_logticks() # Default: log ticks on bottom and left
a + annotation_logticks(sides = "lr") # Log ticks for y, on left and right
a + annotation_logticks(sides = "trbl") # All four sides

a + annotation_logticks(sides = "lr", outside = TRUE) +
coord_cartesian(clip = "off") # Ticks outside plot

# Hide the minor grid lines because they don't align with the ticks
a + annotation_logticks(sides = "trbl") + theme(panel.grid.minor = element_blank())

# Another way to get the same results as 'a' above: log-transform the data before
# plotting it. Also hide the minor grid lines.



annotation_map 25

b <- ggplot(msleep, aes(log10(bodywt), log10(brainwt))) +
geom_point(na.rm = TRUE) +
scale_x_continuous(name = "body", labels = scales::label_math(10^.x)) +
scale_y_continuous(name = "brain", labels = scales::label_math(10^.x)) +
theme_bw() + theme(panel.grid.minor = element_blank())

b + annotation_logticks()

# Using a coordinate transform requires scaled = FALSE
t <- ggplot(msleep, aes(bodywt, brainwt)) +

geom_point() +
coord_trans(x = "log10", y = "log10") +
theme_bw()

t + annotation_logticks(scaled = FALSE)

# Change the length of the ticks
a + annotation_logticks(

short = unit(.5,"mm"),
mid = unit(3,"mm"),
long = unit(4,"mm")

)

annotation_map Annotation: a map

Description

Display a fixed map on a plot. This function predates the geom_sf() framework and does not work
with sf geometry columns as input. However, it can be used in conjunction with geom_sf() layers
and/or coord_sf() (see examples).

Usage

annotation_map(map, ...)

Arguments

map Data frame representing a map. See geom_map() for details.

... Other arguments used to modify visual parameters, such as colour or fill.

Examples

## Not run:
if (requireNamespace("maps", quietly = TRUE)) {
# location of cities in North Carolina
df <- data.frame(

name = c("Charlotte", "Raleigh", "Greensboro"),
lat = c(35.227, 35.772, 36.073),
long = c(-80.843, -78.639, -79.792)



26 annotation_raster

)

p <- ggplot(df, aes(x = long, y = lat)) +
annotation_map(
map_data("state"),
fill = "antiquewhite", colour = "darkgrey"

) +
geom_point(color = "blue") +
geom_text(

aes(label = name),
hjust = 1.105, vjust = 1.05, color = "blue"

)

# use without coord_sf() is possible but not recommended
p + xlim(-84, -76) + ylim(34, 37.2)

if (requireNamespace("sf", quietly = TRUE)) {
# use with coord_sf() for appropriate projection
p +

coord_sf(
crs = sf::st_crs(3347),
default_crs = sf::st_crs(4326), # data is provided as long-lat
xlim = c(-84, -76),
ylim = c(34, 37.2)

)

# you can mix annotation_map() and geom_sf()
nc <- sf::st_read(system.file("shape/nc.shp", package = "sf"), quiet = TRUE)
p +

geom_sf(
data = nc, inherit.aes = FALSE,
fill = NA, color = "black", linewidth = 0.1

) +
coord_sf(crs = sf::st_crs(3347), default_crs = sf::st_crs(4326))

}}
## End(Not run)

annotation_raster Annotation: high-performance rectangular tiling

Description

This is a special version of geom_raster() optimised for static annotations that are the same in
every panel. These annotations will not affect scales (i.e. the x and y axes will not grow to cover
the range of the raster, and the raster must already have its own colours). This is useful for adding
bitmap images.

Usage

annotation_raster(raster, xmin, xmax, ymin, ymax, interpolate = FALSE)



autolayer 27

Arguments

raster raster object to display, may be an array or a nativeRaster

xmin, xmax x location (in data coordinates) giving horizontal location of raster

ymin, ymax y location (in data coordinates) giving vertical location of raster

interpolate If TRUE interpolate linearly, if FALSE (the default) don’t interpolate.

Examples

# Generate data
rainbow <- matrix(hcl(seq(0, 360, length.out = 50 * 50), 80, 70), nrow = 50)
ggplot(mtcars, aes(mpg, wt)) +

geom_point() +
annotation_raster(rainbow, 15, 20, 3, 4)

# To fill up whole plot
ggplot(mtcars, aes(mpg, wt)) +

annotation_raster(rainbow, -Inf, Inf, -Inf, Inf) +
geom_point()

rainbow2 <- matrix(hcl(seq(0, 360, length.out = 10), 80, 70), nrow = 1)
ggplot(mtcars, aes(mpg, wt)) +

annotation_raster(rainbow2, -Inf, Inf, -Inf, Inf) +
geom_point()

rainbow2 <- matrix(hcl(seq(0, 360, length.out = 10), 80, 70), nrow = 1)
ggplot(mtcars, aes(mpg, wt)) +

annotation_raster(rainbow2, -Inf, Inf, -Inf, Inf, interpolate = TRUE) +
geom_point()

autolayer Create a ggplot layer appropriate to a particular data type

Description

autolayer() uses ggplot2 to draw a particular layer for an object of a particular class in a single
command. This defines the S3 generic that other classes and packages can extend.

Usage

autolayer(object, ...)

Arguments

object an object, whose class will determine the behaviour of autolayer

... other arguments passed to specific methods

Value

a ggplot layer



28 automatic_plotting

See Also

Other plotting automation topics: automatic_plotting, autoplot(), fortify()

automatic_plotting Tailoring plots to particular data types

Description

There are three functions to make plotting particular data types easier: autoplot(), autolayer()
and fortify(). These are S3 generics for which other packages can write methods to display
classes of data. The three functions are complementary and allow different levels of customisation.
Below we’ll explore implementing this series of methods to automate plotting of some class.

Let’s suppose we are writing a packages that has a class called ’my_heatmap’, that wraps a matrix
and we’d like users to easily plot this heatmap.

my_heatmap <- function(...) {
m <- matrix(...)
class(m) <- c("my_heatmap", class(m))
m

}

my_data <- my_heatmap(volcano)

Automatic data shaping

One of the things we have to do is ensure that the data is shaped in the long format so that it is
compatible with ggplot2. This is the job of the fortify() function. Because ’my_heatmap’ wraps
a matrix, we can let the fortify method ’melt’ the matrix to a long format. If your data is already
based on a long-format <data.frame>, you can skip implementing a fortify() method.

fortify.my_heatmap <- function(model, ...) {
data.frame(
row = as.vector(row(model)),
col = as.vector(col(model)),
value = as.vector(model)

)
}

fortify(my_data)

When you have implemented the fortify() method, it should be easier to construct a plot with the
data than with the matrix.

ggplot(my_data, aes(x = col, y = row, fill = value)) +
geom_raster()



automatic_plotting 29

Automatic layers

A next step in automating plotting of your data type is to write an autolayer() method. These are
typically wrappers around geoms or stats that automatically set aesthetics or other parameters. If
you haven’t implemented a fortify() method for your data type, you might have to reshape the
data in autolayer().

If you require multiple layers to display your data type, you can use an autolayer() method that
constructs a list of layers, which can be added to a plot.

autolayer.my_heatmap <- function(object, ...) {
geom_raster(
mapping = aes(x = col, y = row, fill = value),
data = object,
...,
inherit.aes = FALSE

)
}

ggplot() + autolayer(my_data)

As a quick tip: if you define a mapping in autolayer(), you might want to set inherit.aes =
FALSE to not have aesthetics set in other layers interfere with your layer.

Automatic plots

The last step in automating plotting is to write an autoplot() method for your data type. The ex-
pectation is that these return a complete plot. In the example below, we’re exploiting the autolayer()
method that we have already written to make a complete plot.

autoplot.my_heatmap <- function(object, ..., option = "magma") {
ggplot() +
autolayer(my_data) +
scale_fill_viridis_c(option = option) +
theme_void()

}

autoplot(my_data)

If you don’t have a wish to implement a base R plotting method, you can set the plot method for
your class to the autoplot method.

plot.my_heatmap <- autoplot.my_heatmap
plot(my_data)

See Also

Other plotting automation topics: autolayer(), autoplot(), fortify()



30 borders

autoplot Create a complete ggplot appropriate to a particular data type

Description

autoplot() uses ggplot2 to draw a particular plot for an object of a particular class in a single
command. This defines the S3 generic that other classes and packages can extend.

Usage

autoplot(object, ...)

Arguments

object an object, whose class will determine the behaviour of autoplot

... other arguments passed to specific methods

Value

a ggplot object

See Also

Other plotting automation topics: autolayer(), automatic_plotting, fortify()

borders Create a layer of map borders

Description

This is a quick and dirty way to get map data (from the maps package) onto your plot. This is a
good place to start if you need some crude reference lines, but you’ll typically want something more
sophisticated for communication graphics.

Usage

borders(
database = "world",
regions = ".",
fill = NA,
colour = "grey50",
xlim = NULL,
ylim = NULL,
...

)



borders 31

Arguments

database map data, see maps::map() for details

regions map region

fill fill colour

colour border colour

xlim, ylim latitudinal and longitudinal ranges for extracting map polygons, see maps::map()
for details.

... Arguments passed on to geom_polygon

rule Either "evenodd" or "winding". If polygons with holes are being drawn
(using the subgroup aesthetic) this argument defines how the hole coordi-
nates are interpreted. See the examples in grid::pathGrob() for an expla-
nation.

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes
= TRUE (the default), it is combined with the default mapping at the top level
of the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in
the call to ggplot().
A data.frame, or other object, will override the plot data. All objects will
be fortified to produce a data frame. See fortify() for which variables
will be created.
A function will be called with a single argument, the plot data. The re-
turn value must be a data.frame, and will be used as the layer data. A
function can be created from a formula (e.g. ~ head(.x, 10)).

stat The statistical transformation to use on the data for this layer. When using
a geom_*() function to construct a layer, the stat argument can be used the
override the default coupling between geoms and stats. The stat argument
accepts the following:

• A Stat ggproto subclass, for example StatCount.
• A string naming the stat. To give the stat as a string, strip the function

name of the stat_ prefix. For example, to use stat_count(), give the
stat as "count".

• For more information and other ways to specify the stat, see the layer
stat documentation.

position A position adjustment to use on the data for this layer. This can be
used in various ways, including to prevent overplotting and improving the
display. The position argument accepts the following:

• The result of calling a position function, such as position_jitter().
This method allows for passing extra arguments to the position.

• A string naming the position adjustment. To give the position as a
string, strip the function name of the position_ prefix. For example,
to use position_jitter(), give the position as "jitter".

• For more information and other ways to specify the position, see the
layer position documentation.



32 CoordSf

show.legend logical. Should this layer be included in the legends? NA, the
default, includes if any aesthetics are mapped. FALSE never includes, and
TRUE always includes. It can also be a named logical vector to finely select
the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining
with them. This is most useful for helper functions that define both data
and aesthetics and shouldn’t inherit behaviour from the default plot specifi-
cation, e.g. borders().

na.rm If FALSE, the default, missing values are removed with a warning. If
TRUE, missing values are silently removed.

Examples

if (require("maps")) {

ia <- map_data("county", "iowa")
mid_range <- function(x) mean(range(x))
seats <- do.call(rbind, lapply(split(ia, ia$subregion), function(d) {
data.frame(lat = mid_range(d$lat), long = mid_range(d$long), subregion = unique(d$subregion))

}))

ggplot(ia, aes(long, lat)) +
geom_polygon(aes(group = group), fill = NA, colour = "grey60") +
geom_text(aes(label = subregion), data = seats, size = 2, angle = 45)

}

if (require("maps")) {
data(us.cities)
capitals <- subset(us.cities, capital == 2)
ggplot(capitals, aes(long, lat)) +

borders("state") +
geom_point(aes(size = pop)) +
scale_size_area() +
coord_quickmap()

}

if (require("maps")) {
# Same map, with some world context
ggplot(capitals, aes(long, lat)) +

borders("world", xlim = c(-130, -60), ylim = c(20, 50)) +
geom_point(aes(size = pop)) +
scale_size_area() +
coord_quickmap()

}

CoordSf Visualise sf objects



CoordSf 33

Description

This set of geom, stat, and coord are used to visualise simple feature (sf) objects. For simple plots,
you will only need geom_sf() as it uses stat_sf() and adds coord_sf() for you. geom_sf() is an
unusual geom because it will draw different geometric objects depending on what simple features
are present in the data: you can get points, lines, or polygons. For text and labels, you can use
geom_sf_text() and geom_sf_label().

Usage

coord_sf(
xlim = NULL,
ylim = NULL,
expand = TRUE,
crs = NULL,
default_crs = NULL,
datum = sf::st_crs(4326),
label_graticule = waiver(),
label_axes = waiver(),
lims_method = "cross",
ndiscr = 100,
default = FALSE,
clip = "on"

)

geom_sf(
mapping = aes(),
data = NULL,
stat = "sf",
position = "identity",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
...

)

geom_sf_label(
mapping = aes(),
data = NULL,
stat = "sf_coordinates",
position = "identity",
...,
parse = FALSE,
nudge_x = 0,
nudge_y = 0,
label.padding = unit(0.25, "lines"),
label.r = unit(0.15, "lines"),
label.size = 0.25,
na.rm = FALSE,



34 CoordSf

show.legend = NA,
inherit.aes = TRUE,
fun.geometry = NULL

)

geom_sf_text(
mapping = aes(),
data = NULL,
stat = "sf_coordinates",
position = "identity",
...,
parse = FALSE,
nudge_x = 0,
nudge_y = 0,
check_overlap = FALSE,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
fun.geometry = NULL

)

stat_sf(
mapping = NULL,
data = NULL,
geom = "rect",
position = "identity",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
...

)

Arguments

xlim, ylim Limits for the x and y axes. These limits are specified in the units of the de-
fault CRS. By default, this means projected coordinates (default_crs = NULL).
How limit specifications translate into the exact region shown on the plot can be
confusing when non-linear or rotated coordinate systems are used as the default
crs. First, different methods can be preferable under different conditions. See
parameter lims_method for details. Second, specifying limits along only one
direction can affect the automatically generated limits along the other direction.
Therefore, it is best to always specify limits for both x and y. Third, specifying
limits via position scales or xlim()/ylim() is strongly discouraged, as it can
result in data points being dropped from the plot even though they would be
visible in the final plot region.

expand If TRUE, the default, adds a small expansion factor to the limits to ensure that
data and axes don’t overlap. If FALSE, limits are taken exactly from the data or
xlim/ylim.



CoordSf 35

crs The coordinate reference system (CRS) into which all data should be projected
before plotting. If not specified, will use the CRS defined in the first sf layer of
the plot.

default_crs The default CRS to be used for non-sf layers (which don’t carry any CRS infor-
mation) and scale limits. The default value of NULL means that the setting for
crs is used. This implies that all non-sf layers and scale limits are assumed to be
specified in projected coordinates. A useful alternative setting is default_crs =
sf::st_crs(4326), which means x and y positions are interpreted as longitude
and latitude, respectively, in the World Geodetic System 1984 (WGS84).

datum CRS that provides datum to use when generating graticules.
label_graticule

Character vector indicating which graticule lines should be labeled where. Merid-
ians run north-south, and the letters "N" and "S" indicate that they should be
labeled on their north or south end points, respectively. Parallels run east-west,
and the letters "E" and "W" indicate that they should be labeled on their east
or west end points, respectively. Thus, label_graticule = "SW" would label
meridians at their south end and parallels at their west end, whereas label_graticule
= "EW" would label parallels at both ends and meridians not at all. Because
meridians and parallels can in general intersect with any side of the plot panel,
for any choice of label_graticule labels are not guaranteed to reside on only
one particular side of the plot panel. Also, label_graticule can cause label-
ing artifacts, in particular if a graticule line coincides with the edge of the plot
panel. In such circumstances, label_axes will generally yield better results and
should be used instead.
This parameter can be used alone or in combination with label_axes.

label_axes Character vector or named list of character values specifying which graticule
lines (meridians or parallels) should be labeled on which side of the plot. Merid-
ians are indicated by "E" (for East) and parallels by "N" (for North). Default is
"--EN", which specifies (clockwise from the top) no labels on the top, none on
the right, meridians on the bottom, and parallels on the left. Alternatively, this
setting could have been specified with list(bottom = "E", left = "N").
This parameter can be used alone or in combination with label_graticule.

lims_method Method specifying how scale limits are converted into limits on the plot re-
gion. Has no effect when default_crs = NULL. For a very non-linear CRS
(e.g., a perspective centered around the North pole), the available methods yield
widely differing results, and you may want to try various options. Methods cur-
rently implemented include "cross" (the default), "box", "orthogonal", and
"geometry_bbox". For method "cross", limits along one direction (e.g., lon-
gitude) are applied at the midpoint of the other direction (e.g., latitude). This
method avoids excessively large limits for rotated coordinate systems but means
that sometimes limits need to be expanded a little further if extreme data points
are to be included in the final plot region. By contrast, for method "box", a box
is generated out of the limits along both directions, and then limits in projected
coordinates are chosen such that the entire box is visible. This method can yield
plot regions that are too large. Finally, method "orthogonal" applies limits
separately along each axis, and method "geometry_bbox" ignores all limit in-
formation except the bounding boxes of any objects in the geometry aesthetic.



36 CoordSf

ndiscr Number of segments to use for discretising graticule lines; try increasing this
number when graticules look incorrect.

default Is this the default coordinate system? If FALSE (the default), then replacing this
coordinate system with another one creates a message alerting the user that the
coordinate system is being replaced. If TRUE, that warning is suppressed.

clip Should drawing be clipped to the extent of the plot panel? A setting of "on" (the
default) means yes, and a setting of "off" means no. In most cases, the default
of "on" should not be changed, as setting clip = "off" can cause unexpected
results. It allows drawing of data points anywhere on the plot, including in
the plot margins. If limits are set via xlim and ylim and some data points fall
outside those limits, then those data points may show up in places such as the
axes, the legend, the plot title, or the plot margins.

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

stat The statistical transformation to use on the data for this layer. When using a
geom_*() function to construct a layer, the stat argument can be used the over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

• A Stat ggproto subclass, for example StatCount.
• A string naming the stat. To give the stat as a string, strip the function name

of the stat_ prefix. For example, to use stat_count(), give the stat as
"count".

• For more information and other ways to specify the stat, see the layer stat
documentation.

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

• The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

• A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

• For more information and other ways to specify the position, see the layer
position documentation.



CoordSf 37

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes.
You can also set this to one of "polygon", "line", and "point" to override the
default legend.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

... Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through
.... Unknown arguments that are not part of the 4 categories below are ignored.

• Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red" or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

• When constructing a layer using a stat_*() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area", outline.type = "both"). The
geom’s documentation lists which parameters it can accept.

• Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density", adjust = 0.5). The
stat’s documentation lists which parameters it can accept.

• The key_glyph argument of layer() may also be passed on through ....
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

parse If TRUE, the labels will be parsed into expressions and displayed as described in
?plotmath.

nudge_x, nudge_y
Horizontal and vertical adjustment to nudge labels by. Useful for offsetting text
from points, particularly on discrete scales. Cannot be jointly specified with
position.

label.padding Amount of padding around label. Defaults to 0.25 lines.

label.r Radius of rounded corners. Defaults to 0.15 lines.

label.size Size of label border, in mm.

fun.geometry A function that takes a sfc object and returns a sfc_POINT with the same length
as the input. If NULL, function(x) sf::st_point_on_surface(sf::st_zm(x))
will be used. Note that the function may warn about the incorrectness of the re-
sult if the data is not projected, but you can ignore this except when you really
care about the exact locations.



38 CoordSf

check_overlap If TRUE, text that overlaps previous text in the same layer will not be plotted.
check_overlap happens at draw time and in the order of the data. Therefore
data should be arranged by the label column before calling geom_text(). Note
that this argument is not supported by geom_label().

geom The geometric object to use to display the data for this layer. When using a
stat_*() function to construct a layer, the geom argument can be used to over-
ride the default coupling between stats and geoms. The geom argument accepts
the following:

• A Geom ggproto subclass, for example GeomPoint.
• A string naming the geom. To give the geom as a string, strip the function

name of the geom_ prefix. For example, to use geom_point(), give the
geom as "point".

• For more information and other ways to specify the geom, see the layer
geom documentation.

Geometry aesthetic

geom_sf() uses a unique aesthetic: geometry, giving an column of class sfc containing simple
features data. There are three ways to supply the geometry aesthetic:

• Do nothing: by default geom_sf() assumes it is stored in the geometry column.

• Explicitly pass an sf object to the data argument. This will use the primary geometry column,
no matter what it’s called.

• Supply your own using aes(geometry = my_column)

Unlike other aesthetics, geometry will never be inherited from the plot.

CRS

coord_sf() ensures that all layers use a common CRS. You can either specify it using the crs
param, or coord_sf() will take it from the first layer that defines a CRS.

Combining sf layers and regular geoms

Most regular geoms, such as geom_point(), geom_path(), geom_text(), geom_polygon() etc.
will work fine with coord_sf(). However when using these geoms, two problems arise. First, what
CRS should be used for the x and y coordinates used by these non-sf geoms? The CRS applied to
non-sf geoms is set by the default_crs parameter, and it defaults to NULL, which means positions
for non-sf geoms are interpreted as projected coordinates in the coordinate system set by the crs
parameter. This setting allows you complete control over where exactly items are placed on the
plot canvas, but it may require some understanding of how projections work and how to generate
data in projected coordinates. As an alternative, you can set default_crs = sf::st_crs(4326),
the World Geodetic System 1984 (WGS84). This means that x and y positions are interpreted as
longitude and latitude, respectively. You can also specify any other valid CRS as the default CRS
for non-sf geoms.

The second problem that arises for non-sf geoms is how straight lines should be interpreted in
projected space when default_crs is not set to NULL. The approach coord_sf() takes is to break
straight lines into small pieces (i.e., segmentize them) and then transform the pieces into projected



CoordSf 39

coordinates. For the default setting where x and y are interpreted as longitude and latitude, this
approach means that horizontal lines follow the parallels and vertical lines follow the meridians. If
you need a different approach to handling straight lines, then you should manually segmentize and
project coordinates and generate the plot in projected coordinates.

See Also

The simple feature maps section of the online ggplot2 book.

stat_sf_coordinates()

Examples

if (requireNamespace("sf", quietly = TRUE)) {
nc <- sf::st_read(system.file("shape/nc.shp", package = "sf"), quiet = TRUE)
ggplot(nc) +

geom_sf(aes(fill = AREA))

# If not supplied, coord_sf() will take the CRS from the first layer
# and automatically transform all other layers to use that CRS. This
# ensures that all data will correctly line up
nc_3857 <- sf::st_transform(nc, 3857)
ggplot() +

geom_sf(data = nc) +
geom_sf(data = nc_3857, colour = "red", fill = NA)

# Unfortunately if you plot other types of feature you'll need to use
# show.legend to tell ggplot2 what type of legend to use
nc_3857$mid <- sf::st_centroid(nc_3857$geometry)
ggplot(nc_3857) +

geom_sf(colour = "white") +
geom_sf(aes(geometry = mid, size = AREA), show.legend = "point")

# You can also use layers with x and y aesthetics. To have these interpreted
# as longitude/latitude you need to set the default CRS in coord_sf()
ggplot(nc_3857) +

geom_sf() +
annotate("point", x = -80, y = 35, colour = "red", size = 4) +
coord_sf(default_crs = sf::st_crs(4326))

# To add labels, use geom_sf_label().
ggplot(nc_3857[1:3, ]) +

geom_sf(aes(fill = AREA)) +
geom_sf_label(aes(label = NAME))

}

# Thanks to the power of sf, a geom_sf nicely handles varying projections
# setting the aspect ratio correctly.
if (requireNamespace('maps', quietly = TRUE)) {
library(maps)
world1 <- sf::st_as_sf(map('world', plot = FALSE, fill = TRUE))
ggplot() + geom_sf(data = world1)

https://ggplot2-book.org/maps#sec-sf


40 coord_cartesian

world2 <- sf::st_transform(
world1,
"+proj=laea +y_0=0 +lon_0=155 +lat_0=-90 +ellps=WGS84 +no_defs"

)
ggplot() + geom_sf(data = world2)
}

coord_cartesian Cartesian coordinates

Description

The Cartesian coordinate system is the most familiar, and common, type of coordinate system. Set-
ting limits on the coordinate system will zoom the plot (like you’re looking at it with a magnifying
glass), and will not change the underlying data like setting limits on a scale will.

Usage

coord_cartesian(
xlim = NULL,
ylim = NULL,
expand = TRUE,
default = FALSE,
clip = "on"

)

Arguments

xlim, ylim Limits for the x and y axes.

expand If TRUE, the default, adds a small expansion factor to the limits to ensure that
data and axes don’t overlap. If FALSE, limits are taken exactly from the data or
xlim/ylim.

default Is this the default coordinate system? If FALSE (the default), then replacing this
coordinate system with another one creates a message alerting the user that the
coordinate system is being replaced. If TRUE, that warning is suppressed.

clip Should drawing be clipped to the extent of the plot panel? A setting of "on" (the
default) means yes, and a setting of "off" means no. In most cases, the default
of "on" should not be changed, as setting clip = "off" can cause unexpected
results. It allows drawing of data points anywhere on the plot, including in
the plot margins. If limits are set via xlim and ylim and some data points fall
outside those limits, then those data points may show up in places such as the
axes, the legend, the plot title, or the plot margins.



coord_fixed 41

Examples

# There are two ways of zooming the plot display: with scales or
# with coordinate systems. They work in two rather different ways.

p <- ggplot(mtcars, aes(disp, wt)) +
geom_point() +
geom_smooth()

p

# Setting the limits on a scale converts all values outside the range to NA.
p + scale_x_continuous(limits = c(325, 500))

# Setting the limits on the coordinate system performs a visual zoom.
# The data is unchanged, and we just view a small portion of the original
# plot. Note how smooth continues past the points visible on this plot.
p + coord_cartesian(xlim = c(325, 500))

# By default, the same expansion factor is applied as when setting scale
# limits. You can set the limits precisely by setting expand = FALSE
p + coord_cartesian(xlim = c(325, 500), expand = FALSE)

# Similarly, we can use expand = FALSE to turn off expansion with the
# default limits
p + coord_cartesian(expand = FALSE)

# You can see the same thing with this 2d histogram
d <- ggplot(diamonds, aes(carat, price)) +

stat_bin_2d(bins = 25, colour = "white")
d

# When zooming the scale, the we get 25 new bins that are the same
# size on the plot, but represent smaller regions of the data space
d + scale_x_continuous(limits = c(0, 1))

# When zooming the coordinate system, we see a subset of original 50 bins,
# displayed bigger
d + coord_cartesian(xlim = c(0, 1))

coord_fixed Cartesian coordinates with fixed "aspect ratio"

Description

A fixed scale coordinate system forces a specified ratio between the physical representation of data
units on the axes. The ratio represents the number of units on the y-axis equivalent to one unit on
the x-axis. The default, ratio = 1, ensures that one unit on the x-axis is the same length as one unit
on the y-axis. Ratios higher than one make units on the y axis longer than units on the x-axis, and
vice versa. This is similar to MASS::eqscplot(), but it works for all types of graphics.



42 coord_flip

Usage

coord_fixed(ratio = 1, xlim = NULL, ylim = NULL, expand = TRUE, clip = "on")

Arguments

ratio aspect ratio, expressed as y / x

xlim, ylim Limits for the x and y axes.

expand If TRUE, the default, adds a small expansion factor to the limits to ensure that
data and axes don’t overlap. If FALSE, limits are taken exactly from the data or
xlim/ylim.

clip Should drawing be clipped to the extent of the plot panel? A setting of "on" (the
default) means yes, and a setting of "off" means no. In most cases, the default
of "on" should not be changed, as setting clip = "off" can cause unexpected
results. It allows drawing of data points anywhere on the plot, including in
the plot margins. If limits are set via xlim and ylim and some data points fall
outside those limits, then those data points may show up in places such as the
axes, the legend, the plot title, or the plot margins.

Examples

# ensures that the ranges of axes are equal to the specified ratio by
# adjusting the plot aspect ratio

p <- ggplot(mtcars, aes(mpg, wt)) + geom_point()
p + coord_fixed(ratio = 1)
p + coord_fixed(ratio = 5)
p + coord_fixed(ratio = 1/5)
p + coord_fixed(xlim = c(15, 30))

# Resize the plot to see that the specified aspect ratio is maintained

coord_flip Cartesian coordinates with x and y flipped

Description

[Superseded]

This function is superseded because in many cases, coord_flip() can easily be replaced by swap-
ping the x and y aesthetics, or optionally setting the orientation argument in geom and stat layers.

coord_flip() is useful for geoms and statistics that do not support the orientation setting, and
converting the display of y conditional on x, to x conditional on y.

Usage

coord_flip(xlim = NULL, ylim = NULL, expand = TRUE, clip = "on")



coord_flip 43

Arguments

xlim, ylim Limits for the x and y axes.

expand If TRUE, the default, adds a small expansion factor to the limits to ensure that
data and axes don’t overlap. If FALSE, limits are taken exactly from the data or
xlim/ylim.

clip Should drawing be clipped to the extent of the plot panel? A setting of "on" (the
default) means yes, and a setting of "off" means no. In most cases, the default
of "on" should not be changed, as setting clip = "off" can cause unexpected
results. It allows drawing of data points anywhere on the plot, including in
the plot margins. If limits are set via xlim and ylim and some data points fall
outside those limits, then those data points may show up in places such as the
axes, the legend, the plot title, or the plot margins.

Details

Coordinate systems interact with many parts of the plotting system. You can expect the following
for coord_flip():

• It does not change the facet order in facet_grid() or facet_wrap().

• The scale_x_*() functions apply to the vertical direction, whereas scale_y_*() functions
apply to the horizontal direction. The same holds for the xlim and ylim arguments of coord_flip()
and the xlim() and ylim() functions.

• The x-axis theme settings, such as axis.line.x apply to the horizontal direction. The y-axis
theme settings, such as axis.text.y apply to the vertical direction.

Examples

# The preferred method of creating horizontal instead of vertical boxplots
ggplot(diamonds, aes(price, cut)) +

geom_boxplot()

# Using `coord_flip()` to make the same plot
ggplot(diamonds, aes(cut, price)) +

geom_boxplot() +
coord_flip()

# With swapped aesthetics, the y-scale controls the left axis
ggplot(diamonds, aes(y = carat)) +

geom_histogram() +
scale_y_reverse()

# In `coord_flip()`, the x-scale controls the left axis
ggplot(diamonds, aes(carat)) +

geom_histogram() +
coord_flip() +
scale_x_reverse()

# In line and area plots, swapped aesthetics require an explicit orientation
df <- data.frame(a = 1:5, b = (1:5) ^ 2)



44 coord_map

ggplot(df, aes(b, a)) +
geom_area(orientation = "y")

# The same plot with `coord_flip()`
ggplot(df, aes(a, b)) +

geom_area() +
coord_flip()

coord_map Map projections

Description

[Superseded]
coord_map() projects a portion of the earth, which is approximately spherical, onto a flat 2D plane
using any projection defined by the mapproj package. Map projections do not, in general, preserve
straight lines, so this requires considerable computation. coord_quickmap() is a quick approxima-
tion that does preserve straight lines. It works best for smaller areas closer to the equator.

Both coord_map() and coord_quickmap() are superseded by coord_sf(), and should no longer
be used in new code. All regular (non-sf) geoms can be used with coord_sf() by setting the default
coordinate system via the default_crs argument. See also the examples for annotation_map()
and geom_map().

Usage

coord_map(
projection = "mercator",
...,
parameters = NULL,
orientation = NULL,
xlim = NULL,
ylim = NULL,
clip = "on"

)

coord_quickmap(xlim = NULL, ylim = NULL, expand = TRUE, clip = "on")

Arguments

projection projection to use, see mapproj::mapproject() for list

..., parameters Other arguments passed on to mapproj::mapproject(). Use ... for named
parameters to the projection, and parameters for unnamed parameters. ... is
ignored if the parameters argument is present.

orientation projection orientation, which defaults to c(90, 0, mean(range(x))). This is
not optimal for many projections, so you will have to supply your own. See
mapproj::mapproject() for more information.



coord_map 45

xlim, ylim Manually specific x/y limits (in degrees of longitude/latitude)

clip Should drawing be clipped to the extent of the plot panel? A setting of "on"
(the default) means yes, and a setting of "off" means no. For details, please see
coord_cartesian().

expand If TRUE, the default, adds a small expansion factor to the limits to ensure that
data and axes don’t overlap. If FALSE, limits are taken exactly from the data or
xlim/ylim.

Details

Map projections must account for the fact that the actual length (in km) of one degree of longitude
varies between the equator and the pole. Near the equator, the ratio between the lengths of one
degree of latitude and one degree of longitude is approximately 1. Near the pole, it tends towards
infinity because the length of one degree of longitude tends towards 0. For regions that span only a
few degrees and are not too close to the poles, setting the aspect ratio of the plot to the appropriate
lat/lon ratio approximates the usual mercator projection. This is what coord_quickmap() does, and
is much faster (particularly for complex plots like geom_tile()) at the expense of correctness.

See Also

The polygon maps section of the online ggplot2 book.

Examples

if (require("maps")) {
nz <- map_data("nz")
# Prepare a map of NZ
nzmap <- ggplot(nz, aes(x = long, y = lat, group = group)) +

geom_polygon(fill = "white", colour = "black")

# Plot it in cartesian coordinates
nzmap
}

if (require("maps")) {
# With correct mercator projection
nzmap + coord_map()
}

if (require("maps")) {
# With the aspect ratio approximation
nzmap + coord_quickmap()
}

if (require("maps")) {
# Other projections
nzmap + coord_map("azequalarea", orientation = c(-36.92, 174.6, 0))
}

if (require("maps")) {
states <- map_data("state")

https://ggplot2-book.org/maps#sec-polygonmaps


46 coord_map

usamap <- ggplot(states, aes(long, lat, group = group)) +
geom_polygon(fill = "white", colour = "black")

# Use cartesian coordinates
usamap
}

if (require("maps")) {
# With mercator projection
usamap + coord_map()
}

if (require("maps")) {
# See ?mapproject for coordinate systems and their parameters
usamap + coord_map("gilbert")
}

if (require("maps")) {
# For most projections, you'll need to set the orientation yourself
# as the automatic selection done by mapproject is not available to
# ggplot
usamap + coord_map("orthographic")
}

if (require("maps")) {
usamap + coord_map("conic", lat0 = 30)
}

if (require("maps")) {
usamap + coord_map("bonne", lat0 = 50)
}

## Not run:
if (require("maps")) {
# World map, using geom_path instead of geom_polygon
world <- map_data("world")
worldmap <- ggplot(world, aes(x = long, y = lat, group = group)) +

geom_path() +
scale_y_continuous(breaks = (-2:2) * 30) +
scale_x_continuous(breaks = (-4:4) * 45)

# Orthographic projection with default orientation (looking down at North pole)
worldmap + coord_map("ortho")
}

if (require("maps")) {
# Looking up up at South Pole
worldmap + coord_map("ortho", orientation = c(-90, 0, 0))
}

if (require("maps")) {
# Centered on New York (currently has issues with closing polygons)
worldmap + coord_map("ortho", orientation = c(41, -74, 0))



coord_polar 47

}

## End(Not run)

coord_polar Polar coordinates

Description

The polar coordinate system is most commonly used for pie charts, which are a stacked bar chart in
polar coordinates. coord_radial() has extended options.

Usage

coord_polar(theta = "x", start = 0, direction = 1, clip = "on")

coord_radial(
theta = "x",
start = 0,
end = NULL,
expand = TRUE,
direction = 1,
clip = "off",
r.axis.inside = NULL,
rotate.angle = FALSE,
inner.radius = 0,
r_axis_inside = deprecated(),
rotate_angle = deprecated()

)

Arguments

theta variable to map angle to (x or y)

start Offset of starting point from 12 o’clock in radians. Offset is applied clockwise
or anticlockwise depending on value of direction.

direction 1, clockwise; -1, anticlockwise

clip Should drawing be clipped to the extent of the plot panel? A setting of "on"
(the default) means yes, and a setting of "off" means no. For details, please see
coord_cartesian().

end Position from 12 o’clock in radians where plot ends, to allow for partial polar
coordinates. The default, NULL, is set to start + 2 * pi.

expand If TRUE, the default, adds a small expansion factor the the limits to prevent over-
lap between data and axes. If FALSE, limits are taken directly from the scale.

r.axis.inside If TRUE, places the radius axis inside the panel. If FALSE, places the radius axis
next to the panel. The default, NULL, places the radius axis outside if the start
and end arguments form a full circle.



48 coord_polar

rotate.angle If TRUE, transforms the angle aesthetic in data in accordance with the computed
theta position. If FALSE (default), no such transformation is performed. Can
be useful to rotate text geoms in alignment with the coordinates.

inner.radius A numeric between 0 and 1 setting the size of a inner.radius hole.
r_axis_inside, rotate_angle

[Deprecated]

Note

In coord_radial(), position guides are can be defined by using guides(r = ..., theta = ...,
r.sec = ..., theta.sec = ...). Note that these guides require r and theta as available aesthet-
ics. The classic guide_axis() can be used for the r positions and guide_axis_theta() can be
used for the theta positions. Using the theta.sec position is only sensible when inner.radius
> 0.

See Also

The polar coordinates section of the online ggplot2 book.

Examples

# NOTE: Use these plots with caution - polar coordinates has
# major perceptual problems. The main point of these examples is
# to demonstrate how these common plots can be described in the
# grammar. Use with EXTREME caution.

#' # A pie chart = stacked bar chart + polar coordinates
pie <- ggplot(mtcars, aes(x = factor(1), fill = factor(cyl))) +
geom_bar(width = 1)

pie + coord_polar(theta = "y")

# A coxcomb plot = bar chart + polar coordinates
cxc <- ggplot(mtcars, aes(x = factor(cyl))) +

geom_bar(width = 1, colour = "black")
cxc + coord_polar()
# A new type of plot?
cxc + coord_polar(theta = "y")

# The bullseye chart
pie + coord_polar()

# Hadley's favourite pie chart
df <- data.frame(

variable = c("does not resemble", "resembles"),
value = c(20, 80)

)
ggplot(df, aes(x = "", y = value, fill = variable)) +

geom_col(width = 1) +
scale_fill_manual(values = c("red", "yellow")) +

https://ggplot2-book.org/coord#polar-coordinates-with-coord_polar


coord_trans 49

coord_polar("y", start = pi / 3) +
labs(title = "Pac man")

# Windrose + doughnut plot
if (require("ggplot2movies")) {
movies$rrating <- cut_interval(movies$rating, length = 1)
movies$budgetq <- cut_number(movies$budget, 4)

doh <- ggplot(movies, aes(x = rrating, fill = budgetq))

# Wind rose
doh + geom_bar(width = 1) + coord_polar()
# Race track plot
doh + geom_bar(width = 0.9, position = "fill") + coord_polar(theta = "y")
}

# A partial polar plot
ggplot(mtcars, aes(disp, mpg)) +

geom_point() +
coord_radial(start = -0.4 * pi, end = 0.4 * pi, inner.radius = 0.3)

coord_trans Transformed Cartesian coordinate system

Description

coord_trans() is different to scale transformations in that it occurs after statistical transformation
and will affect the visual appearance of geoms - there is no guarantee that straight lines will continue
to be straight.

Usage

coord_trans(
x = "identity",
y = "identity",
xlim = NULL,
ylim = NULL,
limx = deprecated(),
limy = deprecated(),
clip = "on",
expand = TRUE

)

Arguments

x, y Transformers for x and y axes or their names.

xlim, ylim Limits for the x and y axes.

limx, limy [Deprecated] use xlim and ylim instead.



50 coord_trans

clip Should drawing be clipped to the extent of the plot panel? A setting of "on" (the
default) means yes, and a setting of "off" means no. In most cases, the default
of "on" should not be changed, as setting clip = "off" can cause unexpected
results. It allows drawing of data points anywhere on the plot, including in
the plot margins. If limits are set via xlim and ylim and some data points fall
outside those limits, then those data points may show up in places such as the
axes, the legend, the plot title, or the plot margins.

expand If TRUE, the default, adds a small expansion factor to the limits to ensure that
data and axes don’t overlap. If FALSE, limits are taken exactly from the data or
xlim/ylim.

Details

Transformations only work with continuous values: see scales::new_transform() for list of
transformations, and instructions on how to create your own.

See Also

The coord transformations section of the online ggplot2 book.

Examples

# See ?geom_boxplot for other examples

# Three ways of doing transformation in ggplot:
# * by transforming the data
ggplot(diamonds, aes(log10(carat), log10(price))) +

geom_point()
# * by transforming the scales
ggplot(diamonds, aes(carat, price)) +

geom_point() +
scale_x_log10() +
scale_y_log10()

# * by transforming the coordinate system:
ggplot(diamonds, aes(carat, price)) +

geom_point() +
coord_trans(x = "log10", y = "log10")

# The difference between transforming the scales and
# transforming the coordinate system is that scale
# transformation occurs BEFORE statistics, and coordinate
# transformation afterwards. Coordinate transformation also
# changes the shape of geoms:

d <- subset(diamonds, carat > 0.5)

ggplot(d, aes(carat, price)) +
geom_point() +
geom_smooth(method = "lm") +
scale_x_log10() +
scale_y_log10()

https://ggplot2-book.org/coord#transformations-with-coord_trans


cut_interval 51

ggplot(d, aes(carat, price)) +
geom_point() +
geom_smooth(method = "lm") +
coord_trans(x = "log10", y = "log10")

# Here I used a subset of diamonds so that the smoothed line didn't
# drop below zero, which obviously causes problems on the log-transformed
# scale

# With a combination of scale and coordinate transformation, it's
# possible to do back-transformations:
ggplot(diamonds, aes(carat, price)) +

geom_point() +
geom_smooth(method = "lm") +
scale_x_log10() +
scale_y_log10() +
coord_trans(x = scales::transform_exp(10), y = scales::transform_exp(10))

# cf.
ggplot(diamonds, aes(carat, price)) +

geom_point() +
geom_smooth(method = "lm")

# Also works with discrete scales
set.seed(1)
df <- data.frame(a = abs(rnorm(26)),letters)
plot <- ggplot(df,aes(a,letters)) + geom_point()

plot + coord_trans(x = "log10")
plot + coord_trans(x = "sqrt")

cut_interval Discretise numeric data into categorical

Description

cut_interval() makes n groups with equal range, cut_number() makes n groups with (approxi-
mately) equal numbers of observations; cut_width() makes groups of width width.

Usage

cut_interval(x, n = NULL, length = NULL, ...)

cut_number(x, n = NULL, ...)

cut_width(x, width, center = NULL, boundary = NULL, closed = "right", ...)



52 cut_interval

Arguments

x numeric vector

n number of intervals to create, OR

length length of each interval

... Arguments passed on to base::cut.default

breaks either a numeric vector of two or more unique cut points or a single
number (greater than or equal to 2) giving the number of intervals into
which x is to be cut.

labels labels for the levels of the resulting category. By default, labels are
constructed using "(a,b]" interval notation. If labels = FALSE, simple
integer codes are returned instead of a factor.

right logical, indicating if the intervals should be closed on the right (and open
on the left) or vice versa.

dig.lab integer which is used when labels are not given. It determines the
number of digits used in formatting the break numbers.

ordered_result logical: should the result be an ordered factor?

width The bin width.
center, boundary

Specify either the position of edge or the center of a bin. Since all bins are
aligned, specifying the position of a single bin (which doesn’t need to be in the
range of the data) affects the location of all bins. If not specified, uses the "tile
layers algorithm", and sets the boundary to half of the binwidth.
To center on integers, width = 1 and center = 0. boundary = 0.5.

closed One of "right" or "left" indicating whether right or left edges of bins are
included in the bin.

Author(s)

Randall Prium contributed most of the implementation of cut_width().

Examples

table(cut_interval(1:100, 10))
table(cut_interval(1:100, 11))

set.seed(1)

table(cut_number(runif(1000), 10))

table(cut_width(runif(1000), 0.1))
table(cut_width(runif(1000), 0.1, boundary = 0))
table(cut_width(runif(1000), 0.1, center = 0))
table(cut_width(runif(1000), 0.1, labels = FALSE))



diamonds 53

diamonds Prices of over 50,000 round cut diamonds

Description

A dataset containing the prices and other attributes of almost 54,000 diamonds. The variables are
as follows:

Usage

diamonds

Format

A data frame with 53940 rows and 10 variables:

price price in US dollars ($326–$18,823)

carat weight of the diamond (0.2–5.01)

cut quality of the cut (Fair, Good, Very Good, Premium, Ideal)

color diamond colour, from D (best) to J (worst)

clarity a measurement of how clear the diamond is (I1 (worst), SI2, SI1, VS2, VS1, VVS2, VVS1,
IF (best))

x length in mm (0–10.74)

y width in mm (0–58.9)

z depth in mm (0–31.8)

depth total depth percentage = z / mean(x, y) = 2 * z / (x + y) (43–79)

table width of top of diamond relative to widest point (43–95)

draw_key Key glyphs for legends

Description

Each geom has an associated function that draws the key when the geom needs to be displayed in
a legend. These functions are called draw_key_*(), where * stands for the name of the respective
key glyph. The key glyphs can be customized for individual geoms by providing a geom with the
key_glyph argument (see layer() or examples below.)



54 draw_key

Usage

draw_key_point(data, params, size)

draw_key_abline(data, params, size)

draw_key_rect(data, params, size)

draw_key_polygon(data, params, size)

draw_key_blank(data, params, size)

draw_key_boxplot(data, params, size)

draw_key_crossbar(data, params, size)

draw_key_path(data, params, size)

draw_key_vpath(data, params, size)

draw_key_dotplot(data, params, size)

draw_key_linerange(data, params, size)

draw_key_pointrange(data, params, size)

draw_key_smooth(data, params, size)

draw_key_text(data, params, size)

draw_key_label(data, params, size)

draw_key_vline(data, params, size)

draw_key_timeseries(data, params, size)

Arguments

data A single row data frame containing the scaled aesthetics to display in this key

params A list of additional parameters supplied to the geom.

size Width and height of key in mm.

Value

A grid grob.

Examples

p <- ggplot(economics, aes(date, psavert, color = "savings rate"))



economics 55

# key glyphs can be specified by their name
p + geom_line(key_glyph = "timeseries")

# key glyphs can be specified via their drawing function
p + geom_line(key_glyph = draw_key_rect)

economics US economic time series

Description

This dataset was produced from US economic time series data available from https://fred.
stlouisfed.org/. economics is in "wide" format, economics_long is in "long" format.

Usage

economics

economics_long

Format

A data frame with 574 rows and 6 variables:

date Month of data collection

pce personal consumption expenditures, in billions of dollars, https://fred.stlouisfed.org/
series/PCE

pop total population, in thousands, https://fred.stlouisfed.org/series/POP

psavert personal savings rate, https://fred.stlouisfed.org/series/PSAVERT/

uempmed median duration of unemployment, in weeks, https://fred.stlouisfed.org/series/
UEMPMED

unemploy number of unemployed in thousands, https://fred.stlouisfed.org/series/UNEMPLOY

An object of class tbl_df (inherits from tbl, data.frame) with 2870 rows and 4 columns.

https://fred.stlouisfed.org/
https://fred.stlouisfed.org/
https://fred.stlouisfed.org/series/PCE
https://fred.stlouisfed.org/series/PCE
https://fred.stlouisfed.org/series/POP
https://fred.stlouisfed.org/series/PSAVERT/
https://fred.stlouisfed.org/series/UEMPMED
https://fred.stlouisfed.org/series/UEMPMED
https://fred.stlouisfed.org/series/UNEMPLOY


56 element

element Theme elements

Description

In conjunction with the theme system, the element_ functions specify the display of how non-data
components of the plot are drawn.

• element_blank(): draws nothing, and assigns no space.

• element_rect(): borders and backgrounds.

• element_line(): lines.

• element_text(): text.

rel() is used to specify sizes relative to the parent, margin() is used to specify the margins of
elements.

Usage

element_blank()

element_rect(
fill = NULL,
colour = NULL,
linewidth = NULL,
linetype = NULL,
color = NULL,
inherit.blank = FALSE,
size = deprecated()

)

element_line(
colour = NULL,
linewidth = NULL,
linetype = NULL,
lineend = NULL,
color = NULL,
arrow = NULL,
inherit.blank = FALSE,
size = deprecated()

)

element_text(
family = NULL,
face = NULL,
colour = NULL,
size = NULL,
hjust = NULL,



element 57

vjust = NULL,
angle = NULL,
lineheight = NULL,
color = NULL,
margin = NULL,
debug = NULL,
inherit.blank = FALSE

)

is_theme_element(x, type = "any")

rel(x)

margin(t = 0, r = 0, b = 0, l = 0, unit = "pt")

Arguments

fill Fill colour.

colour, color Line/border colour. Color is an alias for colour.

linewidth Line/border size in mm.

linetype Line type. An integer (0:8), a name (blank, solid, dashed, dotted, dotdash, long-
dash, twodash), or a string with an even number (up to eight) of hexadecimal
digits which give the lengths in consecutive positions in the string.

inherit.blank Should this element inherit the existence of an element_blank among its par-
ents? If TRUE the existence of a blank element among its parents will cause this
element to be blank as well. If FALSE any blank parent element will be ignored
when calculating final element state.

size text size in pts.

lineend Line end Line end style (round, butt, square)

arrow Arrow specification, as created by grid::arrow()

family Font family

face Font face ("plain", "italic", "bold", "bold.italic")

hjust Horizontal justification (in [0, 1])

vjust Vertical justification (in [0, 1])

angle Angle (in [0, 360])

lineheight Line height

margin Margins around the text. See margin() for more details. When creating a
theme, the margins should be placed on the side of the text facing towards the
center of the plot.

debug If TRUE, aids visual debugging by drawing a solid rectangle behind the complete
text area, and a point where each label is anchored.

x A single number specifying size relative to parent element.

type For testing elements: the type of element to expect. One of "blank", "rect",
"line" or "text".



58 expand_limits

t, r, b, l Dimensions of each margin. (To remember order, think trouble).

unit Default units of dimensions. Defaults to "pt" so it can be most easily scaled with
the text.

Value

An S3 object of class element, rel, or margin.

Examples

plot <- ggplot(mpg, aes(displ, hwy)) + geom_point()

plot + theme(
panel.background = element_blank(),
axis.text = element_blank()

)

plot + theme(
axis.text = element_text(colour = "red", size = rel(1.5))

)

plot + theme(
axis.line = element_line(arrow = arrow())

)

plot + theme(
panel.background = element_rect(fill = "white"),
plot.margin = margin(2, 2, 2, 2, "cm"),
plot.background = element_rect(
fill = "grey90",
colour = "black",
linewidth = 1

)
)

expand_limits Expand the plot limits, using data

Description

Sometimes you may want to ensure limits include a single value, for all panels or all plots. This
function is a thin wrapper around geom_blank() that makes it easy to add such values.

Usage

expand_limits(...)



expansion 59

Arguments

... named list of aesthetics specifying the value (or values) that should be included
in each scale.

Examples

p <- ggplot(mtcars, aes(mpg, wt)) + geom_point()
p + expand_limits(x = 0)
p + expand_limits(y = c(1, 9))
p + expand_limits(x = 0, y = 0)

ggplot(mtcars, aes(mpg, wt)) +
geom_point(aes(colour = cyl)) +
expand_limits(colour = seq(2, 10, by = 2))

ggplot(mtcars, aes(mpg, wt)) +
geom_point(aes(colour = factor(cyl))) +
expand_limits(colour = factor(seq(2, 10, by = 2)))

expansion Generate expansion vector for scales

Description

This is a convenience function for generating scale expansion vectors for the expand argument of
scale_(x|y)_continuous and scale_(x|y)_discrete. The expansion vectors are used to add some space
between the data and the axes.

Usage

expansion(mult = 0, add = 0)

expand_scale(mult = 0, add = 0)

Arguments

mult vector of multiplicative range expansion factors. If length 1, both the lower and
upper limits of the scale are expanded outwards by mult. If length 2, the lower
limit is expanded by mult[1] and the upper limit by mult[2].

add vector of additive range expansion constants. If length 1, both the lower and
upper limits of the scale are expanded outwards by add units. If length 2, the
lower limit is expanded by add[1] and the upper limit by add[2].

Examples

# No space below the bars but 10% above them
ggplot(mtcars) +

geom_bar(aes(x = factor(cyl))) +
scale_y_continuous(expand = expansion(mult = c(0, .1)))



60 facet_grid

# Add 2 units of space on the left and right of the data
ggplot(subset(diamonds, carat > 2), aes(cut, clarity)) +

geom_jitter() +
scale_x_discrete(expand = expansion(add = 2))

# Reproduce the default range expansion used
# when the 'expand' argument is not specified
ggplot(subset(diamonds, carat > 2), aes(cut, price)) +

geom_jitter() +
scale_x_discrete(expand = expansion(add = .6)) +
scale_y_continuous(expand = expansion(mult = .05))

facet_grid Lay out panels in a grid

Description

facet_grid() forms a matrix of panels defined by row and column faceting variables. It is most
useful when you have two discrete variables, and all combinations of the variables exist in the data.
If you have only one variable with many levels, try facet_wrap().

Usage

facet_grid(
rows = NULL,
cols = NULL,
scales = "fixed",
space = "fixed",
shrink = TRUE,
labeller = "label_value",
as.table = TRUE,
switch = NULL,
drop = TRUE,
margins = FALSE,
axes = "margins",
axis.labels = "all",
facets = deprecated()

)

Arguments

rows, cols A set of variables or expressions quoted by vars() and defining faceting groups
on the rows or columns dimension. The variables can be named (the names are
passed to labeller).
For compatibility with the classic interface, rows can also be a formula with the
rows (of the tabular display) on the LHS and the columns (of the tabular display)



facet_grid 61

on the RHS; the dot in the formula is used to indicate there should be no faceting
on this dimension (either row or column).

scales Are scales shared across all facets (the default, "fixed"), or do they vary across
rows ("free_x"), columns ("free_y"), or both rows and columns ("free")?

space If "fixed", the default, all panels have the same size. If "free_y" their height
will be proportional to the length of the y scale; if "free_x" their width will be
proportional to the length of the x scale; or if "free" both height and width will
vary. This setting has no effect unless the appropriate scales also vary.

shrink If TRUE, will shrink scales to fit output of statistics, not raw data. If FALSE, will
be range of raw data before statistical summary.

labeller A function that takes one data frame of labels and returns a list or data frame
of character vectors. Each input column corresponds to one factor. Thus there
will be more than one with vars(cyl, am). Each output column gets displayed
as one separate line in the strip label. This function should inherit from the
"labeller" S3 class for compatibility with labeller(). You can use different
labeling functions for different kind of labels, for example use label_parsed()
for formatting facet labels. label_value() is used by default, check it for more
details and pointers to other options.

as.table If TRUE, the default, the facets are laid out like a table with highest values at the
bottom-right. If FALSE, the facets are laid out like a plot with the highest value
at the top-right.

switch By default, the labels are displayed on the top and right of the plot. If "x", the
top labels will be displayed to the bottom. If "y", the right-hand side labels will
be displayed to the left. Can also be set to "both".

drop If TRUE, the default, all factor levels not used in the data will automatically be
dropped. If FALSE, all factor levels will be shown, regardless of whether or not
they appear in the data.

margins Either a logical value or a character vector. Margins are additional facets which
contain all the data for each of the possible values of the faceting variables.
If FALSE, no additional facets are included (the default). If TRUE, margins are
included for all faceting variables. If specified as a character vector, it is the
names of variables for which margins are to be created.

axes Determines which axes will be drawn. When "margins" (default), axes will be
drawn at the exterior margins. "all_x" and "all_y" will draw the respective
axes at the interior panels too, whereas "all" will draw all axes at all panels.

axis.labels Determines whether to draw labels for interior axes when the axes argument
is not "margins". When "all" (default), all interior axes get labels. When
"margins", only the exterior axes get labels and the interior axes get none.
When "all_x" or "all_y", only draws the labels at the interior axes in the
x- or y-direction respectively.

facets [Deprecated] Please use rows and cols instead.

See Also

The facet grid section of the online ggplot2 book.

https://ggplot2-book.org/facet#facet-grid


62 facet_grid

Examples

p <- ggplot(mpg, aes(displ, cty)) + geom_point()

# Use vars() to supply variables from the dataset:
p + facet_grid(rows = vars(drv))
p + facet_grid(cols = vars(cyl))
p + facet_grid(vars(drv), vars(cyl))

# To change plot order of facet grid,
# change the order of variable levels with factor()

# If you combine a facetted dataset with a dataset that lacks those
# faceting variables, the data will be repeated across the missing
# combinations:
df <- data.frame(displ = mean(mpg$displ), cty = mean(mpg$cty))
p +

facet_grid(cols = vars(cyl)) +
geom_point(data = df, colour = "red", size = 2)

# When scales are constant, duplicated axes can be shown with
# or without labels
ggplot(mpg, aes(cty, hwy)) +

geom_point() +
facet_grid(year ~ drv, axes = "all", axis.labels = "all_x")

# Free scales -------------------------------------------------------
# You can also choose whether the scales should be constant
# across all panels (the default), or whether they should be allowed
# to vary
mt <- ggplot(mtcars, aes(mpg, wt, colour = factor(cyl))) +

geom_point()

mt + facet_grid(vars(cyl), scales = "free")

# If scales and space are free, then the mapping between position
# and values in the data will be the same across all panels. This
# is particularly useful for categorical axes
ggplot(mpg, aes(drv, model)) +

geom_point() +
facet_grid(manufacturer ~ ., scales = "free", space = "free") +
theme(strip.text.y = element_text(angle = 0))

# Margins ----------------------------------------------------------

# Margins can be specified logically (all yes or all no) or for specific
# variables as (character) variable names
mg <- ggplot(mtcars, aes(x = mpg, y = wt)) + geom_point()
mg + facet_grid(vs + am ~ gear, margins = TRUE)
mg + facet_grid(vs + am ~ gear, margins = "am")
# when margins are made over "vs", since the facets for "am" vary
# within the values of "vs", the marginal facet for "vs" is also
# a margin over "am".



facet_wrap 63

mg + facet_grid(vs + am ~ gear, margins = "vs")

facet_wrap Wrap a 1d ribbon of panels into 2d

Description

facet_wrap() wraps a 1d sequence of panels into 2d. This is generally a better use of screen space
than facet_grid() because most displays are roughly rectangular.

Usage

facet_wrap(
facets,
nrow = NULL,
ncol = NULL,
scales = "fixed",
shrink = TRUE,
labeller = "label_value",
as.table = TRUE,
switch = deprecated(),
drop = TRUE,
dir = "h",
strip.position = "top",
axes = "margins",
axis.labels = "all"

)

Arguments

facets A set of variables or expressions quoted by vars() and defining faceting groups
on the rows or columns dimension. The variables can be named (the names are
passed to labeller).
For compatibility with the classic interface, can also be a formula or character
vector. Use either a one sided formula, ~a + b, or a character vector, c("a",
"b").

nrow, ncol Number of rows and columns.

scales Should scales be fixed ("fixed", the default), free ("free"), or free in one
dimension ("free_x", "free_y")?

shrink If TRUE, will shrink scales to fit output of statistics, not raw data. If FALSE, will
be range of raw data before statistical summary.

labeller A function that takes one data frame of labels and returns a list or data frame
of character vectors. Each input column corresponds to one factor. Thus there
will be more than one with vars(cyl, am). Each output column gets displayed
as one separate line in the strip label. This function should inherit from the



64 facet_wrap

"labeller" S3 class for compatibility with labeller(). You can use different
labeling functions for different kind of labels, for example use label_parsed()
for formatting facet labels. label_value() is used by default, check it for more
details and pointers to other options.

as.table If TRUE, the default, the facets are laid out like a table with highest values at the
bottom-right. If FALSE, the facets are laid out like a plot with the highest value
at the top-right.

switch By default, the labels are displayed on the top and right of the plot. If "x", the
top labels will be displayed to the bottom. If "y", the right-hand side labels will
be displayed to the left. Can also be set to "both".

drop If TRUE, the default, all factor levels not used in the data will automatically be
dropped. If FALSE, all factor levels will be shown, regardless of whether or not
they appear in the data.

dir Direction: either "h" for horizontal, the default, or "v", for vertical.

strip.position By default, the labels are displayed on the top of the plot. Using strip.position
it is possible to place the labels on either of the four sides by setting strip.position
= c("top", "bottom", "left", "right")

axes Determines which axes will be drawn in case of fixed scales. When "margins"
(default), axes will be drawn at the exterior margins. "all_x" and "all_y" will
draw the respective axes at the interior panels too, whereas "all" will draw all
axes at all panels.

axis.labels Determines whether to draw labels for interior axes when the scale is fixed and
the axis argument is not "margins". When "all" (default), all interior axes
get labels. When "margins", only the exterior axes get labels, and the interior
axes get none. When "all_x" or "all_y", only draws the labels at the interior
axes in the x- or y-direction respectively.

See Also

The facet wrap section of the online ggplot2 book.

Examples

p <- ggplot(mpg, aes(displ, hwy)) + geom_point()

# Use vars() to supply faceting variables:
p + facet_wrap(vars(class))

# Control the number of rows and columns with nrow and ncol
p + facet_wrap(vars(class), nrow = 4)

# You can facet by multiple variables
ggplot(mpg, aes(displ, hwy)) +

geom_point() +
facet_wrap(vars(cyl, drv))

# Use the `labeller` option to control how labels are printed:

https://ggplot2-book.org/facet#sec-facet-wrap


faithfuld 65

ggplot(mpg, aes(displ, hwy)) +
geom_point() +
facet_wrap(vars(cyl, drv), labeller = "label_both")

# To change the order in which the panels appear, change the levels
# of the underlying factor.
mpg$class2 <- reorder(mpg$class, mpg$displ)
ggplot(mpg, aes(displ, hwy)) +

geom_point() +
facet_wrap(vars(class2))

# By default, the same scales are used for all panels. You can allow
# scales to vary across the panels with the `scales` argument.
# Free scales make it easier to see patterns within each panel, but
# harder to compare across panels.
ggplot(mpg, aes(displ, hwy)) +

geom_point() +
facet_wrap(vars(class), scales = "free")

# When scales are constant, duplicated axes can be shown with
# or without labels
ggplot(mpg, aes(displ, hwy)) +

geom_point() +
facet_wrap(vars(class), axes = "all", axis.labels = "all_y")

# To repeat the same data in every panel, simply construct a data frame
# that does not contain the faceting variable.
ggplot(mpg, aes(displ, hwy)) +

geom_point(data = transform(mpg, class = NULL), colour = "grey85") +
geom_point() +
facet_wrap(vars(class))

# Use `strip.position` to display the facet labels at the side of your
# choice. Setting it to `bottom` makes it act as a subtitle for the axis.
# This is typically used with free scales and a theme without boxes around
# strip labels.
ggplot(economics_long, aes(date, value)) +

geom_line() +
facet_wrap(vars(variable), scales = "free_y", nrow = 2, strip.position = "top") +
theme(strip.background = element_blank(), strip.placement = "outside")

faithfuld 2d density estimate of Old Faithful data

Description

A 2d density estimate of the waiting and eruptions variables data faithful.



66 fortify

Usage

faithfuld

Format

A data frame with 5,625 observations and 3 variables:

eruptions Eruption time in mins

waiting Waiting time to next eruption in mins

density 2d density estimate

fortify Fortify a model with data.

Description

Rather than using this function, I now recommend using the broom package, which implements a
much wider range of methods. fortify() may be deprecated in the future.

Usage

fortify(model, data, ...)

Arguments

model model or other R object to convert to data frame

data original dataset, if needed

... other arguments passed to methods

See Also

fortify.lm()

Other plotting automation topics: autolayer(), automatic_plotting, autoplot()



geom_abline 67

geom_abline Reference lines: horizontal, vertical, and diagonal

Description

These geoms add reference lines (sometimes called rules) to a plot, either horizontal, vertical, or
diagonal (specified by slope and intercept). These are useful for annotating plots.

Usage

geom_abline(
mapping = NULL,
data = NULL,
...,
slope,
intercept,
na.rm = FALSE,
show.legend = NA

)

geom_hline(
mapping = NULL,
data = NULL,
...,
yintercept,
na.rm = FALSE,
show.legend = NA

)

geom_vline(
mapping = NULL,
data = NULL,
...,
xintercept,
na.rm = FALSE,
show.legend = NA

)

Arguments

mapping Set of aesthetic mappings created by aes().

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.



68 geom_abline

A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

... Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through
.... Unknown arguments that are not part of the 4 categories below are ignored.

• Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red" or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

• When constructing a layer using a stat_*() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area", outline.type = "both"). The
geom’s documentation lists which parameters it can accept.

• Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density", adjust = 0.5). The
stat’s documentation lists which parameters it can accept.

• The key_glyph argument of layer() may also be passed on through ....
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

xintercept, yintercept, slope, intercept
Parameters that control the position of the line. If these are set, data, mapping
and show.legend are overridden.

Details

These geoms act slightly differently from other geoms. You can supply the parameters in two
ways: either as arguments to the layer function, or via aesthetics. If you use arguments, e.g.
geom_abline(intercept = 0, slope = 1), then behind the scenes the geom makes a new data
frame containing just the data you’ve supplied. That means that the lines will be the same in all
facets; if you want them to vary across facets, construct the data frame yourself and use aesthetics.

Unlike most other geoms, these geoms do not inherit aesthetics from the plot default, because they
do not understand x and y aesthetics which are commonly set in the plot. They also do not affect
the x and y scales.



geom_bar 69

Aesthetics

These geoms are drawn using geom_line() so they support the same aesthetics: alpha, colour,
linetype and linewidth. They also each have aesthetics that control the position of the line:

• geom_vline(): xintercept

• geom_hline(): yintercept

• geom_abline(): slope and intercept

See Also

See geom_segment() for a more general approach to adding straight line segments to a plot.

Examples

p <- ggplot(mtcars, aes(wt, mpg)) + geom_point()

# Fixed values
p + geom_vline(xintercept = 5)
p + geom_vline(xintercept = 1:5)
p + geom_hline(yintercept = 20)

p + geom_abline() # Can't see it - outside the range of the data
p + geom_abline(intercept = 20)

# Calculate slope and intercept of line of best fit
coef(lm(mpg ~ wt, data = mtcars))
p + geom_abline(intercept = 37, slope = -5)
# But this is easier to do with geom_smooth:
p + geom_smooth(method = "lm", se = FALSE)

# To show different lines in different facets, use aesthetics
p <- ggplot(mtcars, aes(mpg, wt)) +

geom_point() +
facet_wrap(~ cyl)

mean_wt <- data.frame(cyl = c(4, 6, 8), wt = c(2.28, 3.11, 4.00))
p + geom_hline(aes(yintercept = wt), mean_wt)

# You can also control other aesthetics
ggplot(mtcars, aes(mpg, wt, colour = wt)) +

geom_point() +
geom_hline(aes(yintercept = wt, colour = wt), mean_wt) +
facet_wrap(~ cyl)

geom_bar Bar charts



70 geom_bar

Description

There are two types of bar charts: geom_bar() and geom_col(). geom_bar() makes the height of
the bar proportional to the number of cases in each group (or if the weight aesthetic is supplied,
the sum of the weights). If you want the heights of the bars to represent values in the data, use
geom_col() instead. geom_bar() uses stat_count() by default: it counts the number of cases at
each x position. geom_col() uses stat_identity(): it leaves the data as is.

Usage

geom_bar(
mapping = NULL,
data = NULL,
stat = "count",
position = "stack",
...,
just = 0.5,
width = NULL,
na.rm = FALSE,
orientation = NA,
show.legend = NA,
inherit.aes = TRUE

)

geom_col(
mapping = NULL,
data = NULL,
position = "stack",
...,
just = 0.5,
width = NULL,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

stat_count(
mapping = NULL,
data = NULL,
geom = "bar",
position = "stack",
...,
width = NULL,
na.rm = FALSE,
orientation = NA,
show.legend = NA,
inherit.aes = TRUE

)



geom_bar 71

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

• The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

• A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

• For more information and other ways to specify the position, see the layer
position documentation.

... Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through
.... Unknown arguments that are not part of the 4 categories below are ignored.

• Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red" or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

• When constructing a layer using a stat_*() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area", outline.type = "both"). The
geom’s documentation lists which parameters it can accept.

• Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density", adjust = 0.5). The
stat’s documentation lists which parameters it can accept.

• The key_glyph argument of layer() may also be passed on through ....
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.



72 geom_bar

just Adjustment for column placement. Set to 0.5 by default, meaning that columns
will be centered about axis breaks. Set to 0 or 1 to place columns to the left/right
of axis breaks. Note that this argument may have unintended behaviour when
used with alternative positions, e.g. position_dodge().

width Bar width. By default, set to 90% of the resolution() of the data.

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

orientation The orientation of the layer. The default (NA) automatically determines the ori-
entation from the aesthetic mapping. In the rare event that this fails it can be
given explicitly by setting orientation to either "x" or "y". See the Orienta-
tion section for more detail.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

geom, stat Override the default connection between geom_bar() and stat_count(). For
more information about overriding these connections, see how the stat and geom
arguments work.

Details

A bar chart uses height to represent a value, and so the base of the bar must always be shown
to produce a valid visual comparison. Proceed with caution when using transformed scales with
a bar chart. It’s important to always use a meaningful reference point for the base of the bar.
For example, for log transformations the reference point is 1. In fact, when using a log scale,
geom_bar() automatically places the base of the bar at 1. Furthermore, never use stacked bars with
a transformed scale, because scaling happens before stacking. As a consequence, the height of bars
will be wrong when stacking occurs with a transformed scale.

By default, multiple bars occupying the same x position will be stacked atop one another by
position_stack(). If you want them to be dodged side-to-side, use position_dodge() or position_dodge2().
Finally, position_fill() shows relative proportions at each x by stacking the bars and then stan-
dardising each bar to have the same height.

Orientation

This geom treats each axis differently and, thus, can thus have two orientations. Often the orienta-
tion is easy to deduce from a combination of the given mappings and the types of positional scales
in use. Thus, ggplot2 will by default try to guess which orientation the layer should have. Under
rare circumstances, the orientation is ambiguous and guessing may fail. In that case the orientation
can be specified directly using the orientation parameter, which can be either "x" or "y". The
value gives the axis that the geom should run along, "x" being the default orientation you would
expect for the geom.



geom_bar 73

Aesthetics

geom_bar() understands the following aesthetics (required aesthetics are in bold):

• x

• y

• alpha

• colour

• fill

• group

• linetype

• linewidth

Learn more about setting these aesthetics in vignette("ggplot2-specs").

geom_col() understands the following aesthetics (required aesthetics are in bold):

• x

• y

• alpha

• colour

• fill

• group

• linetype

• linewidth

Learn more about setting these aesthetics in vignette("ggplot2-specs").

stat_count() understands the following aesthetics (required aesthetics are in bold):

• x or y

• group

• weight

Learn more about setting these aesthetics in vignette("ggplot2-specs").

Computed variables

These are calculated by the ’stat’ part of layers and can be accessed with delayed evaluation.

• after_stat(count)
number of points in bin.

• after_stat(prop)
groupwise proportion



74 geom_bar

See Also

geom_histogram() for continuous data, position_dodge() and position_dodge2() for creating
side-by-side bar charts.

stat_bin(), which bins data in ranges and counts the cases in each range. It differs from stat_count(),
which counts the number of cases at each x position (without binning into ranges). stat_bin() re-
quires continuous x data, whereas stat_count() can be used for both discrete and continuous x
data.

Examples

# geom_bar is designed to make it easy to create bar charts that show
# counts (or sums of weights)
g <- ggplot(mpg, aes(class))
# Number of cars in each class:
g + geom_bar()
# Total engine displacement of each class
g + geom_bar(aes(weight = displ))
# Map class to y instead to flip the orientation
ggplot(mpg) + geom_bar(aes(y = class))

# Bar charts are automatically stacked when multiple bars are placed
# at the same location. The order of the fill is designed to match
# the legend
g + geom_bar(aes(fill = drv))

# If you need to flip the order (because you've flipped the orientation)
# call position_stack() explicitly:
ggplot(mpg, aes(y = class)) +
geom_bar(aes(fill = drv), position = position_stack(reverse = TRUE)) +
theme(legend.position = "top")

# To show (e.g.) means, you need geom_col()
df <- data.frame(trt = c("a", "b", "c"), outcome = c(2.3, 1.9, 3.2))
ggplot(df, aes(trt, outcome)) +

geom_col()
# But geom_point() displays exactly the same information and doesn't
# require the y-axis to touch zero.
ggplot(df, aes(trt, outcome)) +

geom_point()

# You can also use geom_bar() with continuous data, in which case
# it will show counts at unique locations
df <- data.frame(x = rep(c(2.9, 3.1, 4.5), c(5, 10, 4)))
ggplot(df, aes(x)) + geom_bar()
# cf. a histogram of the same data
ggplot(df, aes(x)) + geom_histogram(binwidth = 0.5)

# Use `just` to control how columns are aligned with axis breaks:
df <- data.frame(x = as.Date(c("2020-01-01", "2020-02-01")), y = 1:2)
# Columns centered on the first day of the month
ggplot(df, aes(x, y)) + geom_col(just = 0.5)



geom_bin_2d 75

# Columns begin on the first day of the month
ggplot(df, aes(x, y)) + geom_col(just = 1)

geom_bin_2d Heatmap of 2d bin counts

Description

Divides the plane into rectangles, counts the number of cases in each rectangle, and then (by default)
maps the number of cases to the rectangle’s fill. This is a useful alternative to geom_point() in the
presence of overplotting.

Usage

geom_bin_2d(
mapping = NULL,
data = NULL,
stat = "bin2d",
position = "identity",
...,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

stat_bin_2d(
mapping = NULL,
data = NULL,
geom = "tile",
position = "identity",
...,
bins = 30,
binwidth = NULL,
drop = TRUE,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().



76 geom_bin_2d

A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

• The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

• A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

• For more information and other ways to specify the position, see the layer
position documentation.

... Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through
.... Unknown arguments that are not part of the 4 categories below are ignored.

• Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red" or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

• When constructing a layer using a stat_*() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area", outline.type = "both"). The
geom’s documentation lists which parameters it can accept.

• Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density", adjust = 0.5). The
stat’s documentation lists which parameters it can accept.

• The key_glyph argument of layer() may also be passed on through ....
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().



geom_bin_2d 77

geom, stat Use to override the default connection between geom_bin_2d() and stat_bin_2d().
For more information about overriding these connections, see how the stat and
geom arguments work.

bins numeric vector giving number of bins in both vertical and horizontal directions.
Set to 30 by default.

binwidth Numeric vector giving bin width in both vertical and horizontal directions. Over-
rides bins if both set.

drop if TRUE removes all cells with 0 counts.

Aesthetics

stat_bin_2d() understands the following aesthetics (required aesthetics are in bold):

• x

• y

• fill

• group

• weight

Learn more about setting these aesthetics in vignette("ggplot2-specs").

Computed variables

These are calculated by the ’stat’ part of layers and can be accessed with delayed evaluation.

• after_stat(count)
number of points in bin.

• after_stat(density)
density of points in bin, scaled to integrate to 1.

• after_stat(ncount)
count, scaled to maximum of 1.

• after_stat(ndensity)
density, scaled to a maximum of 1.

See Also

stat_bin_hex() for hexagonal binning

Examples

d <- ggplot(diamonds, aes(x, y)) + xlim(4, 10) + ylim(4, 10)
d + geom_bin_2d()

# You can control the size of the bins by specifying the number of
# bins in each direction:
d + geom_bin_2d(bins = 10)
d + geom_bin_2d(bins = 30)

# Or by specifying the width of the bins
d + geom_bin_2d(binwidth = c(0.1, 0.1))



78 geom_blank

geom_blank Draw nothing

Description

The blank geom draws nothing, but can be a useful way of ensuring common scales between differ-
ent plots. See expand_limits() for more details.

Usage

geom_blank(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

stat The statistical transformation to use on the data for this layer. When using a
geom_*() function to construct a layer, the stat argument can be used the over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

• A Stat ggproto subclass, for example StatCount.
• A string naming the stat. To give the stat as a string, strip the function name

of the stat_ prefix. For example, to use stat_count(), give the stat as
"count".

• For more information and other ways to specify the stat, see the layer stat
documentation.



geom_blank 79

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

• The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

• A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

• For more information and other ways to specify the position, see the layer
position documentation.

... Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through
.... Unknown arguments that are not part of the 4 categories below are ignored.

• Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red" or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

• When constructing a layer using a stat_*() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area", outline.type = "both"). The
geom’s documentation lists which parameters it can accept.

• Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density", adjust = 0.5). The
stat’s documentation lists which parameters it can accept.

• The key_glyph argument of layer() may also be passed on through ....
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

Examples

ggplot(mtcars, aes(wt, mpg))
# Nothing to see here!



80 geom_boxplot

geom_boxplot A box and whiskers plot (in the style of Tukey)

Description

The boxplot compactly displays the distribution of a continuous variable. It visualises five summary
statistics (the median, two hinges and two whiskers), and all "outlying" points individually.

Usage

geom_boxplot(
mapping = NULL,
data = NULL,
stat = "boxplot",
position = "dodge2",
...,
outliers = TRUE,
outlier.colour = NULL,
outlier.color = NULL,
outlier.fill = NULL,
outlier.shape = 19,
outlier.size = 1.5,
outlier.stroke = 0.5,
outlier.alpha = NULL,
notch = FALSE,
notchwidth = 0.5,
staplewidth = 0,
varwidth = FALSE,
na.rm = FALSE,
orientation = NA,
show.legend = NA,
inherit.aes = TRUE

)

stat_boxplot(
mapping = NULL,
data = NULL,
geom = "boxplot",
position = "dodge2",
...,
coef = 1.5,
na.rm = FALSE,
orientation = NA,
show.legend = NA,
inherit.aes = TRUE

)



geom_boxplot 81

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

• The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

• A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

• For more information and other ways to specify the position, see the layer
position documentation.

... Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through
.... Unknown arguments that are not part of the 4 categories below are ignored.

• Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red" or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

• When constructing a layer using a stat_*() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area", outline.type = "both"). The
geom’s documentation lists which parameters it can accept.

• Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density", adjust = 0.5). The
stat’s documentation lists which parameters it can accept.

• The key_glyph argument of layer() may also be passed on through ....
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.



82 geom_boxplot

outliers Whether to display (TRUE) or discard (FALSE) outliers from the plot. Hiding or
discarding outliers can be useful when, for example, raw data points need to be
displayed on top of the boxplot. By discarding outliers, the axis limits will adapt
to the box and whiskers only, not the full data range. If outliers need to be hidden
and the axes needs to show the full data range, please use outlier.shape = NA
instead.

outlier.colour, outlier.color, outlier.fill, outlier.shape,
outlier.size, outlier.stroke, outlier.alpha

Default aesthetics for outliers. Set to NULL to inherit from the aesthetics used for
the box.
In the unlikely event you specify both US and UK spellings of colour, the US
spelling will take precedence.

notch If FALSE (default) make a standard box plot. If TRUE, make a notched box plot.
Notches are used to compare groups; if the notches of two boxes do not overlap,
this suggests that the medians are significantly different.

notchwidth For a notched box plot, width of the notch relative to the body (defaults to
notchwidth = 0.5).

staplewidth The relative width of staples to the width of the box. Staples mark the ends of
the whiskers with a line.

varwidth If FALSE (default) make a standard box plot. If TRUE, boxes are drawn with
widths proportional to the square-roots of the number of observations in the
groups (possibly weighted, using the weight aesthetic).

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

orientation The orientation of the layer. The default (NA) automatically determines the ori-
entation from the aesthetic mapping. In the rare event that this fails it can be
given explicitly by setting orientation to either "x" or "y". See the Orienta-
tion section for more detail.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

geom, stat Use to override the default connection between geom_boxplot() and stat_boxplot().
For more information about overriding these connections, see how the stat and
geom arguments work.

coef Length of the whiskers as multiple of IQR. Defaults to 1.5.

Orientation

This geom treats each axis differently and, thus, can thus have two orientations. Often the orienta-
tion is easy to deduce from a combination of the given mappings and the types of positional scales
in use. Thus, ggplot2 will by default try to guess which orientation the layer should have. Under
rare circumstances, the orientation is ambiguous and guessing may fail. In that case the orientation



geom_boxplot 83

can be specified directly using the orientation parameter, which can be either "x" or "y". The
value gives the axis that the geom should run along, "x" being the default orientation you would
expect for the geom.

Summary statistics

The lower and upper hinges correspond to the first and third quartiles (the 25th and 75th percentiles).
This differs slightly from the method used by the boxplot() function, and may be apparent with
small samples. See boxplot.stats() for more information on how hinge positions are calculated
for boxplot().

The upper whisker extends from the hinge to the largest value no further than 1.5 * IQR from the
hinge (where IQR is the inter-quartile range, or distance between the first and third quartiles). The
lower whisker extends from the hinge to the smallest value at most 1.5 * IQR of the hinge. Data
beyond the end of the whiskers are called "outlying" points and are plotted individually.

In a notched box plot, the notches extend 1.58 * IQR / sqrt(n). This gives a roughly 95% confi-
dence interval for comparing medians. See McGill et al. (1978) for more details.

Aesthetics

geom_boxplot() understands the following aesthetics (required aesthetics are in bold):

• x or y
• lower or xlower
• upper or xupper
• middle or xmiddle
• ymin or xmin
• ymax or xmax
• alpha

• colour

• fill

• group

• linetype

• linewidth

• shape

• size

• weight

Learn more about setting these aesthetics in vignette("ggplot2-specs").

Computed variables

These are calculated by the ’stat’ part of layers and can be accessed with delayed evaluation.
stat_boxplot() provides the following variables, some of which depend on the orientation:

• after_stat(width)
width of boxplot.



84 geom_boxplot

• after_stat(ymin) or after_stat(xmin)
lower whisker = smallest observation greater than or equal to lower hinger - 1.5 * IQR.

• after_stat(lower) or after_stat(xlower)
lower hinge, 25% quantile.

• after_stat(notchlower)
lower edge of notch = median - 1.58 * IQR / sqrt(n).

• after_stat(middle) or after_stat(xmiddle)
median, 50% quantile.

• after_stat(notchupper)
upper edge of notch = median + 1.58 * IQR / sqrt(n).

• after_stat(upper) or after_stat(xupper)
upper hinge, 75% quantile.

• after_stat(ymax) or after_stat(xmax)
upper whisker = largest observation less than or equal to upper hinger + 1.5 * IQR.

References

McGill, R., Tukey, J. W. and Larsen, W. A. (1978) Variations of box plots. The American Statisti-
cian 32, 12-16.

See Also

geom_quantile() for continuous x, geom_violin() for a richer display of the distribution, and
geom_jitter() for a useful technique for small data.

Examples

p <- ggplot(mpg, aes(class, hwy))
p + geom_boxplot()
# Orientation follows the discrete axis
ggplot(mpg, aes(hwy, class)) + geom_boxplot()

p + geom_boxplot(notch = TRUE)
p + geom_boxplot(varwidth = TRUE)
p + geom_boxplot(fill = "white", colour = "#3366FF")
# By default, outlier points match the colour of the box. Use
# outlier.colour to override
p + geom_boxplot(outlier.colour = "red", outlier.shape = 1)
# Remove outliers when overlaying boxplot with original data points
p + geom_boxplot(outlier.shape = NA) + geom_jitter(width = 0.2)

# Boxplots are automatically dodged when any aesthetic is a factor
p + geom_boxplot(aes(colour = drv))

# You can also use boxplots with continuous x, as long as you supply
# a grouping variable. cut_width is particularly useful
ggplot(diamonds, aes(carat, price)) +

geom_boxplot()
ggplot(diamonds, aes(carat, price)) +



geom_contour 85

geom_boxplot(aes(group = cut_width(carat, 0.25)))
# Adjust the transparency of outliers using outlier.alpha
ggplot(diamonds, aes(carat, price)) +

geom_boxplot(aes(group = cut_width(carat, 0.25)), outlier.alpha = 0.1)

# It's possible to draw a boxplot with your own computations if you
# use stat = "identity":
set.seed(1)
y <- rnorm(100)
df <- data.frame(

x = 1,
y0 = min(y),
y25 = quantile(y, 0.25),
y50 = median(y),
y75 = quantile(y, 0.75),
y100 = max(y)

)
ggplot(df, aes(x)) +

geom_boxplot(
aes(ymin = y0, lower = y25, middle = y50, upper = y75, ymax = y100),
stat = "identity"

)

geom_contour 2D contours of a 3D surface

Description

ggplot2 can not draw true 3D surfaces, but you can use geom_contour(), geom_contour_filled(),
and geom_tile() to visualise 3D surfaces in 2D.

These functions require regular data, where the x and y coordinates form an equally spaced grid, and
each combination of x and y appears once. Missing values of z are allowed, but contouring will only
work for grid points where all four corners are non-missing. If you have irregular data, you’ll need
to first interpolate on to a grid before visualising, using interp::interp(), akima::bilinear(),
or similar.

Usage

geom_contour(
mapping = NULL,
data = NULL,
stat = "contour",
position = "identity",
...,
bins = NULL,
binwidth = NULL,
breaks = NULL,



86 geom_contour

lineend = "butt",
linejoin = "round",
linemitre = 10,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

geom_contour_filled(
mapping = NULL,
data = NULL,
stat = "contour_filled",
position = "identity",
...,
bins = NULL,
binwidth = NULL,
breaks = NULL,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

stat_contour(
mapping = NULL,
data = NULL,
geom = "contour",
position = "identity",
...,
bins = NULL,
binwidth = NULL,
breaks = NULL,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

stat_contour_filled(
mapping = NULL,
data = NULL,
geom = "contour_filled",
position = "identity",
...,
bins = NULL,
binwidth = NULL,
breaks = NULL,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE



geom_contour 87

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

stat The statistical transformation to use on the data for this layer. When using a
geom_*() function to construct a layer, the stat argument can be used the over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

• A Stat ggproto subclass, for example StatCount.
• A string naming the stat. To give the stat as a string, strip the function name

of the stat_ prefix. For example, to use stat_count(), give the stat as
"count".

• For more information and other ways to specify the stat, see the layer stat
documentation.

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

• The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

• A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

• For more information and other ways to specify the position, see the layer
position documentation.

... Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through
.... Unknown arguments that are not part of the 4 categories below are ignored.

• Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red" or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.



88 geom_contour

• When constructing a layer using a stat_*() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area", outline.type = "both"). The
geom’s documentation lists which parameters it can accept.

• Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density", adjust = 0.5). The
stat’s documentation lists which parameters it can accept.

• The key_glyph argument of layer() may also be passed on through ....
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

bins Number of contour bins. Overridden by breaks.

binwidth The width of the contour bins. Overridden by bins.

breaks One of:

• Numeric vector to set the contour breaks
• A function that takes the range of the data and binwidth as input and re-

turns breaks as output. A function can be created from a formula (e.g. ~
fullseq(.x, .y)).

Overrides binwidth and bins. By default, this is a vector of length ten with
pretty() breaks.

lineend Line end style (round, butt, square).

linejoin Line join style (round, mitre, bevel).

linemitre Line mitre limit (number greater than 1).

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

geom The geometric object to use to display the data for this layer. When using a
stat_*() function to construct a layer, the geom argument can be used to over-
ride the default coupling between stats and geoms. The geom argument accepts
the following:

• A Geom ggproto subclass, for example GeomPoint.
• A string naming the geom. To give the geom as a string, strip the function

name of the geom_ prefix. For example, to use geom_point(), give the
geom as "point".

• For more information and other ways to specify the geom, see the layer
geom documentation.



geom_contour 89

Aesthetics

geom_contour() understands the following aesthetics (required aesthetics are in bold):

• x

• y

• alpha

• colour

• group

• linetype

• linewidth

• weight

Learn more about setting these aesthetics in vignette("ggplot2-specs").

geom_contour_filled() understands the following aesthetics (required aesthetics are in bold):

• x

• y

• alpha

• colour

• fill

• group

• linetype

• linewidth

• subgroup

Learn more about setting these aesthetics in vignette("ggplot2-specs").

stat_contour() understands the following aesthetics (required aesthetics are in bold):

• x

• y

• z

• group

• order

Learn more about setting these aesthetics in vignette("ggplot2-specs").

stat_contour_filled() understands the following aesthetics (required aesthetics are in bold):

• x

• y

• z

• fill

• group

• order

Learn more about setting these aesthetics in vignette("ggplot2-specs").



90 geom_contour

Computed variables

These are calculated by the ’stat’ part of layers and can be accessed with delayed evaluation. The
computed variables differ somewhat for contour lines (computed by stat_contour()) and con-
tour bands (filled contours, computed by stat_contour_filled()). The variables nlevel and
piece are available for both, whereas level_low, level_high, and level_mid are only available
for bands. The variable level is a numeric or a factor depending on whether lines or bands are
calculated.

• after_stat(level)
Height of contour. For contour lines, this is a numeric vector that represents bin boundaries.
For contour bands, this is an ordered factor that represents bin ranges.

• after_stat(level_low), after_stat(level_high), after_stat(level_mid)
(contour bands only) Lower and upper bin boundaries for each band, as well as the mid point
between boundaries.

• after_stat(nlevel)
Height of contour, scaled to a maximum of 1.

• after_stat(piece)
Contour piece (an integer).

Dropped variables

z After contouring, the z values of individual data points are no longer available.

See Also

geom_density_2d(): 2d density contours

Examples

# Basic plot
v <- ggplot(faithfuld, aes(waiting, eruptions, z = density))
v + geom_contour()

# Or compute from raw data
ggplot(faithful, aes(waiting, eruptions)) +

geom_density_2d()

# use geom_contour_filled() for filled contours
v + geom_contour_filled()

# Setting bins creates evenly spaced contours in the range of the data
v + geom_contour(bins = 3)
v + geom_contour(bins = 5)

# Setting binwidth does the same thing, parameterised by the distance
# between contours
v + geom_contour(binwidth = 0.01)
v + geom_contour(binwidth = 0.001)



geom_count 91

# Other parameters
v + geom_contour(aes(colour = after_stat(level)))
v + geom_contour(colour = "red")
v + geom_raster(aes(fill = density)) +

geom_contour(colour = "white")

geom_count Count overlapping points

Description

This is a variant geom_point() that counts the number of observations at each location, then maps
the count to point area. It useful when you have discrete data and overplotting.

Usage

geom_count(
mapping = NULL,
data = NULL,
stat = "sum",
position = "identity",
...,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

stat_sum(
mapping = NULL,
data = NULL,
geom = "point",
position = "identity",
...,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().



92 geom_count

A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

• The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

• A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

• For more information and other ways to specify the position, see the layer
position documentation.

... Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through
.... Unknown arguments that are not part of the 4 categories below are ignored.

• Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red" or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

• When constructing a layer using a stat_*() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area", outline.type = "both"). The
geom’s documentation lists which parameters it can accept.

• Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density", adjust = 0.5). The
stat’s documentation lists which parameters it can accept.

• The key_glyph argument of layer() may also be passed on through ....
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().



geom_count 93

geom, stat Use to override the default connection between geom_count() and stat_sum().
For more information about overriding these connections, see how the stat and
geom arguments work.

Aesthetics

geom_point() understands the following aesthetics (required aesthetics are in bold):

• x

• y

• alpha

• colour

• fill

• group

• shape

• size

• stroke

Learn more about setting these aesthetics in vignette("ggplot2-specs").

Computed variables

These are calculated by the ’stat’ part of layers and can be accessed with delayed evaluation.

• after_stat(n)
Number of observations at position.

• after_stat(prop)
Percent of points in that panel at that position.

See Also

For continuous x and y, use geom_bin_2d().

Examples

ggplot(mpg, aes(cty, hwy)) +
geom_point()

ggplot(mpg, aes(cty, hwy)) +
geom_count()

# Best used in conjunction with scale_size_area which ensures that
# counts of zero would be given size 0. Doesn't make much different
# here because the smallest count is already close to 0.
ggplot(mpg, aes(cty, hwy)) +
geom_count() +
scale_size_area()

# Display proportions instead of counts -------------------------------------



94 geom_crossbar

# By default, all categorical variables in the plot form the groups.
# Specifying geom_count without a group identifier leads to a plot which is
# not useful:
d <- ggplot(diamonds, aes(x = cut, y = clarity))
d + geom_count(aes(size = after_stat(prop)))
# To correct this problem and achieve a more desirable plot, we need
# to specify which group the proportion is to be calculated over.
d + geom_count(aes(size = after_stat(prop), group = 1)) +

scale_size_area(max_size = 10)

# Or group by x/y variables to have rows/columns sum to 1.
d + geom_count(aes(size = after_stat(prop), group = cut)) +

scale_size_area(max_size = 10)
d + geom_count(aes(size = after_stat(prop), group = clarity)) +

scale_size_area(max_size = 10)

geom_crossbar Vertical intervals: lines, crossbars & errorbars

Description

Various ways of representing a vertical interval defined by x, ymin and ymax. Each case draws a
single graphical object.

Usage

geom_crossbar(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
fatten = 2.5,
na.rm = FALSE,
orientation = NA,
show.legend = NA,
inherit.aes = TRUE

)

geom_errorbar(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
na.rm = FALSE,
orientation = NA,
show.legend = NA,



geom_crossbar 95

inherit.aes = TRUE
)

geom_linerange(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
na.rm = FALSE,
orientation = NA,
show.legend = NA,
inherit.aes = TRUE

)

geom_pointrange(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
fatten = 4,
na.rm = FALSE,
orientation = NA,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

stat The statistical transformation to use on the data for this layer. When using a
geom_*() function to construct a layer, the stat argument can be used the over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

• A Stat ggproto subclass, for example StatCount.



96 geom_crossbar

• A string naming the stat. To give the stat as a string, strip the function name
of the stat_ prefix. For example, to use stat_count(), give the stat as
"count".

• For more information and other ways to specify the stat, see the layer stat
documentation.

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

• The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

• A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

• For more information and other ways to specify the position, see the layer
position documentation.

... Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through
.... Unknown arguments that are not part of the 4 categories below are ignored.

• Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red" or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

• When constructing a layer using a stat_*() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area", outline.type = "both"). The
geom’s documentation lists which parameters it can accept.

• Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density", adjust = 0.5). The
stat’s documentation lists which parameters it can accept.

• The key_glyph argument of layer() may also be passed on through ....
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

fatten A multiplicative factor used to increase the size of the middle bar in geom_crossbar()
and the middle point in geom_pointrange().

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

orientation The orientation of the layer. The default (NA) automatically determines the ori-
entation from the aesthetic mapping. In the rare event that this fails it can be
given explicitly by setting orientation to either "x" or "y". See the Orienta-
tion section for more detail.



geom_crossbar 97

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

Orientation

This geom treats each axis differently and, thus, can thus have two orientations. Often the orienta-
tion is easy to deduce from a combination of the given mappings and the types of positional scales
in use. Thus, ggplot2 will by default try to guess which orientation the layer should have. Under
rare circumstances, the orientation is ambiguous and guessing may fail. In that case the orientation
can be specified directly using the orientation parameter, which can be either "x" or "y". The
value gives the axis that the geom should run along, "x" being the default orientation you would
expect for the geom.

Aesthetics

geom_linerange() understands the following aesthetics (required aesthetics are in bold):

• x or y
• ymin or xmin
• ymax or xmax
• alpha

• colour

• group

• linetype

• linewidth

Note that geom_pointrange() also understands size for the size of the points.

Learn more about setting these aesthetics in vignette("ggplot2-specs").

See Also

stat_summary() for examples of these guys in use, geom_smooth() for continuous analogue,
geom_errorbarh() for a horizontal error bar.

Examples

# Create a simple example dataset
df <- data.frame(

trt = factor(c(1, 1, 2, 2)),
resp = c(1, 5, 3, 4),
group = factor(c(1, 2, 1, 2)),
upper = c(1.1, 5.3, 3.3, 4.2),
lower = c(0.8, 4.6, 2.4, 3.6)

)



98 geom_density

p <- ggplot(df, aes(trt, resp, colour = group))
p + geom_linerange(aes(ymin = lower, ymax = upper))
p + geom_pointrange(aes(ymin = lower, ymax = upper))
p + geom_crossbar(aes(ymin = lower, ymax = upper), width = 0.2)
p + geom_errorbar(aes(ymin = lower, ymax = upper), width = 0.2)

# Flip the orientation by changing mapping
ggplot(df, aes(resp, trt, colour = group)) +

geom_linerange(aes(xmin = lower, xmax = upper))

# Draw lines connecting group means
p +

geom_line(aes(group = group)) +
geom_errorbar(aes(ymin = lower, ymax = upper), width = 0.2)

# If you want to dodge bars and errorbars, you need to manually
# specify the dodge width
p <- ggplot(df, aes(trt, resp, fill = group))
p +
geom_col(position = "dodge") +
geom_errorbar(aes(ymin = lower, ymax = upper), position = "dodge", width = 0.25)

# Because the bars and errorbars have different widths
# we need to specify how wide the objects we are dodging are
dodge <- position_dodge(width=0.9)
p +

geom_col(position = dodge) +
geom_errorbar(aes(ymin = lower, ymax = upper), position = dodge, width = 0.25)

# When using geom_errorbar() with position_dodge2(), extra padding will be
# needed between the error bars to keep them aligned with the bars.
p +
geom_col(position = "dodge2") +
geom_errorbar(

aes(ymin = lower, ymax = upper),
position = position_dodge2(width = 0.5, padding = 0.5)

)

geom_density Smoothed density estimates

Description

Computes and draws kernel density estimate, which is a smoothed version of the histogram. This
is a useful alternative to the histogram for continuous data that comes from an underlying smooth
distribution.



geom_density 99

Usage

geom_density(
mapping = NULL,
data = NULL,
stat = "density",
position = "identity",
...,
na.rm = FALSE,
orientation = NA,
show.legend = NA,
inherit.aes = TRUE,
outline.type = "upper"

)

stat_density(
mapping = NULL,
data = NULL,
geom = "area",
position = "stack",
...,
bw = "nrd0",
adjust = 1,
kernel = "gaussian",
n = 512,
trim = FALSE,
na.rm = FALSE,
bounds = c(-Inf, Inf),
orientation = NA,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

position A position adjustment to use on the data for this layer. This can be used in



100 geom_density

various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

• The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

• A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

• For more information and other ways to specify the position, see the layer
position documentation.

... Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through
.... Unknown arguments that are not part of the 4 categories below are ignored.

• Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red" or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

• When constructing a layer using a stat_*() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area", outline.type = "both"). The
geom’s documentation lists which parameters it can accept.

• Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density", adjust = 0.5). The
stat’s documentation lists which parameters it can accept.

• The key_glyph argument of layer() may also be passed on through ....
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

orientation The orientation of the layer. The default (NA) automatically determines the ori-
entation from the aesthetic mapping. In the rare event that this fails it can be
given explicitly by setting orientation to either "x" or "y". See the Orienta-
tion section for more detail.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

outline.type Type of the outline of the area; "both" draws both the upper and lower lines,
"upper"/"lower" draws the respective lines only. "full" draws a closed poly-
gon around the area.



geom_density 101

geom, stat Use to override the default connection between geom_density() and stat_density().
For more information about overriding these connections, see how the stat and
geom arguments work.

bw The smoothing bandwidth to be used. If numeric, the standard deviation of
the smoothing kernel. If character, a rule to choose the bandwidth, as listed in
stats::bw.nrd(). Note that automatic calculation of the bandwidth does not
take weights into account.

adjust A multiplicate bandwidth adjustment. This makes it possible to adjust the band-
width while still using the a bandwidth estimator. For example, adjust = 1/2
means use half of the default bandwidth.

kernel Kernel. See list of available kernels in density().

n number of equally spaced points at which the density is to be estimated, should
be a power of two, see density() for details

trim If FALSE, the default, each density is computed on the full range of the data.
If TRUE, each density is computed over the range of that group: this typically
means the estimated x values will not line-up, and hence you won’t be able to
stack density values. This parameter only matters if you are displaying multiple
densities in one plot or if you are manually adjusting the scale limits.

bounds Known lower and upper bounds for estimated data. Default c(-Inf, Inf)
means that there are no (finite) bounds. If any bound is finite, boundary ef-
fect of default density estimation will be corrected by reflecting tails outside
bounds around their closest edge. Data points outside of bounds are removed
with a warning.

Orientation

This geom treats each axis differently and, thus, can thus have two orientations. Often the orienta-
tion is easy to deduce from a combination of the given mappings and the types of positional scales
in use. Thus, ggplot2 will by default try to guess which orientation the layer should have. Under
rare circumstances, the orientation is ambiguous and guessing may fail. In that case the orientation
can be specified directly using the orientation parameter, which can be either "x" or "y". The
value gives the axis that the geom should run along, "x" being the default orientation you would
expect for the geom.

Aesthetics

geom_density() understands the following aesthetics (required aesthetics are in bold):

• x

• y

• alpha

• colour

• fill

• group

• linetype



102 geom_density

• linewidth

• weight

Learn more about setting these aesthetics in vignette("ggplot2-specs").

Computed variables

These are calculated by the ’stat’ part of layers and can be accessed with delayed evaluation.

• after_stat(density)
density estimate.

• after_stat(count)
density * number of points - useful for stacked density plots.

• after_stat(scaled)
density estimate, scaled to maximum of 1.

• after_stat(n)
number of points.

• after_stat(ndensity)
alias for scaled, to mirror the syntax of stat_bin().

See Also

See geom_histogram(), geom_freqpoly() for other methods of displaying continuous distribu-
tion. See geom_violin() for a compact density display.

Examples

ggplot(diamonds, aes(carat)) +
geom_density()

# Map the values to y to flip the orientation
ggplot(diamonds, aes(y = carat)) +

geom_density()

ggplot(diamonds, aes(carat)) +
geom_density(adjust = 1/5)

ggplot(diamonds, aes(carat)) +
geom_density(adjust = 5)

ggplot(diamonds, aes(depth, colour = cut)) +
geom_density() +
xlim(55, 70)

ggplot(diamonds, aes(depth, fill = cut, colour = cut)) +
geom_density(alpha = 0.1) +
xlim(55, 70)

# Use `bounds` to adjust computation for known data limits
big_diamonds <- diamonds[diamonds$carat >= 1, ]
ggplot(big_diamonds, aes(carat)) +

geom_density(color = 'red') +
geom_density(bounds = c(1, Inf), color = 'blue')



geom_density_2d 103

# Stacked density plots: if you want to create a stacked density plot, you
# probably want to 'count' (density * n) variable instead of the default
# density

# Loses marginal densities
ggplot(diamonds, aes(carat, fill = cut)) +

geom_density(position = "stack")
# Preserves marginal densities
ggplot(diamonds, aes(carat, after_stat(count), fill = cut)) +

geom_density(position = "stack")

# You can use position="fill" to produce a conditional density estimate
ggplot(diamonds, aes(carat, after_stat(count), fill = cut)) +

geom_density(position = "fill")

geom_density_2d Contours of a 2D density estimate

Description

Perform a 2D kernel density estimation using MASS::kde2d() and display the results with con-
tours. This can be useful for dealing with overplotting. This is a 2D version of geom_density().
geom_density_2d() draws contour lines, and geom_density_2d_filled() draws filled contour
bands.

Usage

geom_density_2d(
mapping = NULL,
data = NULL,
stat = "density_2d",
position = "identity",
...,
contour_var = "density",
lineend = "butt",
linejoin = "round",
linemitre = 10,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

geom_density_2d_filled(
mapping = NULL,
data = NULL,



104 geom_density_2d

stat = "density_2d_filled",
position = "identity",
...,
contour_var = "density",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

stat_density_2d(
mapping = NULL,
data = NULL,
geom = "density_2d",
position = "identity",
...,
contour = TRUE,
contour_var = "density",
n = 100,
h = NULL,
adjust = c(1, 1),
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

stat_density_2d_filled(
mapping = NULL,
data = NULL,
geom = "density_2d_filled",
position = "identity",
...,
contour = TRUE,
contour_var = "density",
n = 100,
h = NULL,
adjust = c(1, 1),
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the



geom_density_2d 105

call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

• The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

• A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

• For more information and other ways to specify the position, see the layer
position documentation.

... Arguments passed on to geom_contour

binwidth The width of the contour bins. Overridden by bins.
bins Number of contour bins. Overridden by breaks.
breaks One of:

• Numeric vector to set the contour breaks
• A function that takes the range of the data and binwidth as input and

returns breaks as output. A function can be created from a formula (e.g.
~ fullseq(.x, .y)).

Overrides binwidth and bins. By default, this is a vector of length ten
with pretty() breaks.

contour_var Character string identifying the variable to contour by. Can be one of "density",
"ndensity", or "count". See the section on computed variables for details.

lineend Line end style (round, butt, square).

linejoin Line join style (round, mitre, bevel).

linemitre Line mitre limit (number greater than 1).

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

geom, stat Use to override the default connection between geom_density_2d() and stat_density_2d().
For more information at overriding these connections, see how the stat and geom
arguments work.



106 geom_density_2d

contour If TRUE, contour the results of the 2d density estimation.

n Number of grid points in each direction.

h Bandwidth (vector of length two). If NULL, estimated using MASS::bandwidth.nrd().

adjust A multiplicative bandwidth adjustment to be used if ’h’ is ’NULL’. This makes
it possible to adjust the bandwidth while still using the a bandwidth estimator.
For example, adjust = 1/2 means use half of the default bandwidth.

Aesthetics

geom_density_2d() understands the following aesthetics (required aesthetics are in bold):

• x

• y

• alpha

• colour

• group

• linetype

• linewidth

Learn more about setting these aesthetics in vignette("ggplot2-specs").

geom_density_2d_filled() understands the following aesthetics (required aesthetics are in bold):

• x

• y

• alpha

• colour

• fill

• group

• linetype

• linewidth

• subgroup

Learn more about setting these aesthetics in vignette("ggplot2-specs").

Computed variables

These are calculated by the ’stat’ part of layers and can be accessed with delayed evaluation.
stat_density_2d() and stat_density_2d_filled() compute different variables depending on
whether contouring is turned on or off. With contouring off (contour = FALSE), both stats behave
the same, and the following variables are provided:

• after_stat(density)
The density estimate.

• after_stat(ndensity)
Density estimate, scaled to a maximum of 1.



geom_density_2d 107

• after_stat(count)
Density estimate * number of observations in group.

• after_stat(n)
Number of observations in each group.

With contouring on (contour = TRUE), either stat_contour() or stat_contour_filled() (for
contour lines or contour bands, respectively) is run after the density estimate has been obtained, and
the computed variables are determined by these stats. Contours are calculated for one of the three
types of density estimates obtained before contouring, density, ndensity, and count. Which of
those should be used is determined by the contour_var parameter.

Dropped variables

z After density estimation, the z values of individual data points are no longer available.

If contouring is enabled, then similarly density, ndensity, and count are no longer available after
the contouring pass.

See Also

geom_contour(), geom_contour_filled() for information about how contours are drawn; geom_bin_2d()
for another way of dealing with overplotting.

Examples

m <- ggplot(faithful, aes(x = eruptions, y = waiting)) +
geom_point() +
xlim(0.5, 6) +
ylim(40, 110)

# contour lines
m + geom_density_2d()

# contour bands
m + geom_density_2d_filled(alpha = 0.5)

# contour bands and contour lines
m + geom_density_2d_filled(alpha = 0.5) +

geom_density_2d(linewidth = 0.25, colour = "black")

set.seed(4393)
dsmall <- diamonds[sample(nrow(diamonds), 1000), ]
d <- ggplot(dsmall, aes(x, y))
# If you map an aesthetic to a categorical variable, you will get a
# set of contours for each value of that variable
d + geom_density_2d(aes(colour = cut))

# If you draw filled contours across multiple facets, the same bins are
# used across all facets
d + geom_density_2d_filled() + facet_wrap(vars(cut))
# If you want to make sure the peak intensity is the same in each facet,



108 geom_dotplot

# use `contour_var = "ndensity"`.
d + geom_density_2d_filled(contour_var = "ndensity") + facet_wrap(vars(cut))
# If you want to scale intensity by the number of observations in each group,
# use `contour_var = "count"`.
d + geom_density_2d_filled(contour_var = "count") + facet_wrap(vars(cut))

# If we turn contouring off, we can use other geoms, such as tiles:
d + stat_density_2d(

geom = "raster",
aes(fill = after_stat(density)),
contour = FALSE

) + scale_fill_viridis_c()
# Or points:
d + stat_density_2d(geom = "point", aes(size = after_stat(density)), n = 20, contour = FALSE)

geom_dotplot Dot plot

Description

In a dot plot, the width of a dot corresponds to the bin width (or maximum width, depending on the
binning algorithm), and dots are stacked, with each dot representing one observation.

Usage

geom_dotplot(
mapping = NULL,
data = NULL,
position = "identity",
...,
binwidth = NULL,
binaxis = "x",
method = "dotdensity",
binpositions = "bygroup",
stackdir = "up",
stackratio = 1,
dotsize = 1,
stackgroups = FALSE,
origin = NULL,
right = TRUE,
width = 0.9,
drop = FALSE,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)



geom_dotplot 109

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

• The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

• A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

• For more information and other ways to specify the position, see the layer
position documentation.

... Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through
.... Unknown arguments that are not part of the 4 categories below are ignored.

• Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red" or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

• When constructing a layer using a stat_*() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area", outline.type = "both"). The
geom’s documentation lists which parameters it can accept.

• Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density", adjust = 0.5). The
stat’s documentation lists which parameters it can accept.

• The key_glyph argument of layer() may also be passed on through ....
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.



110 geom_dotplot

binwidth When method is "dotdensity", this specifies maximum bin width. When method
is "histodot", this specifies bin width. Defaults to 1/30 of the range of the data

binaxis The axis to bin along, "x" (default) or "y"

method "dotdensity" (default) for dot-density binning, or "histodot" for fixed bin widths
(like stat_bin)

binpositions When method is "dotdensity", "bygroup" (default) determines positions of the
bins for each group separately. "all" determines positions of the bins with all the
data taken together; this is used for aligning dot stacks across multiple groups.

stackdir which direction to stack the dots. "up" (default), "down", "center", "centerw-
hole" (centered, but with dots aligned)

stackratio how close to stack the dots. Default is 1, where dots just touch. Use smaller
values for closer, overlapping dots.

dotsize The diameter of the dots relative to binwidth, default 1.

stackgroups should dots be stacked across groups? This has the effect that position =
"stack" should have, but can’t (because this geom has some odd properties).

origin When method is "histodot", origin of first bin

right When method is "histodot", should intervals be closed on the right (a, b], or not
[a, b)

width When binaxis is "y", the spacing of the dot stacks for dodging.

drop If TRUE, remove all bins with zero counts

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

Details

There are two basic approaches: dot-density and histodot. With dot-density binning, the bin po-
sitions are determined by the data and binwidth, which is the maximum width of each bin. See
Wilkinson (1999) for details on the dot-density binning algorithm. With histodot binning, the bins
have fixed positions and fixed widths, much like a histogram.

When binning along the x axis and stacking along the y axis, the numbers on y axis are not mean-
ingful, due to technical limitations of ggplot2. You can hide the y axis, as in one of the examples,
or manually scale it to match the number of dots.

Aesthetics

geom_dotplot() understands the following aesthetics (required aesthetics are in bold):

• x



geom_dotplot 111

• y

• alpha

• colour

• fill

• group

• linetype

• stroke

• weight

Learn more about setting these aesthetics in vignette("ggplot2-specs").

Computed variables

These are calculated by the ’stat’ part of layers and can be accessed with delayed evaluation.

• after_stat(x)
center of each bin, if binaxis is "x".

• after_stat(y)
center of each bin, if binaxis is "x".

• after_stat(binwidth)
maximum width of each bin if method is "dotdensity"; width of each bin if method is
"histodot".

• after_stat(count)
number of points in bin.

• after_stat(ncount)
count, scaled to a maximum of 1.

• after_stat(density)
density of points in bin, scaled to integrate to 1, if method is "histodot".

• after_stat(ndensity)
density, scaled to maximum of 1, if method is "histodot".

References

Wilkinson, L. (1999) Dot plots. The American Statistician, 53(3), 276-281.

Examples

ggplot(mtcars, aes(x = mpg)) +
geom_dotplot()

ggplot(mtcars, aes(x = mpg)) +
geom_dotplot(binwidth = 1.5)

# Use fixed-width bins
ggplot(mtcars, aes(x = mpg)) +

geom_dotplot(method="histodot", binwidth = 1.5)



112 geom_dotplot

# Some other stacking methods
ggplot(mtcars, aes(x = mpg)) +

geom_dotplot(binwidth = 1.5, stackdir = "center")

ggplot(mtcars, aes(x = mpg)) +
geom_dotplot(binwidth = 1.5, stackdir = "centerwhole")

# y axis isn't really meaningful, so hide it
ggplot(mtcars, aes(x = mpg)) + geom_dotplot(binwidth = 1.5) +

scale_y_continuous(NULL, breaks = NULL)

# Overlap dots vertically
ggplot(mtcars, aes(x = mpg)) +

geom_dotplot(binwidth = 1.5, stackratio = .7)

# Expand dot diameter
ggplot(mtcars, aes(x = mpg)) +

geom_dotplot(binwidth = 1.5, dotsize = 1.25)

# Change dot fill colour, stroke width
ggplot(mtcars, aes(x = mpg)) +

geom_dotplot(binwidth = 1.5, fill = "white", stroke = 2)

# Examples with stacking along y axis instead of x
ggplot(mtcars, aes(x = 1, y = mpg)) +

geom_dotplot(binaxis = "y", stackdir = "center")

ggplot(mtcars, aes(x = factor(cyl), y = mpg)) +
geom_dotplot(binaxis = "y", stackdir = "center")

ggplot(mtcars, aes(x = factor(cyl), y = mpg)) +
geom_dotplot(binaxis = "y", stackdir = "centerwhole")

ggplot(mtcars, aes(x = factor(vs), fill = factor(cyl), y = mpg)) +
geom_dotplot(binaxis = "y", stackdir = "center", position = "dodge")

# binpositions="all" ensures that the bins are aligned between groups
ggplot(mtcars, aes(x = factor(am), y = mpg)) +

geom_dotplot(binaxis = "y", stackdir = "center", binpositions="all")

# Stacking multiple groups, with different fill
ggplot(mtcars, aes(x = mpg, fill = factor(cyl))) +

geom_dotplot(stackgroups = TRUE, binwidth = 1, binpositions = "all")

ggplot(mtcars, aes(x = mpg, fill = factor(cyl))) +
geom_dotplot(stackgroups = TRUE, binwidth = 1, method = "histodot")

ggplot(mtcars, aes(x = 1, y = mpg, fill = factor(cyl))) +
geom_dotplot(binaxis = "y", stackgroups = TRUE, binwidth = 1, method = "histodot")



geom_errorbarh 113

geom_errorbarh Horizontal error bars

Description

A rotated version of geom_errorbar().

Usage

geom_errorbarh(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

stat The statistical transformation to use on the data for this layer. When using a
geom_*() function to construct a layer, the stat argument can be used the over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

• A Stat ggproto subclass, for example StatCount.
• A string naming the stat. To give the stat as a string, strip the function name

of the stat_ prefix. For example, to use stat_count(), give the stat as
"count".

• For more information and other ways to specify the stat, see the layer stat
documentation.



114 geom_errorbarh

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

• The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

• A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

• For more information and other ways to specify the position, see the layer
position documentation.

... Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through
.... Unknown arguments that are not part of the 4 categories below are ignored.

• Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red" or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

• When constructing a layer using a stat_*() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area", outline.type = "both"). The
geom’s documentation lists which parameters it can accept.

• Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density", adjust = 0.5). The
stat’s documentation lists which parameters it can accept.

• The key_glyph argument of layer() may also be passed on through ....
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

Aesthetics

geom_errorbarh() understands the following aesthetics (required aesthetics are in bold):

• xmin



geom_freqpoly 115

• xmax

• y

• alpha

• colour

• group

• height

• linetype

• linewidth

Learn more about setting these aesthetics in vignette("ggplot2-specs").

Examples

df <- data.frame(
trt = factor(c(1, 1, 2, 2)),
resp = c(1, 5, 3, 4),
group = factor(c(1, 2, 1, 2)),
se = c(0.1, 0.3, 0.3, 0.2)

)

# Define the top and bottom of the errorbars

p <- ggplot(df, aes(resp, trt, colour = group))
p +

geom_point() +
geom_errorbarh(aes(xmax = resp + se, xmin = resp - se))

p +
geom_point() +
geom_errorbarh(aes(xmax = resp + se, xmin = resp - se, height = .2))

geom_freqpoly Histograms and frequency polygons

Description

Visualise the distribution of a single continuous variable by dividing the x axis into bins and count-
ing the number of observations in each bin. Histograms (geom_histogram()) display the counts
with bars; frequency polygons (geom_freqpoly()) display the counts with lines. Frequency poly-
gons are more suitable when you want to compare the distribution across the levels of a categorical
variable.



116 geom_freqpoly

Usage

geom_freqpoly(
mapping = NULL,
data = NULL,
stat = "bin",
position = "identity",
...,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

geom_histogram(
mapping = NULL,
data = NULL,
stat = "bin",
position = "stack",
...,
binwidth = NULL,
bins = NULL,
na.rm = FALSE,
orientation = NA,
show.legend = NA,
inherit.aes = TRUE

)

stat_bin(
mapping = NULL,
data = NULL,
geom = "bar",
position = "stack",
...,
binwidth = NULL,
bins = NULL,
center = NULL,
boundary = NULL,
breaks = NULL,
closed = c("right", "left"),
pad = FALSE,
na.rm = FALSE,
orientation = NA,
show.legend = NA,
inherit.aes = TRUE

)



geom_freqpoly 117

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

• The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

• A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

• For more information and other ways to specify the position, see the layer
position documentation.

... Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through
.... Unknown arguments that are not part of the 4 categories below are ignored.

• Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red" or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

• When constructing a layer using a stat_*() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area", outline.type = "both"). The
geom’s documentation lists which parameters it can accept.

• Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density", adjust = 0.5). The
stat’s documentation lists which parameters it can accept.

• The key_glyph argument of layer() may also be passed on through ....
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.



118 geom_freqpoly

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

binwidth The width of the bins. Can be specified as a numeric value or as a function that
calculates width from unscaled x. Here, "unscaled x" refers to the original x val-
ues in the data, before application of any scale transformation. When specifying
a function along with a grouping structure, the function will be called once per
group. The default is to use the number of bins in bins, covering the range of
the data. You should always override this value, exploring multiple widths to
find the best to illustrate the stories in your data.
The bin width of a date variable is the number of days in each time; the bin
width of a time variable is the number of seconds.

bins Number of bins. Overridden by binwidth. Defaults to 30.

orientation The orientation of the layer. The default (NA) automatically determines the ori-
entation from the aesthetic mapping. In the rare event that this fails it can be
given explicitly by setting orientation to either "x" or "y". See the Orienta-
tion section for more detail.

geom, stat Use to override the default connection between geom_histogram()/geom_freqpoly()
and stat_bin(). For more information at overriding these connections, see how
the stat and geom arguments work.

center, boundary
bin position specifiers. Only one, center or boundary, may be specified for a
single plot. center specifies the center of one of the bins. boundary specifies
the boundary between two bins. Note that if either is above or below the range of
the data, things will be shifted by the appropriate integer multiple of binwidth.
For example, to center on integers use binwidth = 1 and center = 0, even if 0 is
outside the range of the data. Alternatively, this same alignment can be specified
with binwidth = 1 and boundary = 0.5, even if 0.5 is outside the range of the
data.

breaks Alternatively, you can supply a numeric vector giving the bin boundaries. Over-
rides binwidth, bins, center, and boundary.

closed One of "right" or "left" indicating whether right or left edges of bins are
included in the bin.

pad If TRUE, adds empty bins at either end of x. This ensures frequency polygons
touch 0. Defaults to FALSE.

Details

stat_bin() is suitable only for continuous x data. If your x data is discrete, you probably want to
use stat_count().



geom_freqpoly 119

By default, the underlying computation (stat_bin()) uses 30 bins; this is not a good default,
but the idea is to get you experimenting with different number of bins. You can also experiment
modifying the binwidth with center or boundary arguments. binwidth overrides bins so you
should do one change at a time. You may need to look at a few options to uncover the full story
behind your data.

In addition to geom_histogram(), you can create a histogram plot by using scale_x_binned()
with geom_bar(). This method by default plots tick marks in between each bar.

Orientation

This geom treats each axis differently and, thus, can thus have two orientations. Often the orienta-
tion is easy to deduce from a combination of the given mappings and the types of positional scales
in use. Thus, ggplot2 will by default try to guess which orientation the layer should have. Under
rare circumstances, the orientation is ambiguous and guessing may fail. In that case the orientation
can be specified directly using the orientation parameter, which can be either "x" or "y". The
value gives the axis that the geom should run along, "x" being the default orientation you would
expect for the geom.

Aesthetics

geom_histogram() uses the same aesthetics as geom_bar(); geom_freqpoly() uses the same
aesthetics as geom_line().

Computed variables

These are calculated by the ’stat’ part of layers and can be accessed with delayed evaluation.

• after_stat(count)
number of points in bin.

• after_stat(density)
density of points in bin, scaled to integrate to 1.

• after_stat(ncount)
count, scaled to a maximum of 1.

• after_stat(ndensity)
density, scaled to a maximum of 1.

• after_stat(width)
widths of bins.

Dropped variables

weight After binning, weights of individual data points (if supplied) are no longer available.

See Also

stat_count(), which counts the number of cases at each x position, without binning. It is suitable
for both discrete and continuous x data, whereas stat_bin() is suitable only for continuous x data.



120 geom_freqpoly

Examples

ggplot(diamonds, aes(carat)) +
geom_histogram()

ggplot(diamonds, aes(carat)) +
geom_histogram(binwidth = 0.01)

ggplot(diamonds, aes(carat)) +
geom_histogram(bins = 200)

# Map values to y to flip the orientation
ggplot(diamonds, aes(y = carat)) +

geom_histogram()

# For histograms with tick marks between each bin, use `geom_bar()` with
# `scale_x_binned()`.
ggplot(diamonds, aes(carat)) +

geom_bar() +
scale_x_binned()

# Rather than stacking histograms, it's easier to compare frequency
# polygons
ggplot(diamonds, aes(price, fill = cut)) +

geom_histogram(binwidth = 500)
ggplot(diamonds, aes(price, colour = cut)) +

geom_freqpoly(binwidth = 500)

# To make it easier to compare distributions with very different counts,
# put density on the y axis instead of the default count
ggplot(diamonds, aes(price, after_stat(density), colour = cut)) +

geom_freqpoly(binwidth = 500)

if (require("ggplot2movies")) {
# Often we don't want the height of the bar to represent the
# count of observations, but the sum of some other variable.
# For example, the following plot shows the number of movies
# in each rating.
m <- ggplot(movies, aes(rating))
m + geom_histogram(binwidth = 0.1)

# If, however, we want to see the number of votes cast in each
# category, we need to weight by the votes variable
m +

geom_histogram(aes(weight = votes), binwidth = 0.1) +
ylab("votes")

# For transformed scales, binwidth applies to the transformed data.
# The bins have constant width on the transformed scale.
m +
geom_histogram() +
scale_x_log10()

m +
geom_histogram(binwidth = 0.05) +
scale_x_log10()



geom_function 121

# For transformed coordinate systems, the binwidth applies to the
# raw data. The bins have constant width on the original scale.

# Using log scales does not work here, because the first
# bar is anchored at zero, and so when transformed becomes negative
# infinity. This is not a problem when transforming the scales, because
# no observations have 0 ratings.
m +

geom_histogram(boundary = 0) +
coord_trans(x = "log10")

# Use boundary = 0, to make sure we don't take sqrt of negative values
m +

geom_histogram(boundary = 0) +
coord_trans(x = "sqrt")

# You can also transform the y axis. Remember that the base of the bars
# has value 0, so log transformations are not appropriate
m <- ggplot(movies, aes(x = rating))
m +

geom_histogram(binwidth = 0.5) +
scale_y_sqrt()

}

# You can specify a function for calculating binwidth, which is
# particularly useful when faceting along variables with
# different ranges because the function will be called once per facet
ggplot(economics_long, aes(value)) +

facet_wrap(~variable, scales = 'free_x') +
geom_histogram(binwidth = function(x) 2 * IQR(x) / (length(x)^(1/3)))

geom_function Draw a function as a continuous curve

Description

Computes and draws a function as a continuous curve. This makes it easy to superimpose a function
on top of an existing plot. The function is called with a grid of evenly spaced values along the x
axis, and the results are drawn (by default) with a line.

Usage

geom_function(
mapping = NULL,
data = NULL,
stat = "function",
position = "identity",
...,
na.rm = FALSE,
show.legend = NA,



122 geom_function

inherit.aes = TRUE
)

stat_function(
mapping = NULL,
data = NULL,
geom = "function",
position = "identity",
...,
fun,
xlim = NULL,
n = 101,
args = list(),
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data Ignored by stat_function(), do not use.

stat The statistical transformation to use on the data for this layer. When using a
geom_*() function to construct a layer, the stat argument can be used the over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

• A Stat ggproto subclass, for example StatCount.
• A string naming the stat. To give the stat as a string, strip the function name

of the stat_ prefix. For example, to use stat_count(), give the stat as
"count".

• For more information and other ways to specify the stat, see the layer stat
documentation.

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

• The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

• A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

• For more information and other ways to specify the position, see the layer
position documentation.

... Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the



geom_function 123

position argument, or aesthetics that are required can not be passed through
.... Unknown arguments that are not part of the 4 categories below are ignored.

• Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red" or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

• When constructing a layer using a stat_*() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area", outline.type = "both"). The
geom’s documentation lists which parameters it can accept.

• Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density", adjust = 0.5). The
stat’s documentation lists which parameters it can accept.

• The key_glyph argument of layer() may also be passed on through ....
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

geom The geometric object to use to display the data for this layer. When using a
stat_*() function to construct a layer, the geom argument can be used to over-
ride the default coupling between stats and geoms. The geom argument accepts
the following:

• A Geom ggproto subclass, for example GeomPoint.
• A string naming the geom. To give the geom as a string, strip the function

name of the geom_ prefix. For example, to use geom_point(), give the
geom as "point".

• For more information and other ways to specify the geom, see the layer
geom documentation.

fun Function to use. Either 1) an anonymous function in the base or rlang formula
syntax (see rlang::as_function()) or 2) a quoted or character name referenc-
ing a function; see examples. Must be vectorised.

xlim Optionally, specify the range of the function.

n Number of points to interpolate along the x axis.

args List of additional arguments passed on to the function defined by fun.



124 geom_function

Aesthetics

geom_function() understands the following aesthetics (required aesthetics are in bold):

• x

• y

• alpha

• colour

• group

• linetype

• linewidth

Learn more about setting these aesthetics in vignette("ggplot2-specs").

Computed variables

These are calculated by the ’stat’ part of layers and can be accessed with delayed evaluation.

• after_stat(x)
x values along a grid.

• after_stat(y)
values of the function evaluated at corresponding x.

See Also

rlang::as_function()

Examples

# geom_function() is useful for overlaying functions
set.seed(1492)
ggplot(data.frame(x = rnorm(100)), aes(x)) +

geom_density() +
geom_function(fun = dnorm, colour = "red")

# To plot functions without data, specify range of x-axis
base <-

ggplot() +
xlim(-5, 5)

base + geom_function(fun = dnorm)

base + geom_function(fun = dnorm, args = list(mean = 2, sd = .5))

# The underlying mechanics evaluate the function at discrete points
# and connect the points with lines
base + stat_function(fun = dnorm, geom = "point")

base + stat_function(fun = dnorm, geom = "point", n = 20)



geom_hex 125

base + stat_function(fun = dnorm, geom = "polygon", color = "blue", fill = "blue", alpha = 0.5)

base + geom_function(fun = dnorm, n = 20)

# Two functions on the same plot
base +

geom_function(aes(colour = "normal"), fun = dnorm) +
geom_function(aes(colour = "t, df = 1"), fun = dt, args = list(df = 1))

# Using a custom anonymous function
base + geom_function(fun = function(x) 0.5 * exp(-abs(x)))
# or using lambda syntax:
# base + geom_function(fun = ~ 0.5 * exp(-abs(.x)))
# or in R4.1.0 and above:
# base + geom_function(fun = \(x) 0.5 * exp(-abs(x)))
# or using a custom named function:
# f <- function(x) 0.5 * exp(-abs(x))
# base + geom_function(fun = f)

# Using xlim to restrict the range of function
ggplot(data.frame(x = rnorm(100)), aes(x)) +
geom_density() +
geom_function(fun = dnorm, colour = "red", xlim=c(-1, 1))

# Using xlim to widen the range of function
ggplot(data.frame(x = rnorm(100)), aes(x)) +
geom_density() +
geom_function(fun = dnorm, colour = "red", xlim=c(-7, 7))

geom_hex Hexagonal heatmap of 2d bin counts

Description

Divides the plane into regular hexagons, counts the number of cases in each hexagon, and then
(by default) maps the number of cases to the hexagon fill. Hexagon bins avoid the visual artefacts
sometimes generated by the very regular alignment of geom_bin_2d().

Usage

geom_hex(
mapping = NULL,
data = NULL,
stat = "binhex",
position = "identity",
...,
na.rm = FALSE,
show.legend = NA,



126 geom_hex

inherit.aes = TRUE
)

stat_bin_hex(
mapping = NULL,
data = NULL,
geom = "hex",
position = "identity",
...,
bins = 30,
binwidth = NULL,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

• The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

• A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

• For more information and other ways to specify the position, see the layer
position documentation.

... Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through
.... Unknown arguments that are not part of the 4 categories below are ignored.

• Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red" or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the



geom_hex 127

available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

• When constructing a layer using a stat_*() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area", outline.type = "both"). The
geom’s documentation lists which parameters it can accept.

• Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density", adjust = 0.5). The
stat’s documentation lists which parameters it can accept.

• The key_glyph argument of layer() may also be passed on through ....
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

geom, stat Override the default connection between geom_hex() and stat_bin_hex().
For more information about overriding these connections, see how the stat and
geom arguments work.

bins numeric vector giving number of bins in both vertical and horizontal directions.
Set to 30 by default.

binwidth Numeric vector giving bin width in both vertical and horizontal directions. Over-
rides bins if both set.

Aesthetics

geom_hex() understands the following aesthetics (required aesthetics are in bold):

• x

• y

• alpha

• colour

• fill

• group

• linetype

• linewidth

Learn more about setting these aesthetics in vignette("ggplot2-specs").



128 geom_jitter

Computed variables

These are calculated by the ’stat’ part of layers and can be accessed with delayed evaluation.

• after_stat(count)
number of points in bin.

• after_stat(density)
density of points in bin, scaled to integrate to 1.

• after_stat(ncount)
count, scaled to maximum of 1.

• after_stat(ndensity)
density, scaled to maximum of 1.

See Also

stat_bin_2d() for rectangular binning

Examples

d <- ggplot(diamonds, aes(carat, price))
d + geom_hex()

# You can control the size of the bins by specifying the number of
# bins in each direction:
d + geom_hex(bins = 10)
d + geom_hex(bins = 30)

# Or by specifying the width of the bins
d + geom_hex(binwidth = c(1, 1000))
d + geom_hex(binwidth = c(.1, 500))

geom_jitter Jittered points

Description

The jitter geom is a convenient shortcut for geom_point(position = "jitter"). It adds a small
amount of random variation to the location of each point, and is a useful way of handling overplot-
ting caused by discreteness in smaller datasets.

Usage

geom_jitter(
mapping = NULL,
data = NULL,
stat = "identity",



geom_jitter 129

position = "jitter",
...,
width = NULL,
height = NULL,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

stat The statistical transformation to use on the data for this layer. When using a
geom_*() function to construct a layer, the stat argument can be used the over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

• A Stat ggproto subclass, for example StatCount.
• A string naming the stat. To give the stat as a string, strip the function name

of the stat_ prefix. For example, to use stat_count(), give the stat as
"count".

• For more information and other ways to specify the stat, see the layer stat
documentation.

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

• The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

• A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

• For more information and other ways to specify the position, see the layer
position documentation.

... Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through
.... Unknown arguments that are not part of the 4 categories below are ignored.



130 geom_jitter

• Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red" or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

• When constructing a layer using a stat_*() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area", outline.type = "both"). The
geom’s documentation lists which parameters it can accept.

• Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density", adjust = 0.5). The
stat’s documentation lists which parameters it can accept.

• The key_glyph argument of layer() may also be passed on through ....
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

width, height Amount of vertical and horizontal jitter. The jitter is added in both positive and
negative directions, so the total spread is twice the value specified here.
If omitted, defaults to 40% of the resolution of the data: this means the jitter
values will occupy 80% of the implied bins. Categorical data is aligned on the
integers, so a width or height of 0.5 will spread the data so it’s not possible to
see the distinction between the categories.

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

Aesthetics

geom_point() understands the following aesthetics (required aesthetics are in bold):

• x

• y

• alpha

• colour

• fill

• group

• shape

• size



geom_label 131

• stroke

Learn more about setting these aesthetics in vignette("ggplot2-specs").

See Also

geom_point() for regular, unjittered points, geom_boxplot() for another way of looking at the
conditional distribution of a variable

Examples

p <- ggplot(mpg, aes(cyl, hwy))
p + geom_point()
p + geom_jitter()

# Add aesthetic mappings
p + geom_jitter(aes(colour = class))

# Use smaller width/height to emphasise categories
ggplot(mpg, aes(cyl, hwy)) +

geom_jitter()
ggplot(mpg, aes(cyl, hwy)) +

geom_jitter(width = 0.25)

# Use larger width/height to completely smooth away discreteness
ggplot(mpg, aes(cty, hwy)) +

geom_jitter()
ggplot(mpg, aes(cty, hwy)) +

geom_jitter(width = 0.5, height = 0.5)

geom_label Text

Description

Text geoms are useful for labeling plots. They can be used by themselves as scatterplots or in
combination with other geoms, for example, for labeling points or for annotating the height of bars.
geom_text() adds only text to the plot. geom_label() draws a rectangle behind the text, making
it easier to read.

Usage

geom_label(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
parse = FALSE,



132 geom_label

nudge_x = 0,
nudge_y = 0,
label.padding = unit(0.25, "lines"),
label.r = unit(0.15, "lines"),
label.size = 0.25,
size.unit = "mm",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

geom_text(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
parse = FALSE,
nudge_x = 0,
nudge_y = 0,
check_overlap = FALSE,
size.unit = "mm",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().

A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.

A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

stat The statistical transformation to use on the data for this layer. When using a
geom_*() function to construct a layer, the stat argument can be used the over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

• A Stat ggproto subclass, for example StatCount.



geom_label 133

• A string naming the stat. To give the stat as a string, strip the function name
of the stat_ prefix. For example, to use stat_count(), give the stat as
"count".

• For more information and other ways to specify the stat, see the layer stat
documentation.

position A position adjustment to use on the data for this layer. Cannot be jointy specified
with nudge_x or nudge_y. This can be used in various ways, including to pre-
vent overplotting and improving the display. The position argument accepts
the following:

• The result of calling a position function, such as position_jitter().
• A string nameing the position adjustment. To give the position as a string,

strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

• For more information and other ways to specify the position, see the layer
position documentation.

... Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through
.... Unknown arguments that are not part of the 4 categories below are ignored.

• Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red" or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

• When constructing a layer using a stat_*() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area", outline.type = "both"). The
geom’s documentation lists which parameters it can accept.

• Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density", adjust = 0.5). The
stat’s documentation lists which parameters it can accept.

• The key_glyph argument of layer() may also be passed on through ....
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

parse If TRUE, the labels will be parsed into expressions and displayed as described in
?plotmath.

nudge_x, nudge_y
Horizontal and vertical adjustment to nudge labels by. Useful for offsetting text
from points, particularly on discrete scales. Cannot be jointly specified with
position.

label.padding Amount of padding around label. Defaults to 0.25 lines.

label.r Radius of rounded corners. Defaults to 0.15 lines.



134 geom_label

label.size Size of label border, in mm.
size.unit How the size aesthetic is interpreted: as millimetres ("mm", default), points

("pt"), centimetres ("cm"), inches ("in"), or picas ("pc").
na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,

missing values are silently removed.
show.legend logical. Should this layer be included in the legends? NA, the default, includes if

any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

check_overlap If TRUE, text that overlaps previous text in the same layer will not be plotted.
check_overlap happens at draw time and in the order of the data. Therefore
data should be arranged by the label column before calling geom_text(). Note
that this argument is not supported by geom_label().

Details

Note that when you resize a plot, text labels stay the same size, even though the size of the plot area
changes. This happens because the "width" and "height" of a text element are 0. Obviously, text
labels do have height and width, but they are physical units, not data units. For the same reason,
stacking and dodging text will not work by default, and axis limits are not automatically expanded
to include all text.
geom_text() and geom_label() add labels for each row in the data, even if coordinates x, y are
set to single values in the call to geom_label() or geom_text(). To add labels at specified points
use annotate() with annotate(geom = "text", ...) or annotate(geom = "label", ...).
To automatically position non-overlapping text labels see the ggrepel package.

Aesthetics

geom_text() understands the following aesthetics (required aesthetics are in bold):

• x

• y

• label

• alpha

• angle

• colour

• family

• fontface

• group

• hjust

• lineheight

• size

• vjust

Learn more about setting these aesthetics in vignette("ggplot2-specs").

https://cran.r-project.org/package=ggrepel


geom_label 135

geom_label()

Currently geom_label() does not support the check_overlap argument. Also, it is considerably
slower than geom_text(). The fill aesthetic controls the background colour of the label.

Alignment

You can modify text alignment with the vjust and hjust aesthetics. These can either be a number
between 0 (right/bottom) and 1 (top/left) or a character ("left", "middle", "right", "bottom",
"center", "top"). There are two special alignments: "inward" and "outward". Inward always
aligns text towards the center, and outward aligns it away from the center.

See Also

The text labels section of the online ggplot2 book.

Examples

p <- ggplot(mtcars, aes(wt, mpg, label = rownames(mtcars)))

p + geom_text()
# Avoid overlaps
p + geom_text(check_overlap = TRUE)
# Labels with background
p + geom_label()
# Change size of the label
p + geom_text(size = 10)

# Set aesthetics to fixed value
p +

geom_point() +
geom_text(hjust = 0, nudge_x = 0.05)

p +
geom_point() +
geom_text(vjust = 0, nudge_y = 0.5)

p +
geom_point() +
geom_text(angle = 45)

## Not run:
# Doesn't work on all systems
p +

geom_text(family = "Times New Roman")

## End(Not run)

# Add aesthetic mappings
p + geom_text(aes(colour = factor(cyl)))
p + geom_text(aes(colour = factor(cyl))) +

scale_colour_discrete(l = 40)
p + geom_label(aes(fill = factor(cyl)), colour = "white", fontface = "bold")

p + geom_text(aes(size = wt))

https://ggplot2-book.org/annotations#sec-text-labels


136 geom_label

# Scale height of text, rather than sqrt(height)
p +

geom_text(aes(size = wt)) +
scale_radius(range = c(3,6))

# You can display expressions by setting parse = TRUE. The
# details of the display are described in ?plotmath, but note that
# geom_text uses strings, not expressions.
p +

geom_text(
aes(label = paste(wt, "^(", cyl, ")", sep = "")),
parse = TRUE

)

# Add a text annotation
p +

geom_text() +
annotate(

"text", label = "plot mpg vs. wt",
x = 2, y = 15, size = 8, colour = "red"

)

# Aligning labels and bars --------------------------------------------------
df <- data.frame(

x = factor(c(1, 1, 2, 2)),
y = c(1, 3, 2, 1),
grp = c("a", "b", "a", "b")

)

# ggplot2 doesn't know you want to give the labels the same virtual width
# as the bars:
ggplot(data = df, aes(x, y, group = grp)) +

geom_col(aes(fill = grp), position = "dodge") +
geom_text(aes(label = y), position = "dodge")

# So tell it:
ggplot(data = df, aes(x, y, group = grp)) +

geom_col(aes(fill = grp), position = "dodge") +
geom_text(aes(label = y), position = position_dodge(0.9))

# You can't nudge and dodge text, so instead adjust the y position
ggplot(data = df, aes(x, y, group = grp)) +

geom_col(aes(fill = grp), position = "dodge") +
geom_text(
aes(label = y, y = y + 0.05),
position = position_dodge(0.9),
vjust = 0

)

# To place text in the middle of each bar in a stacked barplot, you
# need to set the vjust parameter of position_stack()
ggplot(data = df, aes(x, y, group = grp)) +
geom_col(aes(fill = grp)) +
geom_text(aes(label = y), position = position_stack(vjust = 0.5))



geom_map 137

# Justification -------------------------------------------------------------
df <- data.frame(

x = c(1, 1, 2, 2, 1.5),
y = c(1, 2, 1, 2, 1.5),
text = c("bottom-left", "top-left", "bottom-right", "top-right", "center")

)
ggplot(df, aes(x, y)) +

geom_text(aes(label = text))
ggplot(df, aes(x, y)) +

geom_text(aes(label = text), vjust = "inward", hjust = "inward")

geom_map Polygons from a reference map

Description

Display polygons as a map. This is meant as annotation, so it does not affect position scales. Note
that this function predates the geom_sf() framework and does not work with sf geometry columns
as input. However, it can be used in conjunction with geom_sf() layers and/or coord_sf() (see
examples).

Usage

geom_map(
mapping = NULL,
data = NULL,
stat = "identity",
...,
map,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.



138 geom_map

A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

stat The statistical transformation to use on the data for this layer. When using a
geom_*() function to construct a layer, the stat argument can be used the over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

• A Stat ggproto subclass, for example StatCount.
• A string naming the stat. To give the stat as a string, strip the function name

of the stat_ prefix. For example, to use stat_count(), give the stat as
"count".

• For more information and other ways to specify the stat, see the layer stat
documentation.

... Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through
.... Unknown arguments that are not part of the 4 categories below are ignored.

• Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red" or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

• When constructing a layer using a stat_*() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area", outline.type = "both"). The
geom’s documentation lists which parameters it can accept.

• Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density", adjust = 0.5). The
stat’s documentation lists which parameters it can accept.

• The key_glyph argument of layer() may also be passed on through ....
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

map Data frame that contains the map coordinates. This will typically be created
using fortify() on a spatial object. It must contain columns x or long, y or
lat, and region or id.

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().



geom_map 139

Aesthetics

geom_map() understands the following aesthetics (required aesthetics are in bold):

• map_id

• alpha

• colour

• fill

• group

• linetype

• linewidth

• subgroup

Learn more about setting these aesthetics in vignette("ggplot2-specs").

Examples

# First, a made-up example containing a few polygons, to explain
# how `geom_map()` works. It requires two data frames:
# One contains the coordinates of each polygon (`positions`), and is
# provided via the `map` argument. The other contains the
# other the values associated with each polygon (`values`). An id
# variable links the two together.

ids <- factor(c("1.1", "2.1", "1.2", "2.2", "1.3", "2.3"))

values <- data.frame(
id = ids,
value = c(3, 3.1, 3.1, 3.2, 3.15, 3.5)

)

positions <- data.frame(
id = rep(ids, each = 4),
x = c(2, 1, 1.1, 2.2, 1, 0, 0.3, 1.1, 2.2, 1.1, 1.2, 2.5, 1.1, 0.3,
0.5, 1.2, 2.5, 1.2, 1.3, 2.7, 1.2, 0.5, 0.6, 1.3),
y = c(-0.5, 0, 1, 0.5, 0, 0.5, 1.5, 1, 0.5, 1, 2.1, 1.7, 1, 1.5,
2.2, 2.1, 1.7, 2.1, 3.2, 2.8, 2.1, 2.2, 3.3, 3.2)

)

ggplot(values) +
geom_map(aes(map_id = id), map = positions) +
expand_limits(positions)

ggplot(values, aes(fill = value)) +
geom_map(aes(map_id = id), map = positions) +
expand_limits(positions)

ggplot(values, aes(fill = value)) +
geom_map(aes(map_id = id), map = positions) +
expand_limits(positions) + ylim(0, 3)

# Now some examples with real maps
if (require(maps)) {



140 geom_path

crimes <- data.frame(state = tolower(rownames(USArrests)), USArrests)

# Equivalent to crimes %>% tidyr::pivot_longer(Murder:Rape)
vars <- lapply(names(crimes)[-1], function(j) {

data.frame(state = crimes$state, variable = j, value = crimes[[j]])
})
crimes_long <- do.call("rbind", vars)

states_map <- map_data("state")

# without geospatial coordinate system, the resulting plot
# looks weird
ggplot(crimes, aes(map_id = state)) +

geom_map(aes(fill = Murder), map = states_map) +
expand_limits(x = states_map$long, y = states_map$lat)

# in combination with `coord_sf()` we get an appropriate result
ggplot(crimes, aes(map_id = state)) +

geom_map(aes(fill = Murder), map = states_map) +
# crs = 5070 is a Conus Albers projection for North America,
# see: https://epsg.io/5070
# default_crs = 4326 tells coord_sf() that the input map data
# are in longitude-latitude format
coord_sf(

crs = 5070, default_crs = 4326,
xlim = c(-125, -70), ylim = c(25, 52)

)

ggplot(crimes_long, aes(map_id = state)) +
geom_map(aes(fill = value), map = states_map) +
coord_sf(

crs = 5070, default_crs = 4326,
xlim = c(-125, -70), ylim = c(25, 52)

) +
facet_wrap(~variable)

}

geom_path Connect observations

Description

geom_path() connects the observations in the order in which they appear in the data. geom_line()
connects them in order of the variable on the x axis. geom_step() creates a stairstep plot, high-
lighting exactly when changes occur. The group aesthetic determines which cases are connected
together.



geom_path 141

Usage

geom_path(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
lineend = "butt",
linejoin = "round",
linemitre = 10,
arrow = NULL,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

geom_line(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
na.rm = FALSE,
orientation = NA,
show.legend = NA,
inherit.aes = TRUE,
...

)

geom_step(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
direction = "hv",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
...

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().



142 geom_path

A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

stat The statistical transformation to use on the data for this layer. When using a
geom_*() function to construct a layer, the stat argument can be used the over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

• A Stat ggproto subclass, for example StatCount.
• A string naming the stat. To give the stat as a string, strip the function name

of the stat_ prefix. For example, to use stat_count(), give the stat as
"count".

• For more information and other ways to specify the stat, see the layer stat
documentation.

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

• The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

• A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

• For more information and other ways to specify the position, see the layer
position documentation.

... Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through
.... Unknown arguments that are not part of the 4 categories below are ignored.

• Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red" or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

• When constructing a layer using a stat_*() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area", outline.type = "both"). The
geom’s documentation lists which parameters it can accept.

• Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density", adjust = 0.5). The
stat’s documentation lists which parameters it can accept.



geom_path 143

• The key_glyph argument of layer() may also be passed on through ....
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

lineend Line end style (round, butt, square).

linejoin Line join style (round, mitre, bevel).

linemitre Line mitre limit (number greater than 1).

arrow Arrow specification, as created by grid::arrow().

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

orientation The orientation of the layer. The default (NA) automatically determines the ori-
entation from the aesthetic mapping. In the rare event that this fails it can be
given explicitly by setting orientation to either "x" or "y". See the Orienta-
tion section for more detail.

direction direction of stairs: ’vh’ for vertical then horizontal, ’hv’ for horizontal then
vertical, or ’mid’ for step half-way between adjacent x-values.

Details

An alternative parameterisation is geom_segment(), where each line corresponds to a single case
which provides the start and end coordinates.

Orientation

This geom treats each axis differently and, thus, can thus have two orientations. Often the orienta-
tion is easy to deduce from a combination of the given mappings and the types of positional scales
in use. Thus, ggplot2 will by default try to guess which orientation the layer should have. Under
rare circumstances, the orientation is ambiguous and guessing may fail. In that case the orientation
can be specified directly using the orientation parameter, which can be either "x" or "y". The
value gives the axis that the geom should run along, "x" being the default orientation you would
expect for the geom.

Aesthetics

geom_path() understands the following aesthetics (required aesthetics are in bold):

• x

• y

• alpha

• colour

• group



144 geom_path

• linetype

• linewidth

Learn more about setting these aesthetics in vignette("ggplot2-specs").

Missing value handling

geom_path(), geom_line(), and geom_step() handle NA as follows:

• If an NA occurs in the middle of a line, it breaks the line. No warning is shown, regardless of
whether na.rm is TRUE or FALSE.

• If an NA occurs at the start or the end of the line and na.rm is FALSE (default), the NA is removed
with a warning.

• If an NA occurs at the start or the end of the line and na.rm is TRUE, the NA is removed silently,
without warning.

See Also

geom_polygon(): Filled paths (polygons); geom_segment(): Line segments

Examples

# geom_line() is suitable for time series
ggplot(economics, aes(date, unemploy)) + geom_line()
ggplot(economics_long, aes(date, value01, colour = variable)) +

geom_line()

# You can get a timeseries that run vertically by setting the orientation
ggplot(economics, aes(unemploy, date)) + geom_line(orientation = "y")

# geom_step() is useful when you want to highlight exactly when
# the y value changes
recent <- economics[economics$date > as.Date("2013-01-01"), ]
ggplot(recent, aes(date, unemploy)) + geom_line()
ggplot(recent, aes(date, unemploy)) + geom_step()

# geom_path lets you explore how two variables are related over time,
# e.g. unemployment and personal savings rate
m <- ggplot(economics, aes(unemploy/pop, psavert))
m + geom_path()
m + geom_path(aes(colour = as.numeric(date)))

# Changing parameters ----------------------------------------------
ggplot(economics, aes(date, unemploy)) +

geom_line(colour = "red")

# Use the arrow parameter to add an arrow to the line
# See ?arrow for more details
c <- ggplot(economics, aes(x = date, y = pop))
c + geom_line(arrow = arrow())
c + geom_line(



geom_point 145

arrow = arrow(angle = 15, ends = "both", type = "closed")
)

# Control line join parameters
df <- data.frame(x = 1:3, y = c(4, 1, 9))
base <- ggplot(df, aes(x, y))
base + geom_path(linewidth = 10)
base + geom_path(linewidth = 10, lineend = "round")
base + geom_path(linewidth = 10, linejoin = "mitre", lineend = "butt")

# You can use NAs to break the line.
df <- data.frame(x = 1:5, y = c(1, 2, NA, 4, 5))
ggplot(df, aes(x, y)) + geom_point() + geom_line()

# Setting line type vs colour/size
# Line type needs to be applied to a line as a whole, so it can
# not be used with colour or size that vary across a line
x <- seq(0.01, .99, length.out = 100)
df <- data.frame(

x = rep(x, 2),
y = c(qlogis(x), 2 * qlogis(x)),
group = rep(c("a","b"),
each = 100)

)
p <- ggplot(df, aes(x=x, y=y, group=group))
# These work
p + geom_line(linetype = 2)
p + geom_line(aes(colour = group), linetype = 2)
p + geom_line(aes(colour = x))
# But this doesn't
should_stop(p + geom_line(aes(colour = x), linetype=2))

geom_point Points

Description

The point geom is used to create scatterplots. The scatterplot is most useful for displaying the rela-
tionship between two continuous variables. It can be used to compare one continuous and one cat-
egorical variable, or two categorical variables, but a variation like geom_jitter(), geom_count(),
or geom_bin_2d() is usually more appropriate. A bubblechart is a scatterplot with a third variable
mapped to the size of points.

Usage

geom_point(
mapping = NULL,
data = NULL,



146 geom_point

stat = "identity",
position = "identity",
...,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

stat The statistical transformation to use on the data for this layer. When using a
geom_*() function to construct a layer, the stat argument can be used the over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

• A Stat ggproto subclass, for example StatCount.
• A string naming the stat. To give the stat as a string, strip the function name

of the stat_ prefix. For example, to use stat_count(), give the stat as
"count".

• For more information and other ways to specify the stat, see the layer stat
documentation.

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

• The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

• A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

• For more information and other ways to specify the position, see the layer
position documentation.

... Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through
.... Unknown arguments that are not part of the 4 categories below are ignored.



geom_point 147

• Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red" or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

• When constructing a layer using a stat_*() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area", outline.type = "both"). The
geom’s documentation lists which parameters it can accept.

• Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density", adjust = 0.5). The
stat’s documentation lists which parameters it can accept.

• The key_glyph argument of layer() may also be passed on through ....
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

Overplotting

The biggest potential problem with a scatterplot is overplotting: whenever you have more than a few
points, points may be plotted on top of one another. This can severely distort the visual appearance
of the plot. There is no one solution to this problem, but there are some techniques that can help. You
can add additional information with geom_smooth(), geom_quantile() or geom_density_2d().
If you have few unique x values, geom_boxplot() may also be useful.

Alternatively, you can summarise the number of points at each location and display that in some
way, using geom_count(), geom_hex(), or geom_density2d().

Another technique is to make the points transparent (e.g. geom_point(alpha = 0.05)) or very
small (e.g. geom_point(shape = ".")).

Aesthetics

geom_point() understands the following aesthetics (required aesthetics are in bold):

• x

• y

• alpha



148 geom_point

• colour

• fill

• group

• shape

• size

• stroke

Learn more about setting these aesthetics in vignette("ggplot2-specs").

Examples

p <- ggplot(mtcars, aes(wt, mpg))
p + geom_point()

# Add aesthetic mappings
p + geom_point(aes(colour = factor(cyl)))
p + geom_point(aes(shape = factor(cyl)))
# A "bubblechart":
p + geom_point(aes(size = qsec))

# Set aesthetics to fixed value
ggplot(mtcars, aes(wt, mpg)) + geom_point(colour = "red", size = 3)

# Varying alpha is useful for large datasets
d <- ggplot(diamonds, aes(carat, price))
d + geom_point(alpha = 1/10)
d + geom_point(alpha = 1/20)
d + geom_point(alpha = 1/100)

# For shapes that have a border (like 21), you can colour the inside and
# outside separately. Use the stroke aesthetic to modify the width of the
# border
ggplot(mtcars, aes(wt, mpg)) +

geom_point(shape = 21, colour = "black", fill = "white", size = 5, stroke = 5)

# You can create interesting shapes by layering multiple points of
# different sizes
p <- ggplot(mtcars, aes(mpg, wt, shape = factor(cyl)))
p +

geom_point(aes(colour = factor(cyl)), size = 4) +
geom_point(colour = "grey90", size = 1.5)

p +
geom_point(colour = "black", size = 4.5) +
geom_point(colour = "pink", size = 4) +
geom_point(aes(shape = factor(cyl)))

# geom_point warns when missing values have been dropped from the data set
# and not plotted, you can turn this off by setting na.rm = TRUE



geom_polygon 149

set.seed(1)
mtcars2 <- transform(mtcars, mpg = ifelse(runif(32) < 0.2, NA, mpg))
ggplot(mtcars2, aes(wt, mpg)) +

geom_point()
ggplot(mtcars2, aes(wt, mpg)) +

geom_point(na.rm = TRUE)

geom_polygon Polygons

Description

Polygons are very similar to paths (as drawn by geom_path()) except that the start and end points
are connected and the inside is coloured by fill. The group aesthetic determines which cases
are connected together into a polygon. From R 3.6 and onwards it is possible to draw polygons
with holes by providing a subgroup aesthetic that differentiates the outer ring points from those
describing holes in the polygon.

Usage

geom_polygon(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
rule = "evenodd",
...,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).



150 geom_polygon

stat The statistical transformation to use on the data for this layer. When using a
geom_*() function to construct a layer, the stat argument can be used the over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

• A Stat ggproto subclass, for example StatCount.
• A string naming the stat. To give the stat as a string, strip the function name

of the stat_ prefix. For example, to use stat_count(), give the stat as
"count".

• For more information and other ways to specify the stat, see the layer stat
documentation.

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

• The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

• A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

• For more information and other ways to specify the position, see the layer
position documentation.

rule Either "evenodd" or "winding". If polygons with holes are being drawn (us-
ing the subgroup aesthetic) this argument defines how the hole coordinates are
interpreted. See the examples in grid::pathGrob() for an explanation.

... Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through
.... Unknown arguments that are not part of the 4 categories below are ignored.

• Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red" or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

• When constructing a layer using a stat_*() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area", outline.type = "both"). The
geom’s documentation lists which parameters it can accept.

• Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density", adjust = 0.5). The
stat’s documentation lists which parameters it can accept.

• The key_glyph argument of layer() may also be passed on through ....
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.



geom_polygon 151

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

Aesthetics

geom_polygon() understands the following aesthetics (required aesthetics are in bold):

• x

• y

• alpha

• colour

• fill

• group

• linetype

• linewidth

• subgroup

Learn more about setting these aesthetics in vignette("ggplot2-specs").

See Also

geom_path() for an unfilled polygon, geom_ribbon() for a polygon anchored on the x-axis

Examples

# When using geom_polygon, you will typically need two data frames:
# one contains the coordinates of each polygon (positions), and the
# other the values associated with each polygon (values). An id
# variable links the two together

ids <- factor(c("1.1", "2.1", "1.2", "2.2", "1.3", "2.3"))

values <- data.frame(
id = ids,
value = c(3, 3.1, 3.1, 3.2, 3.15, 3.5)

)

positions <- data.frame(
id = rep(ids, each = 4),
x = c(2, 1, 1.1, 2.2, 1, 0, 0.3, 1.1, 2.2, 1.1, 1.2, 2.5, 1.1, 0.3,
0.5, 1.2, 2.5, 1.2, 1.3, 2.7, 1.2, 0.5, 0.6, 1.3),
y = c(-0.5, 0, 1, 0.5, 0, 0.5, 1.5, 1, 0.5, 1, 2.1, 1.7, 1, 1.5,



152 geom_qq_line

2.2, 2.1, 1.7, 2.1, 3.2, 2.8, 2.1, 2.2, 3.3, 3.2)
)

# Currently we need to manually merge the two together
datapoly <- merge(values, positions, by = c("id"))

p <- ggplot(datapoly, aes(x = x, y = y)) +
geom_polygon(aes(fill = value, group = id))

p

# Which seems like a lot of work, but then it's easy to add on
# other features in this coordinate system, e.g.:

set.seed(1)
stream <- data.frame(

x = cumsum(runif(50, max = 0.1)),
y = cumsum(runif(50,max = 0.1))

)

p + geom_line(data = stream, colour = "grey30", linewidth = 5)

# And if the positions are in longitude and latitude, you can use
# coord_map to produce different map projections.

if (packageVersion("grid") >= "3.6") {
# As of R version 3.6 geom_polygon() supports polygons with holes
# Use the subgroup aesthetic to differentiate holes from the main polygon

holes <- do.call(rbind, lapply(split(datapoly, datapoly$id), function(df) {
df$x <- df$x + 0.5 * (mean(df$x) - df$x)
df$y <- df$y + 0.5 * (mean(df$y) - df$y)
df

}))
datapoly$subid <- 1L
holes$subid <- 2L
datapoly <- rbind(datapoly, holes)

p <- ggplot(datapoly, aes(x = x, y = y)) +
geom_polygon(aes(fill = value, group = id, subgroup = subid))

p
}

geom_qq_line A quantile-quantile plot

Description

geom_qq() and stat_qq() produce quantile-quantile plots. geom_qq_line() and stat_qq_line()
compute the slope and intercept of the line connecting the points at specified quartiles of the theo-
retical and sample distributions.



geom_qq_line 153

Usage

geom_qq_line(
mapping = NULL,
data = NULL,
geom = "path",
position = "identity",
...,
distribution = stats::qnorm,
dparams = list(),
line.p = c(0.25, 0.75),
fullrange = FALSE,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

stat_qq_line(
mapping = NULL,
data = NULL,
geom = "path",
position = "identity",
...,
distribution = stats::qnorm,
dparams = list(),
line.p = c(0.25, 0.75),
fullrange = FALSE,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

geom_qq(
mapping = NULL,
data = NULL,
geom = "point",
position = "identity",
...,
distribution = stats::qnorm,
dparams = list(),
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

stat_qq(
mapping = NULL,
data = NULL,
geom = "point",



154 geom_qq_line

position = "identity",
...,
distribution = stats::qnorm,
dparams = list(),
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

geom The geometric object to use to display the data for this layer. When using a
stat_*() function to construct a layer, the geom argument can be used to over-
ride the default coupling between stats and geoms. The geom argument accepts
the following:

• A Geom ggproto subclass, for example GeomPoint.
• A string naming the geom. To give the geom as a string, strip the function

name of the geom_ prefix. For example, to use geom_point(), give the
geom as "point".

• For more information and other ways to specify the geom, see the layer
geom documentation.

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

• The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

• A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

• For more information and other ways to specify the position, see the layer
position documentation.

... Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through
.... Unknown arguments that are not part of the 4 categories below are ignored.



geom_qq_line 155

• Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red" or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

• When constructing a layer using a stat_*() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area", outline.type = "both"). The
geom’s documentation lists which parameters it can accept.

• Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density", adjust = 0.5). The
stat’s documentation lists which parameters it can accept.

• The key_glyph argument of layer() may also be passed on through ....
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

distribution Distribution function to use, if x not specified

dparams Additional parameters passed on to distribution function.

line.p Vector of quantiles to use when fitting the Q-Q line, defaults defaults to c(.25,
.75).

fullrange Should the q-q line span the full range of the plot, or just the data

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

Aesthetics

stat_qq() understands the following aesthetics (required aesthetics are in bold):

• sample

• group

• x

• y

Learn more about setting these aesthetics in vignette("ggplot2-specs").

stat_qq_line() understands the following aesthetics (required aesthetics are in bold):

• sample

• group



156 geom_qq_line

• x

• y

Learn more about setting these aesthetics in vignette("ggplot2-specs").

Computed variables

These are calculated by the ’stat’ part of layers and can be accessed with delayed evaluation.
Variables computed by stat_qq():

• after_stat(sample)
Sample quantiles.

• after_stat(theoretical)
Theoretical quantiles.

Variables computed by stat_qq_line():

• after_stat(x)
x-coordinates of the endpoints of the line segment connecting the points at the chosen quantiles
of the theoretical and the sample distributions.

• after_stat(y)
y-coordinates of the endpoints.

Examples

df <- data.frame(y = rt(200, df = 5))
p <- ggplot(df, aes(sample = y))
p + stat_qq() + stat_qq_line()

# Use fitdistr from MASS to estimate distribution params
params <- as.list(MASS::fitdistr(df$y, "t")$estimate)
ggplot(df, aes(sample = y)) +

stat_qq(distribution = qt, dparams = params["df"]) +
stat_qq_line(distribution = qt, dparams = params["df"])

# Using to explore the distribution of a variable
ggplot(mtcars, aes(sample = mpg)) +

stat_qq() +
stat_qq_line()

ggplot(mtcars, aes(sample = mpg, colour = factor(cyl))) +
stat_qq() +
stat_qq_line()



geom_quantile 157

geom_quantile Quantile regression

Description

This fits a quantile regression to the data and draws the fitted quantiles with lines. This is as a
continuous analogue to geom_boxplot().

Usage

geom_quantile(
mapping = NULL,
data = NULL,
stat = "quantile",
position = "identity",
...,
lineend = "butt",
linejoin = "round",
linemitre = 10,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

stat_quantile(
mapping = NULL,
data = NULL,
geom = "quantile",
position = "identity",
...,
quantiles = c(0.25, 0.5, 0.75),
formula = NULL,
method = "rq",
method.args = list(),
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().



158 geom_quantile

A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

• The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

• A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

• For more information and other ways to specify the position, see the layer
position documentation.

... Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through
.... Unknown arguments that are not part of the 4 categories below are ignored.

• Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red" or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

• When constructing a layer using a stat_*() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area", outline.type = "both"). The
geom’s documentation lists which parameters it can accept.

• Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density", adjust = 0.5). The
stat’s documentation lists which parameters it can accept.

• The key_glyph argument of layer() may also be passed on through ....
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

lineend Line end style (round, butt, square).
linejoin Line join style (round, mitre, bevel).
linemitre Line mitre limit (number greater than 1).
na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,

missing values are silently removed.
show.legend logical. Should this layer be included in the legends? NA, the default, includes if

any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.



geom_quantile 159

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

geom, stat Use to override the default connection between geom_quantile() and stat_quantile().
For more information about overriding these connections, see how the stat and
geom arguments work.

quantiles conditional quantiles of y to calculate and display

formula formula relating y variables to x variables

method Quantile regression method to use. Available options are "rq" (for quantreg::rq())
and "rqss" (for quantreg::rqss()).

method.args List of additional arguments passed on to the modelling function defined by
method.

Aesthetics

geom_quantile() understands the following aesthetics (required aesthetics are in bold):

• x

• y

• alpha

• colour

• group

• linetype

• linewidth

• weight

Learn more about setting these aesthetics in vignette("ggplot2-specs").

Computed variables

These are calculated by the ’stat’ part of layers and can be accessed with delayed evaluation.

• after_stat(quantile)
Quantile of distribution.

Examples

m <-
ggplot(mpg, aes(displ, 1 / hwy)) +
geom_point()

m + geom_quantile()
m + geom_quantile(quantiles = 0.5)
q10 <- seq(0.05, 0.95, by = 0.05)
m + geom_quantile(quantiles = q10)

# You can also use rqss to fit smooth quantiles
m + geom_quantile(method = "rqss")



160 geom_raster

# Note that rqss doesn't pick a smoothing constant automatically, so
# you'll need to tweak lambda yourself
m + geom_quantile(method = "rqss", lambda = 0.1)

# Set aesthetics to fixed value
m + geom_quantile(colour = "red", linewidth = 2, alpha = 0.5)

geom_raster Rectangles

Description

geom_rect() and geom_tile() do the same thing, but are parameterised differently: geom_rect()
uses the locations of the four corners (xmin, xmax, ymin and ymax), while geom_tile() uses the
center of the tile and its size (x, y, width, height). geom_raster() is a high performance special
case for when all the tiles are the same size, and no pattern fills are applied.

Usage

geom_raster(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
hjust = 0.5,
vjust = 0.5,
interpolate = FALSE,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

geom_rect(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
linejoin = "mitre",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

geom_tile(
mapping = NULL,



geom_raster 161

data = NULL,
stat = "identity",
position = "identity",
...,
linejoin = "mitre",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

stat The statistical transformation to use on the data for this layer. When using a
geom_*() function to construct a layer, the stat argument can be used the over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

• A Stat ggproto subclass, for example StatCount.
• A string naming the stat. To give the stat as a string, strip the function name

of the stat_ prefix. For example, to use stat_count(), give the stat as
"count".

• For more information and other ways to specify the stat, see the layer stat
documentation.

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

• The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

• A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

• For more information and other ways to specify the position, see the layer
position documentation.

... Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the



162 geom_raster

position argument, or aesthetics that are required can not be passed through
.... Unknown arguments that are not part of the 4 categories below are ignored.

• Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red" or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

• When constructing a layer using a stat_*() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area", outline.type = "both"). The
geom’s documentation lists which parameters it can accept.

• Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density", adjust = 0.5). The
stat’s documentation lists which parameters it can accept.

• The key_glyph argument of layer() may also be passed on through ....
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

hjust, vjust horizontal and vertical justification of the grob. Each justification value should
be a number between 0 and 1. Defaults to 0.5 for both, centering each pixel over
its data location.

interpolate If TRUE interpolate linearly, if FALSE (the default) don’t interpolate.

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

linejoin Line join style (round, mitre, bevel).

Details

geom_rect() and geom_tile()’s respond differently to scale transformations due to their param-
eterisation. In geom_rect(), the scale transformation is applied to the corners of the rectangles.
In geom_tile(), the transformation is applied only to the centres and its size is determined after
transformation.

Aesthetics

geom_tile() understands the following aesthetics (required aesthetics are in bold):

• x

• y



geom_raster 163

• alpha

• colour

• fill

• group

• height

• linetype

• linewidth

• width

Note that geom_raster() ignores colour.

Learn more about setting these aesthetics in vignette("ggplot2-specs").

Examples

# The most common use for rectangles is to draw a surface. You always want
# to use geom_raster here because it's so much faster, and produces
# smaller output when saving to PDF
ggplot(faithfuld, aes(waiting, eruptions)) +
geom_raster(aes(fill = density))

# Interpolation smooths the surface & is most helpful when rendering images.
ggplot(faithfuld, aes(waiting, eruptions)) +
geom_raster(aes(fill = density), interpolate = TRUE)

# If you want to draw arbitrary rectangles, use geom_tile() or geom_rect()
df <- data.frame(

x = rep(c(2, 5, 7, 9, 12), 2),
y = rep(c(1, 2), each = 5),
z = factor(rep(1:5, each = 2)),
w = rep(diff(c(0, 4, 6, 8, 10, 14)), 2)

)
ggplot(df, aes(x, y)) +

geom_tile(aes(fill = z), colour = "grey50")
ggplot(df, aes(x, y, width = w)) +

geom_tile(aes(fill = z), colour = "grey50")
ggplot(df, aes(xmin = x - w / 2, xmax = x + w / 2, ymin = y, ymax = y + 1)) +

geom_rect(aes(fill = z), colour = "grey50")

# Justification controls where the cells are anchored
df <- expand.grid(x = 0:5, y = 0:5)
set.seed(1)
df$z <- runif(nrow(df))
# default is compatible with geom_tile()
ggplot(df, aes(x, y, fill = z)) +

geom_raster()
# zero padding
ggplot(df, aes(x, y, fill = z)) +

geom_raster(hjust = 0, vjust = 0)



164 geom_ribbon

# Inspired by the image-density plots of Ken Knoblauch
cars <- ggplot(mtcars, aes(mpg, factor(cyl)))
cars + geom_point()
cars + stat_bin_2d(aes(fill = after_stat(count)), binwidth = c(3,1))
cars + stat_bin_2d(aes(fill = after_stat(density)), binwidth = c(3,1))

cars +
stat_density(
aes(fill = after_stat(density)),
geom = "raster",
position = "identity"
)

cars +
stat_density(
aes(fill = after_stat(count)),
geom = "raster",
position = "identity"

)

geom_ribbon Ribbons and area plots

Description

For each x value, geom_ribbon() displays a y interval defined by ymin and ymax. geom_area() is
a special case of geom_ribbon(), where the ymin is fixed to 0 and y is used instead of ymax.

Usage

geom_ribbon(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
na.rm = FALSE,
orientation = NA,
show.legend = NA,
inherit.aes = TRUE,
outline.type = "both"

)

geom_area(
mapping = NULL,
data = NULL,
stat = "align",
position = "stack",



geom_ribbon 165

na.rm = FALSE,
orientation = NA,
show.legend = NA,
inherit.aes = TRUE,
...,
outline.type = "upper"

)

stat_align(
mapping = NULL,
data = NULL,
geom = "area",
position = "identity",
...,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

stat The statistical transformation to use on the data for this layer. When using a
geom_*() function to construct a layer, the stat argument can be used the over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

• A Stat ggproto subclass, for example StatCount.
• A string naming the stat. To give the stat as a string, strip the function name

of the stat_ prefix. For example, to use stat_count(), give the stat as
"count".

• For more information and other ways to specify the stat, see the layer stat
documentation.

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:



166 geom_ribbon

• The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

• A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

• For more information and other ways to specify the position, see the layer
position documentation.

... Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through
.... Unknown arguments that are not part of the 4 categories below are ignored.

• Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red" or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

• When constructing a layer using a stat_*() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area", outline.type = "both"). The
geom’s documentation lists which parameters it can accept.

• Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density", adjust = 0.5). The
stat’s documentation lists which parameters it can accept.

• The key_glyph argument of layer() may also be passed on through ....
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

orientation The orientation of the layer. The default (NA) automatically determines the ori-
entation from the aesthetic mapping. In the rare event that this fails it can be
given explicitly by setting orientation to either "x" or "y". See the Orienta-
tion section for more detail.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

outline.type Type of the outline of the area; "both" draws both the upper and lower lines,
"upper"/"lower" draws the respective lines only. "full" draws a closed poly-
gon around the area.



geom_ribbon 167

geom The geometric object to use to display the data for this layer. When using a
stat_*() function to construct a layer, the geom argument can be used to over-
ride the default coupling between stats and geoms. The geom argument accepts
the following:

• A Geom ggproto subclass, for example GeomPoint.
• A string naming the geom. To give the geom as a string, strip the function

name of the geom_ prefix. For example, to use geom_point(), give the
geom as "point".

• For more information and other ways to specify the geom, see the layer
geom documentation.

Details

An area plot is the continuous analogue of a stacked bar chart (see geom_bar()), and can be used to
show how composition of the whole varies over the range of x. Choosing the order in which different
components is stacked is very important, as it becomes increasing hard to see the individual pattern
as you move up the stack. See position_stack() for the details of stacking algorithm. To facilitate
stacking, the default stat = "align" interpolates groups to a common set of x-coordinates. To turn
off this interpolation, stat = "identity" can be used instead.

Orientation

This geom treats each axis differently and, thus, can thus have two orientations. Often the orienta-
tion is easy to deduce from a combination of the given mappings and the types of positional scales
in use. Thus, ggplot2 will by default try to guess which orientation the layer should have. Under
rare circumstances, the orientation is ambiguous and guessing may fail. In that case the orientation
can be specified directly using the orientation parameter, which can be either "x" or "y". The
value gives the axis that the geom should run along, "x" being the default orientation you would
expect for the geom.

Aesthetics

geom_ribbon() understands the following aesthetics (required aesthetics are in bold):

• x or y

• ymin or xmin

• ymax or xmax

• alpha

• colour

• fill

• group

• linetype

• linewidth

Learn more about setting these aesthetics in vignette("ggplot2-specs").



168 geom_rug

See Also

geom_bar() for discrete intervals (bars), geom_linerange() for discrete intervals (lines), geom_polygon()
for general polygons

Examples

# Generate data
huron <- data.frame(year = 1875:1972, level = as.vector(LakeHuron))
h <- ggplot(huron, aes(year))

h + geom_ribbon(aes(ymin=0, ymax=level))
h + geom_area(aes(y = level))

# Orientation cannot be deduced by mapping, so must be given explicitly for
# flipped orientation
h + geom_area(aes(x = level, y = year), orientation = "y")

# Add aesthetic mappings
h +

geom_ribbon(aes(ymin = level - 1, ymax = level + 1), fill = "grey70") +
geom_line(aes(y = level))

# The underlying stat_align() takes care of unaligned data points
df <- data.frame(

g = c("a", "a", "a", "b", "b", "b"),
x = c(1, 3, 5, 2, 4, 6),
y = c(2, 5, 1, 3, 6, 7)

)
a <- ggplot(df, aes(x, y, fill = g)) +

geom_area()

# Two groups have points on different X values.
a + geom_point(size = 8) + facet_grid(g ~ .)

# stat_align() interpolates and aligns the value so that the areas can stack
# properly.
a + geom_point(stat = "align", position = "stack", size = 8)

# To turn off the alignment, the stat can be set to "identity"
ggplot(df, aes(x, y, fill = g)) +

geom_area(stat = "identity")

geom_rug Rug plots in the margins

Description

A rug plot is a compact visualisation designed to supplement a 2d display with the two 1d marginal
distributions. Rug plots display individual cases so are best used with smaller datasets.



geom_rug 169

Usage

geom_rug(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
outside = FALSE,
sides = "bl",
length = unit(0.03, "npc"),
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

stat The statistical transformation to use on the data for this layer. When using a
geom_*() function to construct a layer, the stat argument can be used the over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

• A Stat ggproto subclass, for example StatCount.
• A string naming the stat. To give the stat as a string, strip the function name

of the stat_ prefix. For example, to use stat_count(), give the stat as
"count".

• For more information and other ways to specify the stat, see the layer stat
documentation.

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

• The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

• A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".



170 geom_rug

• For more information and other ways to specify the position, see the layer
position documentation.

... Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through
.... Unknown arguments that are not part of the 4 categories below are ignored.

• Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red" or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

• When constructing a layer using a stat_*() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area", outline.type = "both"). The
geom’s documentation lists which parameters it can accept.

• Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density", adjust = 0.5). The
stat’s documentation lists which parameters it can accept.

• The key_glyph argument of layer() may also be passed on through ....
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

outside logical that controls whether to move the rug tassels outside of the plot area.
Default is off (FALSE). You will also need to use coord_cartesian(clip =
"off"). When set to TRUE, also consider changing the sides argument to "tr".
See examples.

sides A string that controls which sides of the plot the rugs appear on. It can be set to
a string containing any of "trbl", for top, right, bottom, and left.

length A grid::unit() object that sets the length of the rug lines. Use scale expansion
to avoid overplotting of data.

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

Details

By default, the rug lines are drawn with a length that corresponds to 3% of the total plot size. Since
the default scale expansion of for continuous variables is 5% at both ends of the scale, the rug will
not overlap with any data points under the default settings.



geom_rug 171

Aesthetics

geom_rug() understands the following aesthetics (required aesthetics are in bold):

• alpha

• colour

• group

• linetype

• linewidth

• x

• y

Learn more about setting these aesthetics in vignette("ggplot2-specs").

Examples

p <- ggplot(mtcars, aes(wt, mpg)) +
geom_point()

p
p + geom_rug()
p + geom_rug(sides="b") # Rug on bottom only
p + geom_rug(sides="trbl") # All four sides

# Use jittering to avoid overplotting for smaller datasets
ggplot(mpg, aes(displ, cty)) +

geom_point() +
geom_rug()

ggplot(mpg, aes(displ, cty)) +
geom_jitter() +
geom_rug(alpha = 1/2, position = "jitter")

# move the rug tassels to outside the plot
# remember to set clip = "off".
p +

geom_rug(outside = TRUE) +
coord_cartesian(clip = "off")

# set sides to top right, and then move the margins
p +

geom_rug(outside = TRUE, sides = "tr") +
coord_cartesian(clip = "off") +
theme(plot.margin = margin(1, 1, 1, 1, "cm"))

# increase the line length and
# expand axis to avoid overplotting
p +

geom_rug(length = unit(0.05, "npc")) +
scale_y_continuous(expand = c(0.1, 0.1))



172 geom_segment

geom_segment Line segments and curves

Description

geom_segment() draws a straight line between points (x, y) and (xend, yend). geom_curve()
draws a curved line. See the underlying drawing function grid::curveGrob() for the parameters
that control the curve.

Usage

geom_segment(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
arrow = NULL,
arrow.fill = NULL,
lineend = "butt",
linejoin = "round",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

geom_curve(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
curvature = 0.5,
angle = 90,
ncp = 5,
arrow = NULL,
arrow.fill = NULL,
lineend = "butt",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.



geom_segment 173

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

stat The statistical transformation to use on the data for this layer. When using a
geom_*() function to construct a layer, the stat argument can be used the over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

• A Stat ggproto subclass, for example StatCount.
• A string naming the stat. To give the stat as a string, strip the function name

of the stat_ prefix. For example, to use stat_count(), give the stat as
"count".

• For more information and other ways to specify the stat, see the layer stat
documentation.

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

• The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

• A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

• For more information and other ways to specify the position, see the layer
position documentation.

... Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through
.... Unknown arguments that are not part of the 4 categories below are ignored.

• Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red" or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

• When constructing a layer using a stat_*() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area", outline.type = "both"). The
geom’s documentation lists which parameters it can accept.

• Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.



174 geom_segment

An example of this is geom_area(stat = "density", adjust = 0.5). The
stat’s documentation lists which parameters it can accept.

• The key_glyph argument of layer() may also be passed on through ....
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

arrow specification for arrow heads, as created by grid::arrow().
arrow.fill fill colour to use for the arrow head (if closed). NULL means use colour aes-

thetic.
lineend Line end style (round, butt, square).
linejoin Line join style (round, mitre, bevel).
na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,

missing values are silently removed.
show.legend logical. Should this layer be included in the legends? NA, the default, includes if

any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

curvature A numeric value giving the amount of curvature. Negative values produce left-
hand curves, positive values produce right-hand curves, and zero produces a
straight line.

angle A numeric value between 0 and 180, giving an amount to skew the control points
of the curve. Values less than 90 skew the curve towards the start point and
values greater than 90 skew the curve towards the end point.

ncp The number of control points used to draw the curve. More control points creates
a smoother curve.

Details

Both geoms draw a single segment/curve per case. See geom_path() if you need to connect points
across multiple cases.

Aesthetics

geom_segment() understands the following aesthetics (required aesthetics are in bold):

• x

• y

• xend or yend
• alpha

• colour

• group

• linetype

• linewidth

Learn more about setting these aesthetics in vignette("ggplot2-specs").



geom_segment 175

See Also

geom_path() and geom_line() for multi- segment lines and paths.

geom_spoke() for a segment parameterised by a location (x, y), and an angle and radius.

Examples

b <- ggplot(mtcars, aes(wt, mpg)) +
geom_point()

df <- data.frame(x1 = 2.62, x2 = 3.57, y1 = 21.0, y2 = 15.0)
b +
geom_curve(aes(x = x1, y = y1, xend = x2, yend = y2, colour = "curve"), data = df) +
geom_segment(aes(x = x1, y = y1, xend = x2, yend = y2, colour = "segment"), data = df)

b + geom_curve(aes(x = x1, y = y1, xend = x2, yend = y2), data = df, curvature = -0.2)
b + geom_curve(aes(x = x1, y = y1, xend = x2, yend = y2), data = df, curvature = 1)
b + geom_curve(

aes(x = x1, y = y1, xend = x2, yend = y2),
data = df,
arrow = arrow(length = unit(0.03, "npc"))

)

if (requireNamespace('maps', quietly = TRUE)) {
ggplot(seals, aes(long, lat)) +

geom_segment(aes(xend = long + delta_long, yend = lat + delta_lat),
arrow = arrow(length = unit(0.1,"cm"))) +

borders("state")
}

# Use lineend and linejoin to change the style of the segments
df2 <- expand.grid(

lineend = c('round', 'butt', 'square'),
linejoin = c('round', 'mitre', 'bevel'),
stringsAsFactors = FALSE

)
df2 <- data.frame(df2, y = 1:9)
ggplot(df2, aes(x = 1, y = y, xend = 2, yend = y, label = paste(lineend, linejoin))) +

geom_segment(
lineend = df2$lineend, linejoin = df2$linejoin,
size = 3, arrow = arrow(length = unit(0.3, "inches"))

) +
geom_text(hjust = 'outside', nudge_x = -0.2) +
xlim(0.5, 2)

# You can also use geom_segment to recreate plot(type = "h") :
set.seed(1)
counts <- as.data.frame(table(x = rpois(100,5)))
counts$x <- as.numeric(as.character(counts$x))
with(counts, plot(x, Freq, type = "h", lwd = 10))

ggplot(counts, aes(x, Freq)) +
geom_segment(aes(xend = x, yend = 0), linewidth = 10, lineend = "butt")



176 geom_smooth

geom_smooth Smoothed conditional means

Description

Aids the eye in seeing patterns in the presence of overplotting. geom_smooth() and stat_smooth()
are effectively aliases: they both use the same arguments. Use stat_smooth() if you want to
display the results with a non-standard geom.

Usage

geom_smooth(
mapping = NULL,
data = NULL,
stat = "smooth",
position = "identity",
...,
method = NULL,
formula = NULL,
se = TRUE,
na.rm = FALSE,
orientation = NA,
show.legend = NA,
inherit.aes = TRUE

)

stat_smooth(
mapping = NULL,
data = NULL,
geom = "smooth",
position = "identity",
...,
method = NULL,
formula = NULL,
se = TRUE,
n = 80,
span = 0.75,
fullrange = FALSE,
xseq = NULL,
level = 0.95,
method.args = list(),
na.rm = FALSE,
orientation = NA,
show.legend = NA,
inherit.aes = TRUE

)



geom_smooth 177

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

• The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

• A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

• For more information and other ways to specify the position, see the layer
position documentation.

... Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through
.... Unknown arguments that are not part of the 4 categories below are ignored.

• Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red" or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

• When constructing a layer using a stat_*() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area", outline.type = "both"). The
geom’s documentation lists which parameters it can accept.

• Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density", adjust = 0.5). The
stat’s documentation lists which parameters it can accept.

• The key_glyph argument of layer() may also be passed on through ....
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.



178 geom_smooth

method Smoothing method (function) to use, accepts either NULL or a character vector,
e.g. "lm", "glm", "gam", "loess" or a function, e.g. MASS::rlm or mgcv::gam,
stats::lm, or stats::loess. "auto" is also accepted for backwards compat-
ibility. It is equivalent to NULL.
For method = NULL the smoothing method is chosen based on the size of the
largest group (across all panels). stats::loess() is used for less than 1,000
observations; otherwise mgcv::gam() is used with formula = y ~ s(x, bs = "cs")
with method = "REML". Somewhat anecdotally, loess gives a better appearance,
but is O(N2) in memory, so does not work for larger datasets.
If you have fewer than 1,000 observations but want to use the same gam() model
that method = NULL would use, then set method = "gam", formula = y ~ s(x, bs = "cs").

formula Formula to use in smoothing function, eg. y ~ x, y ~ poly(x, 2), y ~ log(x).
NULL by default, in which case method = NULL implies formula = y ~ x when
there are fewer than 1,000 observations and formula = y ~ s(x, bs = "cs") oth-
erwise.

se Display confidence interval around smooth? (TRUE by default, see level to
control.)

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

orientation The orientation of the layer. The default (NA) automatically determines the ori-
entation from the aesthetic mapping. In the rare event that this fails it can be
given explicitly by setting orientation to either "x" or "y". See the Orienta-
tion section for more detail.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

geom, stat Use to override the default connection between geom_smooth() and stat_smooth().
For more information about overriding these connections, see how the stat and
geom arguments work.

n Number of points at which to evaluate smoother.
span Controls the amount of smoothing for the default loess smoother. Smaller num-

bers produce wigglier lines, larger numbers produce smoother lines. Only used
with loess, i.e. when method = "loess", or when method = NULL (the default)
and there are fewer than 1,000 observations.

fullrange If TRUE, the smoothing line gets expanded to the range of the plot, potentially be-
yond the data. This does not extend the line into any additional padding created
by expansion.

xseq A numeric vector of values at which the smoother is evaluated. When NULL
(default), xseq is internally evaluated as a sequence of n equally spaced points
for continuous data.

level Level of confidence interval to use (0.95 by default).
method.args List of additional arguments passed on to the modelling function defined by

method.



geom_smooth 179

Details

Calculation is performed by the (currently undocumented) predictdf() generic and its methods.
For most methods the standard error bounds are computed using the predict() method – the ex-
ceptions are loess(), which uses a t-based approximation, and glm(), where the normal confidence
interval is constructed on the link scale and then back-transformed to the response scale.

Orientation

This geom treats each axis differently and, thus, can thus have two orientations. Often the orienta-
tion is easy to deduce from a combination of the given mappings and the types of positional scales
in use. Thus, ggplot2 will by default try to guess which orientation the layer should have. Under
rare circumstances, the orientation is ambiguous and guessing may fail. In that case the orientation
can be specified directly using the orientation parameter, which can be either "x" or "y". The
value gives the axis that the geom should run along, "x" being the default orientation you would
expect for the geom.

Aesthetics

geom_smooth() understands the following aesthetics (required aesthetics are in bold):

• x

• y

• alpha

• colour

• fill

• group

• linetype

• linewidth

• weight

• ymax

• ymin

Learn more about setting these aesthetics in vignette("ggplot2-specs").

Computed variables

These are calculated by the ’stat’ part of layers and can be accessed with delayed evaluation.
stat_smooth() provides the following variables, some of which depend on the orientation:

• after_stat(y) or after_stat(x)
Predicted value.

• after_stat(ymin) or after_stat(xmin)
Lower pointwise confidence interval around the mean.

• after_stat(ymax) or after_stat(xmax)
Upper pointwise confidence interval around the mean.

• after_stat(se)
Standard error.



180 geom_smooth

See Also

See individual modelling functions for more details: lm() for linear smooths, glm() for generalised
linear smooths, and loess() for local smooths.

Examples

ggplot(mpg, aes(displ, hwy)) +
geom_point() +
geom_smooth()

# If you need the fitting to be done along the y-axis set the orientation
ggplot(mpg, aes(displ, hwy)) +

geom_point() +
geom_smooth(orientation = "y")

# Use span to control the "wiggliness" of the default loess smoother.
# The span is the fraction of points used to fit each local regression:
# small numbers make a wigglier curve, larger numbers make a smoother curve.
ggplot(mpg, aes(displ, hwy)) +

geom_point() +
geom_smooth(span = 0.3)

# Instead of a loess smooth, you can use any other modelling function:
ggplot(mpg, aes(displ, hwy)) +

geom_point() +
geom_smooth(method = lm, se = FALSE)

ggplot(mpg, aes(displ, hwy)) +
geom_point() +
geom_smooth(method = lm, formula = y ~ splines::bs(x, 3), se = FALSE)

# Smooths are automatically fit to each group (defined by categorical
# aesthetics or the group aesthetic) and for each facet.

ggplot(mpg, aes(displ, hwy, colour = class)) +
geom_point() +
geom_smooth(se = FALSE, method = lm)

ggplot(mpg, aes(displ, hwy)) +
geom_point() +
geom_smooth(span = 0.8) +
facet_wrap(~drv)

binomial_smooth <- function(...) {
geom_smooth(method = "glm", method.args = list(family = "binomial"), ...)

}
# To fit a logistic regression, you need to coerce the values to
# a numeric vector lying between 0 and 1.
ggplot(rpart::kyphosis, aes(Age, Kyphosis)) +

geom_jitter(height = 0.05) +
binomial_smooth()



geom_spoke 181

ggplot(rpart::kyphosis, aes(Age, as.numeric(Kyphosis) - 1)) +
geom_jitter(height = 0.05) +
binomial_smooth()

ggplot(rpart::kyphosis, aes(Age, as.numeric(Kyphosis) - 1)) +
geom_jitter(height = 0.05) +
binomial_smooth(formula = y ~ splines::ns(x, 2))

# But in this case, it's probably better to fit the model yourself
# so you can exercise more control and see whether or not it's a good model.

geom_spoke Line segments parameterised by location, direction and distance

Description

This is a polar parameterisation of geom_segment(). It is useful when you have variables that
describe direction and distance. The angles start from east and increase counterclockwise.

Usage

geom_spoke(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).



182 geom_spoke

stat The statistical transformation to use on the data for this layer. When using a
geom_*() function to construct a layer, the stat argument can be used the over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

• A Stat ggproto subclass, for example StatCount.
• A string naming the stat. To give the stat as a string, strip the function name

of the stat_ prefix. For example, to use stat_count(), give the stat as
"count".

• For more information and other ways to specify the stat, see the layer stat
documentation.

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

• The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

• A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

• For more information and other ways to specify the position, see the layer
position documentation.

... Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through
.... Unknown arguments that are not part of the 4 categories below are ignored.

• Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red" or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

• When constructing a layer using a stat_*() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area", outline.type = "both"). The
geom’s documentation lists which parameters it can accept.

• Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density", adjust = 0.5). The
stat’s documentation lists which parameters it can accept.

• The key_glyph argument of layer() may also be passed on through ....
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.



geom_violin 183

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

Aesthetics

geom_spoke() understands the following aesthetics (required aesthetics are in bold):

• x

• y

• angle

• radius

• alpha

• colour

• group

• linetype

• linewidth

Learn more about setting these aesthetics in vignette("ggplot2-specs").

Examples

df <- expand.grid(x = 1:10, y=1:10)

set.seed(1)
df$angle <- runif(100, 0, 2*pi)
df$speed <- runif(100, 0, sqrt(0.1 * df$x))

ggplot(df, aes(x, y)) +
geom_point() +
geom_spoke(aes(angle = angle), radius = 0.5)

ggplot(df, aes(x, y)) +
geom_point() +
geom_spoke(aes(angle = angle, radius = speed))

geom_violin Violin plot

Description

A violin plot is a compact display of a continuous distribution. It is a blend of geom_boxplot() and
geom_density(): a violin plot is a mirrored density plot displayed in the same way as a boxplot.



184 geom_violin

Usage

geom_violin(
mapping = NULL,
data = NULL,
stat = "ydensity",
position = "dodge",
...,
draw_quantiles = NULL,
trim = TRUE,
bounds = c(-Inf, Inf),
scale = "area",
na.rm = FALSE,
orientation = NA,
show.legend = NA,
inherit.aes = TRUE

)

stat_ydensity(
mapping = NULL,
data = NULL,
geom = "violin",
position = "dodge",
...,
bw = "nrd0",
adjust = 1,
kernel = "gaussian",
trim = TRUE,
scale = "area",
drop = TRUE,
na.rm = FALSE,
orientation = NA,
show.legend = NA,
inherit.aes = TRUE,
bounds = c(-Inf, Inf)

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.



geom_violin 185

A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

• The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

• A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

• For more information and other ways to specify the position, see the layer
position documentation.

... Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through
.... Unknown arguments that are not part of the 4 categories below are ignored.

• Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red" or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

• When constructing a layer using a stat_*() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area", outline.type = "both"). The
geom’s documentation lists which parameters it can accept.

• Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density", adjust = 0.5). The
stat’s documentation lists which parameters it can accept.

• The key_glyph argument of layer() may also be passed on through ....
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

draw_quantiles If not(NULL) (default), draw horizontal lines at the given quantiles of the density
estimate.

trim If TRUE (default), trim the tails of the violins to the range of the data. If FALSE,
don’t trim the tails.

bounds Known lower and upper bounds for estimated data. Default c(-Inf, Inf)
means that there are no (finite) bounds. If any bound is finite, boundary ef-
fect of default density estimation will be corrected by reflecting tails outside
bounds around their closest edge. Data points outside of bounds are removed
with a warning.

scale if "area" (default), all violins have the same area (before trimming the tails).
If "count", areas are scaled proportionally to the number of observations. If
"width", all violins have the same maximum width.



186 geom_violin

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

orientation The orientation of the layer. The default (NA) automatically determines the ori-
entation from the aesthetic mapping. In the rare event that this fails it can be
given explicitly by setting orientation to either "x" or "y". See the Orienta-
tion section for more detail.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

geom, stat Use to override the default connection between geom_violin() and stat_ydensity().
For more information about overriding these connections, see how the stat and
geom arguments work.

bw The smoothing bandwidth to be used. If numeric, the standard deviation of
the smoothing kernel. If character, a rule to choose the bandwidth, as listed in
stats::bw.nrd(). Note that automatic calculation of the bandwidth does not
take weights into account.

adjust A multiplicate bandwidth adjustment. This makes it possible to adjust the band-
width while still using the a bandwidth estimator. For example, adjust = 1/2
means use half of the default bandwidth.

kernel Kernel. See list of available kernels in density().

drop Whether to discard groups with less than 2 observations (TRUE, default) or keep
such groups for position adjustment purposes (FALSE).

Orientation

This geom treats each axis differently and, thus, can thus have two orientations. Often the orienta-
tion is easy to deduce from a combination of the given mappings and the types of positional scales
in use. Thus, ggplot2 will by default try to guess which orientation the layer should have. Under
rare circumstances, the orientation is ambiguous and guessing may fail. In that case the orientation
can be specified directly using the orientation parameter, which can be either "x" or "y". The
value gives the axis that the geom should run along, "x" being the default orientation you would
expect for the geom.

Aesthetics

geom_violin() understands the following aesthetics (required aesthetics are in bold):

• x

• y

• alpha

• colour

• fill



geom_violin 187

• group

• linetype

• linewidth

• weight

Learn more about setting these aesthetics in vignette("ggplot2-specs").

Computed variables

These are calculated by the ’stat’ part of layers and can be accessed with delayed evaluation.

• after_stat(density)
Density estimate.

• after_stat(scaled)
Density estimate, scaled to a maximum of 1.

• after_stat(count)
Density * number of points - probably useless for violin plots.

• after_stat(violinwidth)
Density scaled for the violin plot, according to area, counts or to a constant maximum width.

• after_stat(n)
Number of points.

• after_stat(width)
Width of violin bounding box.

References

Hintze, J. L., Nelson, R. D. (1998) Violin Plots: A Box Plot-Density Trace Synergism. The Ameri-
can Statistician 52, 181-184.

See Also

geom_violin() for examples, and stat_density() for examples with data along the x axis.

Examples

p <- ggplot(mtcars, aes(factor(cyl), mpg))
p + geom_violin()

# Orientation follows the discrete axis
ggplot(mtcars, aes(mpg, factor(cyl))) +

geom_violin()

p + geom_violin() + geom_jitter(height = 0, width = 0.1)

# Scale maximum width proportional to sample size:
p + geom_violin(scale = "count")

# Scale maximum width to 1 for all violins:



188 get_alt_text

p + geom_violin(scale = "width")

# Default is to trim violins to the range of the data. To disable:
p + geom_violin(trim = FALSE)

# Use a smaller bandwidth for closer density fit (default is 1).
p + geom_violin(adjust = .5)

# Add aesthetic mappings
# Note that violins are automatically dodged when any aesthetic is
# a factor
p + geom_violin(aes(fill = cyl))
p + geom_violin(aes(fill = factor(cyl)))
p + geom_violin(aes(fill = factor(vs)))
p + geom_violin(aes(fill = factor(am)))

# Set aesthetics to fixed value
p + geom_violin(fill = "grey80", colour = "#3366FF")

# Show quartiles
p + geom_violin(draw_quantiles = c(0.25, 0.5, 0.75))

# Scales vs. coordinate transforms -------
if (require("ggplot2movies")) {
# Scale transformations occur before the density statistics are computed.
# Coordinate transformations occur afterwards. Observe the effect on the
# number of outliers.
m <- ggplot(movies, aes(y = votes, x = rating, group = cut_width(rating, 0.5)))
m + geom_violin()
m +

geom_violin() +
scale_y_log10()

m +
geom_violin() +
coord_trans(y = "log10")

m +
geom_violin() +
scale_y_log10() + coord_trans(y = "log10")

# Violin plots with continuous x:
# Use the group aesthetic to group observations in violins
ggplot(movies, aes(year, budget)) +

geom_violin()
ggplot(movies, aes(year, budget)) +

geom_violin(aes(group = cut_width(year, 10)), scale = "width")
}

get_alt_text Extract alt text from a plot



ggplot 189

Description

This function returns a text that can be used as alt-text in webpages etc. Currently it will use the
alt label, added with + labs(alt = <...>), or a return an empty string, but in the future it might
try to generate an alt text from the information stored in the plot.

Usage

get_alt_text(p, ...)

Arguments

p a ggplot object

... Currently ignored

Value

A text string

Examples

p <- ggplot(mpg, aes(displ, hwy)) +
geom_point()

# Returns an empty string
get_alt_text(p)

# A user provided alt text
p <- p + labs(

alt = paste("A scatterplot showing the negative correlation between engine",
"displacement as a function of highway miles per gallon")

)

get_alt_text(p)

ggplot Create a new ggplot

Description

ggplot() initializes a ggplot object. It can be used to declare the input data frame for a graphic and
to specify the set of plot aesthetics intended to be common throughout all subsequent layers unless
specifically overridden.

Usage

ggplot(data = NULL, mapping = aes(), ..., environment = parent.frame())



190 ggplot

Arguments

data Default dataset to use for plot. If not already a data.frame, will be converted to
one by fortify(). If not specified, must be supplied in each layer added to the
plot.

mapping Default list of aesthetic mappings to use for plot. If not specified, must be sup-
plied in each layer added to the plot.

... Other arguments passed on to methods. Not currently used.

environment [Deprecated] Used prior to tidy evaluation.

Details

ggplot() is used to construct the initial plot object, and is almost always followed by a plus sign
(+) to add components to the plot.

There are three common patterns used to invoke ggplot():

• ggplot(data = df, mapping = aes(x, y, other aesthetics))

• ggplot(data = df)

• ggplot()

The first pattern is recommended if all layers use the same data and the same set of aesthetics,
although this method can also be used when adding a layer using data from another data frame.

The second pattern specifies the default data frame to use for the plot, but no aesthetics are defined
up front. This is useful when one data frame is used predominantly for the plot, but the aesthetics
vary from one layer to another.

The third pattern initializes a skeleton ggplot object, which is fleshed out as layers are added. This
is useful when multiple data frames are used to produce different layers, as is often the case in
complex graphics.

The data = and mapping = specifications in the arguments are optional (and are often omitted in
practice), so long as the data and the mapping values are passed into the function in the right order.
In the examples below, however, they are left in place for clarity.

See Also

The first steps chapter of the online ggplot2 book.

Examples

# Create a data frame with some sample data, then create a data frame
# containing the mean value for each group in the sample data.
set.seed(1)

sample_df <- data.frame(
group = factor(rep(letters[1:3], each = 10)),
value = rnorm(30)

)

group_means_df <- setNames(

https://ggplot2-book.org/getting-started


ggproto 191

aggregate(value ~ group, sample_df, mean),
c("group", "group_mean")

)

# The following three code blocks create the same graphic, each using one
# of the three patterns specified above. In each graphic, the sample data
# are plotted in the first layer and the group means data frame is used to
# plot larger red points on top of the sample data in the second layer.

# Pattern 1
# Both the `data` and `mapping` arguments are passed into the `ggplot()`
# call. Those arguments are omitted in the first `geom_point()` layer
# because they get passed along from the `ggplot()` call. Note that the
# second `geom_point()` layer re-uses the `x = group` aesthetic through
# that mechanism but overrides the y-position aesthetic.
ggplot(data = sample_df, mapping = aes(x = group, y = value)) +

geom_point() +
geom_point(
mapping = aes(y = group_mean), data = group_means_df,
colour = 'red', size = 3

)

# Pattern 2
# Same plot as above, passing only the `data` argument into the `ggplot()`
# call. The `mapping` arguments are now required in each `geom_point()`
# layer because there is no `mapping` argument passed along from the
# `ggplot()` call.
ggplot(data = sample_df) +

geom_point(mapping = aes(x = group, y = value)) +
geom_point(
mapping = aes(x = group, y = group_mean), data = group_means_df,
colour = 'red', size = 3

)

# Pattern 3
# Same plot as above, passing neither the `data` or `mapping` arguments
# into the `ggplot()` call. Both those arguments are now required in
# each `geom_point()` layer. This pattern can be particularly useful when
# creating more complex graphics with many layers using data from multiple
# data frames.
ggplot() +
geom_point(mapping = aes(x = group, y = value), data = sample_df) +
geom_point(

mapping = aes(x = group, y = group_mean), data = group_means_df,
colour = 'red', size = 3

)

ggproto Create a new ggproto object



192 ggproto

Description

Construct a new object with ggproto(), test with is_ggproto(), and access parent methods/fields
with ggproto_parent().

Usage

ggproto(`_class` = NULL, `_inherit` = NULL, ...)

ggproto_parent(parent, self)

Arguments

_class Class name to assign to the object. This is stored as the class attribute of the
object. This is optional: if NULL (the default), no class name will be added to the
object.

_inherit ggproto object to inherit from. If NULL, don’t inherit from any object.

... A list of named members in the ggproto object. These can be functions that
become methods of the class or regular objects.

parent, self Access parent class parent of object self.

Details

ggproto implements a protype based OO system which blurs the lines between classes and instances.
It is inspired by the proto package, but it has some important differences. Notably, it cleanly sup-
ports cross-package inheritance, and has faster performance.

In most cases, creating a new OO system to be used by a single package is not a good idea. How-
ever, it was the least-bad solution for ggplot2 because it required the fewest changes to an already
complex code base.

Calling methods

ggproto methods can take an optional self argument: if it is present, it is a regular method; if it’s
absent, it’s a "static" method (i.e. it doesn’t use any fields).

Imagine you have a ggproto object Adder, which has a method addx = function(self, n) n +
self$x. Then, to call this function, you would use Adder$addx(10) – the self is passed in auto-
matically by the wrapper function. self be located anywhere in the function signature, although
customarily it comes first.

Calling methods in a parent

To explicitly call a methods in a parent, use ggproto_parent(Parent, self).

Working with ggproto classes

The ggproto objects constructed are build on top of environments, which has some ramifications.
Environments do not follow the ’copy on modify’ semantics one might be accustomed to in regular
objects. Instead they have ’modify in place’ semantics.

https://adv-r.hadley.nz/names-values.html#env-modify


ggsave 193

See Also

The ggproto introduction section of the online ggplot2 book.

Examples

Adder <- ggproto("Adder",
x = 0,
add = function(self, n) {
self$x <- self$x + n
self$x

}
)

is_ggproto(Adder)

Adder$add(10)
Adder$add(10)

Doubler <- ggproto("Doubler", Adder,
add = function(self, n) {

ggproto_parent(Adder, self)$add(n * 2)
}

)
Doubler$x
Doubler$add(10)

ggsave Save a ggplot (or other grid object) with sensible defaults

Description

ggsave() is a convenient function for saving a plot. It defaults to saving the last plot that you
displayed, using the size of the current graphics device. It also guesses the type of graphics device
from the extension.

Usage

ggsave(
filename,
plot = last_plot(),
device = NULL,
path = NULL,
scale = 1,
width = NA,
height = NA,
units = c("in", "cm", "mm", "px"),
dpi = 300,
limitsize = TRUE,
bg = NULL,

https://ggplot2-book.org/internals#sec-ggproto


194 ggsave

create.dir = FALSE,
...

)

Arguments

filename File name to create on disk.

plot Plot to save, defaults to last plot displayed.

device Device to use. Can either be a device function (e.g. png), or one of "eps", "ps",
"tex" (pictex), "pdf", "jpeg", "tiff", "png", "bmp", "svg" or "wmf" (windows
only). If NULL (default), the device is guessed based on the filename extension.

path Path of the directory to save plot to: path and filename are combined to create
the fully qualified file name. Defaults to the working directory.

scale Multiplicative scaling factor.

width, height Plot size in units expressed by the units argument. If not supplied, uses the size
of the current graphics device.

units One of the following units in which the width and height arguments are ex-
pressed: "in", "cm", "mm" or "px".

dpi Plot resolution. Also accepts a string input: "retina" (320), "print" (300), or
"screen" (72). Applies only to raster output types.

limitsize When TRUE (the default), ggsave() will not save images larger than 50x50
inches, to prevent the common error of specifying dimensions in pixels.

bg Background colour. If NULL, uses the plot.background fill value from the plot
theme.

create.dir Whether to create new directories if a non-existing directory is specified in the
filename or path (TRUE) or return an error (FALSE, default). If FALSE and run
in an interactive session, a prompt will appear asking to create a new directory
when necessary.

... Other arguments passed on to the graphics device function, as specified by
device.

Details

Note: Filenames with page numbers can be generated by including a C integer format expres-
sion, such as %03d (as in the default file name for most R graphics devices, see e.g. png()). Thus,
filename = "figure%03d.png" will produce successive filenames figure001.png, figure002.png,
figure003.png, etc. To write a filename containing the % sign, use %%. For example, filename =
"figure-100%%.png" will produce the filename figure-100%.png.

Saving images without ggsave()

In most cases ggsave() is the simplest way to save your plot, but sometimes you may wish to save
the plot by writing directly to a graphics device. To do this, you can open a regular R graphics
device such as png() or pdf(), print the plot, and then close the device using dev.off(). This
technique is illustrated in the examples section.



ggtheme 195

See Also

The saving section of the online ggplot2 book.

Examples

## Not run:
ggplot(mtcars, aes(mpg, wt)) +

geom_point()

# here, the device is inferred from the filename extension
ggsave("mtcars.pdf")
ggsave("mtcars.png")

# setting dimensions of the plot
ggsave("mtcars.pdf", width = 4, height = 4)
ggsave("mtcars.pdf", width = 20, height = 20, units = "cm")

# passing device-specific arguments to '...'
ggsave("mtcars.pdf", colormodel = "cmyk")

# delete files with base::unlink()
unlink("mtcars.pdf")
unlink("mtcars.png")

# specify device when saving to a file with unknown extension
# (for example a server supplied temporary file)
file <- tempfile()
ggsave(file, device = "pdf")
unlink(file)

# save plot to file without using ggsave
p <-

ggplot(mtcars, aes(mpg, wt)) +
geom_point()

png("mtcars.png")
print(p)
dev.off()

## End(Not run)

ggtheme Complete themes

Description

These are complete themes which control all non-data display. Use theme() if you just need to
tweak the display of an existing theme.

https://ggplot2-book.org/themes#sec-saving


196 ggtheme

Usage

theme_grey(
base_size = 11,
base_family = "",
base_line_size = base_size/22,
base_rect_size = base_size/22

)

theme_gray(
base_size = 11,
base_family = "",
base_line_size = base_size/22,
base_rect_size = base_size/22

)

theme_bw(
base_size = 11,
base_family = "",
base_line_size = base_size/22,
base_rect_size = base_size/22

)

theme_linedraw(
base_size = 11,
base_family = "",
base_line_size = base_size/22,
base_rect_size = base_size/22

)

theme_light(
base_size = 11,
base_family = "",
base_line_size = base_size/22,
base_rect_size = base_size/22

)

theme_dark(
base_size = 11,
base_family = "",
base_line_size = base_size/22,
base_rect_size = base_size/22

)

theme_minimal(
base_size = 11,
base_family = "",
base_line_size = base_size/22,
base_rect_size = base_size/22



ggtheme 197

)

theme_classic(
base_size = 11,
base_family = "",
base_line_size = base_size/22,
base_rect_size = base_size/22

)

theme_void(
base_size = 11,
base_family = "",
base_line_size = base_size/22,
base_rect_size = base_size/22

)

theme_test(
base_size = 11,
base_family = "",
base_line_size = base_size/22,
base_rect_size = base_size/22

)

Arguments

base_size base font size, given in pts.
base_family base font family
base_line_size base size for line elements
base_rect_size base size for rect elements

Details

theme_gray() The signature ggplot2 theme with a grey background and white gridlines, designed
to put the data forward yet make comparisons easy.

theme_bw() The classic dark-on-light ggplot2 theme. May work better for presentations displayed
with a projector.

theme_linedraw() A theme with only black lines of various widths on white backgrounds, remi-
niscent of a line drawing. Serves a purpose similar to theme_bw(). Note that this theme has
some very thin lines (« 1 pt) which some journals may refuse.

theme_light() A theme similar to theme_linedraw() but with light grey lines and axes, to direct
more attention towards the data.

theme_dark() The dark cousin of theme_light(), with similar line sizes but a dark background.
Useful to make thin coloured lines pop out.

theme_minimal() A minimalistic theme with no background annotations.
theme_classic() A classic-looking theme, with x and y axis lines and no gridlines.
theme_void() A completely empty theme.
theme_test() A theme for visual unit tests. It should ideally never change except for new features.



198 guides

See Also

The complete themes section of the online ggplot2 book.

Examples

mtcars2 <- within(mtcars, {
vs <- factor(vs, labels = c("V-shaped", "Straight"))
am <- factor(am, labels = c("Automatic", "Manual"))
cyl <- factor(cyl)
gear <- factor(gear)

})

p1 <- ggplot(mtcars2) +
geom_point(aes(x = wt, y = mpg, colour = gear)) +
labs(
title = "Fuel economy declines as weight increases",
subtitle = "(1973-74)",
caption = "Data from the 1974 Motor Trend US magazine.",
tag = "Figure 1",
x = "Weight (1000 lbs)",
y = "Fuel economy (mpg)",
colour = "Gears"

)

p1 + theme_gray() # the default
p1 + theme_bw()
p1 + theme_linedraw()
p1 + theme_light()
p1 + theme_dark()
p1 + theme_minimal()
p1 + theme_classic()
p1 + theme_void()

# Theme examples with panels

p2 <- p1 + facet_grid(vs ~ am)

p2 + theme_gray() # the default
p2 + theme_bw()
p2 + theme_linedraw()
p2 + theme_light()
p2 + theme_dark()
p2 + theme_minimal()
p2 + theme_classic()
p2 + theme_void()

guides Set guides for each scale

https://ggplot2-book.org/themes#sec-themes


guides 199

Description

Guides for each scale can be set scale-by-scale with the guide argument, or en masse with guides().

Usage

guides(...)

Arguments

... List of scale name-guide pairs. The guide can either be a string (i.e. "color-
bar" or "legend"), or a call to a guide function (i.e. guide_colourbar() or
guide_legend()) specifying additional arguments.

Value

A list containing the mapping between scale and guide.

See Also

Other guides: guide_bins(), guide_colourbar(), guide_coloursteps(), guide_legend()

Examples

# ggplot object

dat <- data.frame(x = 1:5, y = 1:5, p = 1:5, q = factor(1:5),
r = factor(1:5))

p <-
ggplot(dat, aes(x, y, colour = p, size = q, shape = r)) +
geom_point()

# without guide specification
p

# Show colorbar guide for colour.
# All these examples below have a same effect.

p + guides(colour = "colorbar", size = "legend", shape = "legend")
p + guides(colour = guide_colorbar(), size = guide_legend(),

shape = guide_legend())
p +
scale_colour_continuous(guide = "colorbar") +
scale_size_discrete(guide = "legend") +
scale_shape(guide = "legend")

# Remove some guides
p + guides(colour = "none")
p + guides(colour = "colorbar",size = "none")

# Guides are integrated where possible



200 guide_axis

p +
guides(
colour = guide_legend("title"),
size = guide_legend("title"),
shape = guide_legend("title")

)
# same as
g <- guide_legend("title")
p + guides(colour = g, size = g, shape = g)

p + theme(legend.position = "bottom")

# position of guides

# Set order for multiple guides
ggplot(mpg, aes(displ, cty)) +

geom_point(aes(size = hwy, colour = cyl, shape = drv)) +
guides(
colour = guide_colourbar(order = 1),
shape = guide_legend(order = 2),
size = guide_legend(order = 3)

)

guide_axis Axis guide

Description

Axis guides are the visual representation of position scales like those created with scale_(x|y)_continuous()
and scale_(x|y)_discrete().

Usage

guide_axis(
title = waiver(),
theme = NULL,
check.overlap = FALSE,
angle = waiver(),
n.dodge = 1,
minor.ticks = FALSE,
cap = "none",
order = 0,
position = waiver()

)



guide_axis 201

Arguments

title A character string or expression indicating a title of guide. If NULL, the title is
not shown. By default (waiver()), the name of the scale object or the name
specified in labs() is used for the title.

theme A theme object to style the guide individually or differently from the plot’s
theme settings. The theme argument in the guide overrides, and is combined
with, the plot’s theme.

check.overlap silently remove overlapping labels, (recursively) prioritizing the first, last, and
middle labels.

angle Compared to setting the angle in theme() / element_text(), this also uses
some heuristics to automatically pick the hjust and vjust that you probably
want. Can be one of the following:

• NULL to take the angles and hjust/vjust directly from the theme.
• waiver() to allow reasonable defaults in special cases.
• A number representing the text angle in degrees.

n.dodge The number of rows (for vertical axes) or columns (for horizontal axes) that
should be used to render the labels. This is useful for displaying labels that
would otherwise overlap.

minor.ticks Whether to draw the minor ticks (TRUE) or not draw minor ticks (FALSE, default).

cap A character to cut the axis line back to the last breaks. Can be "none" (default)
to draw the axis line along the whole panel, or "upper" and "lower" to draw
the axis to the upper or lower break, or "both" to only draw the line in between
the most extreme breaks. TRUE and FALSE are shorthand for "both" and "none"
respectively.

order A positive integer of length 1 that specifies the order of this guide among
multiple guides. This controls in which order guides are merged if there are
multiple guides for the same position. If 0 (default), the order is determined by
a secret algorithm.

position Where this guide should be drawn: one of top, bottom, left, or right.

Examples

# plot with overlapping text
p <- ggplot(mpg, aes(cty * 100, hwy * 100)) +

geom_point() +
facet_wrap(vars(class))

# axis guides can be customized in the scale_* functions or
# using guides()
p + scale_x_continuous(guide = guide_axis(n.dodge = 2))
p + guides(x = guide_axis(angle = 90))

# can also be used to add a duplicate guide
p + guides(x = guide_axis(n.dodge = 2), y.sec = guide_axis())



202 guide_axis_logticks

guide_axis_logticks Axis with logarithmic tick marks

Description

This axis guide replaces the placement of ticks marks at intervals in log10 space.

Usage

guide_axis_logticks(
long = 2.25,
mid = 1.5,
short = 0.75,
prescale.base = NULL,
negative.small = 0.1,
short.theme = element_line(),
expanded = TRUE,
cap = "none",
theme = NULL,
prescale_base = deprecated(),
negative_small = deprecated(),
short_theme = deprecated(),
...

)

Arguments

long, mid, short A grid::unit() object or rel() object setting the (relative) length of the long,
middle and short ticks. Numeric values are interpreted as rel() objects. The
rel() values are used to multiply values of the axis.ticks.length theme set-
ting.

prescale.base Base of logarithm used to transform data manually. The default, NULL, will
use the scale transformation to calculate positions. Only set prescale.base if
the data has already been log-transformed. When using a log-transform in the
position scale or in coord_trans(), keep the default NULL argument.

negative.small When the scale limits include 0 or negative numbers, what should be the smallest
absolute value that is marked with a tick?

short.theme A theme element for customising the display of the shortest ticks. Must be a
line or blank element, and it inherits from the axis.minor.ticks setting for
the relevant position.

expanded Whether the ticks should cover the range after scale expansion (TRUE, default),
or be restricted to the scale limits (FALSE).

cap A character to cut the axis line back to the last breaks. Can be "none" (default)
to draw the axis line along the whole panel, or "upper" and "lower" to draw
the axis to the upper or lower break, or "both" to only draw the line in between



guide_axis_logticks 203

the most extreme breaks. TRUE and FALSE are shorthand for "both" and "none"
respectively.

theme A theme object to style the guide individually or differently from the plot’s
theme settings. The theme argument in the guide overrides, and is combined
with, the plot’s theme.

prescale_base, negative_small, short_theme
[Deprecated]

... Arguments passed on to guide_axis

check.overlap silently remove overlapping labels, (recursively) prioritizing
the first, last, and middle labels.

angle Compared to setting the angle in theme() / element_text(), this also
uses some heuristics to automatically pick the hjust and vjust that you
probably want. Can be one of the following:

• NULL to take the angles and hjust/vjust directly from the theme.
• waiver() to allow reasonable defaults in special cases.
• A number representing the text angle in degrees.

n.dodge The number of rows (for vertical axes) or columns (for horizontal
axes) that should be used to render the labels. This is useful for display-
ing labels that would otherwise overlap.

order A positive integer of length 1 that specifies the order of this guide
among multiple guides. This controls in which order guides are merged
if there are multiple guides for the same position. If 0 (default), the order is
determined by a secret algorithm.

position Where this guide should be drawn: one of top, bottom, left, or right.
title A character string or expression indicating a title of guide. If NULL, the

title is not shown. By default (waiver()), the name of the scale object or
the name specified in labs() is used for the title.

Examples

# A standard plot
p <- ggplot(msleep, aes(bodywt, brainwt)) +

geom_point(na.rm = TRUE)

# The logticks axis works well with log scales
p + scale_x_log10(guide = "axis_logticks") +

scale_y_log10(guide = "axis_logticks")

# Or with log-transformed coordinates
p + coord_trans(x = "log10", y = "log10") +

guides(x = "axis_logticks", y = "axis_logticks")

# When data is transformed manually, one should provide `prescale.base`
# Keep in mind that this axis uses log10 space for placement, not log2
p + aes(x = log2(bodywt), y = log10(brainwt)) +

guides(
x = guide_axis_logticks(prescale.base = 2),
y = guide_axis_logticks(prescale.base = 10)



204 guide_axis_stack

)

# A plot with both positive and negative extremes, pseudo-log transformed
set.seed(42)
p2 <- ggplot(data.frame(x = rcauchy(1000)), aes(x = x)) +

geom_density() +
scale_x_continuous(

breaks = c(-10^(4:0), 0, 10^(0:4)),
transform = "pseudo_log"

)

# The log ticks are mirrored when 0 is included
p2 + guides(x = "axis_logticks")

# To control the tick density around 0, one can set `negative.small`
p2 + guides(x = guide_axis_logticks(negative.small = 1))

guide_axis_stack Stacked axis guides

Description

This guide can stack other position guides that represent position scales, like those created with
scale_(x|y)_continuous() and scale_(x|y)_discrete().

Usage

guide_axis_stack(
first = "axis",
...,
title = waiver(),
theme = NULL,
spacing = NULL,
order = 0,
position = waiver()

)

Arguments

first A position guide given as one of the following:

• A string, for example "axis".
• A call to a guide function, for example guide_axis().

... Additional guides to stack given in the same manner as first.

title A character string or expression indicating a title of guide. If NULL, the title is
not shown. By default (waiver()), the name of the scale object or the name
specified in labs() is used for the title.



guide_axis_theta 205

theme A theme object to style the guide individually or differently from the plot’s
theme settings. The theme argument in the guide overrides, and is combined
with, the plot’s theme.

spacing A unit() objects that determines how far separate guides are spaced apart.

order A positive integer of length 1 that specifies the order of this guide among
multiple guides. This controls in which order guides are merged if there are
multiple guides for the same position. If 0 (default), the order is determined by
a secret algorithm.

position Where this guide should be drawn: one of top, bottom, left, or right.

Details

The first guide will be placed closest to the panel and any subsequent guides provided through
... will follow in the given order.

Examples

#' # A standard plot
p <- ggplot(mpg, aes(displ, hwy)) +

geom_point() +
theme(axis.line = element_line())

# A normal axis first, then a capped axis
p + guides(x = guide_axis_stack("axis", guide_axis(cap = "both")))

guide_axis_theta Angle axis guide

Description

This is a specialised guide used in coord_radial() to represent the theta position scale.

Usage

guide_axis_theta(
title = waiver(),
theme = NULL,
angle = waiver(),
minor.ticks = FALSE,
cap = "none",
order = 0,
position = waiver()

)



206 guide_axis_theta

Arguments

title A character string or expression indicating a title of guide. If NULL, the title is
not shown. By default (waiver()), the name of the scale object or the name
specified in labs() is used for the title.

theme A theme object to style the guide individually or differently from the plot’s
theme settings. The theme argument in the guide overrides, and is combined
with, the plot’s theme.

angle Compared to setting the angle in theme() / element_text(), this also uses
some heuristics to automatically pick the hjust and vjust that you probably
want. Can be one of the following:

• NULL to take the angles and hjust/vjust directly from the theme.

• waiver() to allow reasonable defaults in special cases.

• A number representing the text angle in degrees.

minor.ticks Whether to draw the minor ticks (TRUE) or not draw minor ticks (FALSE, default).

cap A character to cut the axis line back to the last breaks. Can be "none" (default)
to draw the axis line along the whole panel, or "upper" and "lower" to draw
the axis to the upper or lower break, or "both" to only draw the line in between
the most extreme breaks. TRUE and FALSE are shorthand for "both" and "none"
respectively.

order A positive integer of length 1 that specifies the order of this guide among
multiple guides. This controls in which order guides are merged if there are
multiple guides for the same position. If 0 (default), the order is determined by
a secret algorithm.

position Where this guide should be drawn: one of top, bottom, left, or right.

Note

The axis labels in this guide are insensitive to hjust and vjust settings. The distance from the tick
marks to the labels is determined by the largest margin size set in the theme.

Examples

# A plot using coord_radial
p <- ggplot(mtcars, aes(disp, mpg)) +

geom_point() +
coord_radial()

# The `angle` argument can be used to set relative angles
p + guides(theta = guide_axis_theta(angle = 0))



guide_bins 207

guide_bins A binned version of guide_legend

Description

This guide is a version of the guide_legend() guide for binned scales. It differs in that it places
ticks correctly between the keys, and sports a small axis to better show the binning. Like guide_legend()
it can be used for all non-position aesthetics though colour and fill defaults to guide_coloursteps(),
and it will merge aesthetics together into the same guide if they are mapped in the same way.

Usage

guide_bins(
title = waiver(),
theme = NULL,
position = NULL,
direction = NULL,
override.aes = list(),
reverse = FALSE,
order = 0,
show.limits = NULL,
...

)

Arguments

title A character string or expression indicating a title of guide. If NULL, the title is
not shown. By default (waiver()), the name of the scale object or the name
specified in labs() is used for the title.

theme A theme object to style the guide individually or differently from the plot’s
theme settings. The theme argument in the guide overrides, and is combined
with, the plot’s theme.

position A character string indicating where the legend should be placed relative to the
plot panels.

direction A character string indicating the direction of the guide. One of "horizontal" or
"vertical."

override.aes A list specifying aesthetic parameters of legend key. See details and examples.
reverse logical. If TRUE the order of legends is reversed.
order positive integer less than 99 that specifies the order of this guide among multiple

guides. This controls the order in which multiple guides are displayed, not the
contents of the guide itself. If 0 (default), the order is determined by a secret
algorithm.

show.limits Logical. Should the limits of the scale be shown with labels and ticks. Default
is NULL meaning it will take the value from the scale. This argument is ignored
if labels is given as a vector of values. If one or both of the limits is also given
in breaks it will be shown irrespective of the value of show.limits.



208 guide_bins

... ignored.

Value

A guide object

Use with discrete scale

This guide is intended to show binned data and work together with ggplot2’s binning scales. How-
ever, it is sometimes desirable to perform the binning in a separate step, either as part of a stat (e.g.
stat_contour_filled()) or prior to the visualisation. If you want to use this guide for discrete
data the levels must follow the naming scheme implemented by base::cut(). This means that
a bin must be encoded as "(<lower>, <upper>]" with <lower> giving the lower bound of the
bin and <upper> giving the upper bound ("[<lower>, <upper>)" is also accepted). If you use
base::cut() to perform the binning everything should work as expected, if not, some recoding
may be needed.

See Also

Other guides: guide_colourbar(), guide_coloursteps(), guide_legend(), guides()

Examples

p <- ggplot(mtcars) +
geom_point(aes(disp, mpg, size = hp)) +
scale_size_binned()

# Standard look
p

# Remove the axis or style it
p + guides(size = guide_bins(

theme = theme(legend.axis.line = element_blank())
))

p + guides(size = guide_bins(show.limits = TRUE))

my_arrow <- arrow(length = unit(1.5, "mm"), ends = "both")
p + guides(size = guide_bins(

theme = theme(legend.axis.line = element_line(arrow = my_arrow))
))

# Guides are merged together if possible
ggplot(mtcars) +

geom_point(aes(disp, mpg, size = hp, colour = hp)) +
scale_size_binned() +
scale_colour_binned(guide = "bins")



guide_colourbar 209

guide_colourbar Continuous colour bar guide

Description

Colour bar guide shows continuous colour scales mapped onto values. Colour bar is available with
scale_fill and scale_colour.

Usage

guide_colourbar(
title = waiver(),
theme = NULL,
nbin = NULL,
display = "raster",
raster = deprecated(),
alpha = NA,
draw.ulim = TRUE,
draw.llim = TRUE,
position = NULL,
direction = NULL,
reverse = FALSE,
order = 0,
available_aes = c("colour", "color", "fill"),
...

)

guide_colorbar(
title = waiver(),
theme = NULL,
nbin = NULL,
display = "raster",
raster = deprecated(),
alpha = NA,
draw.ulim = TRUE,
draw.llim = TRUE,
position = NULL,
direction = NULL,
reverse = FALSE,
order = 0,
available_aes = c("colour", "color", "fill"),
...

)

Arguments

title A character string or expression indicating a title of guide. If NULL, the title is
not shown. By default (waiver()), the name of the scale object or the name



210 guide_colourbar

specified in labs() is used for the title.

theme A theme object to style the guide individually or differently from the plot’s
theme settings. The theme argument in the guide overrides, and is combined
with, the plot’s theme.

nbin A numeric specifying the number of bins for drawing the colourbar. A smoother
colourbar results from a larger value.

display A string indicating a method to display the colourbar. Can be one of the follow-
ing:

• "raster" to display as a bitmap image.
• "rectangles" to display as a series of rectangles.
• "gradient" to display as a linear gradient.

Note that not all devices are able to render rasters and gradients.

raster [Deprecated] A logical. If TRUE then the colourbar is rendered as a raster object.
If FALSE then the colourbar is rendered as a set of rectangles. Note that not all
graphics devices are capable of rendering raster image.

alpha A numeric between 0 and 1 setting the colour transparency of the bar. Use NA to
preserve the alpha encoded in the colour itself (default).

draw.ulim A logical specifying if the upper limit tick marks should be visible.

draw.llim A logical specifying if the lower limit tick marks should be visible.

position A character string indicating where the legend should be placed relative to the
plot panels.

direction A character string indicating the direction of the guide. One of "horizontal" or
"vertical."

reverse logical. If TRUE the colourbar is reversed. By default, the highest value is on the
top and the lowest value is on the bottom

order positive integer less than 99 that specifies the order of this guide among multiple
guides. This controls the order in which multiple guides are displayed, not the
contents of the guide itself. If 0 (default), the order is determined by a secret
algorithm.

available_aes A vector of character strings listing the aesthetics for which a colourbar can be
drawn.

... ignored.

Details

Guides can be specified in each scale_* or in guides(). guide="legend" in scale_* is syntactic
sugar for guide=guide_legend() (e.g. scale_colour_manual(guide = "legend")). As for how
to specify the guide for each scale in more detail, see guides().

Value

A guide object



guide_colourbar 211

See Also

The continuous legend section of the online ggplot2 book.

Other guides: guide_bins(), guide_coloursteps(), guide_legend(), guides()

Examples

df <- expand.grid(X1 = 1:10, X2 = 1:10)
df$value <- df$X1 * df$X2

p1 <- ggplot(df, aes(X1, X2)) + geom_tile(aes(fill = value))
p2 <- p1 + geom_point(aes(size = value))

# Basic form
p1 + scale_fill_continuous(guide = "colourbar")
p1 + scale_fill_continuous(guide = guide_colourbar())
p1 + guides(fill = guide_colourbar())

# Control styles

# bar size
p1 + guides(fill = guide_colourbar(theme = theme(

legend.key.width = unit(0.5, "lines"),
legend.key.height = unit(10, "lines")

)))

# no label
p1 + guides(fill = guide_colourbar(theme = theme(

legend.text = element_blank()
)))

# no tick marks
p1 + guides(fill = guide_colourbar(theme = theme(

legend.ticks = element_blank()
)))

# label position
p1 + guides(fill = guide_colourbar(theme = theme(

legend.text.position = "left"
)))

# label theme
p1 + guides(fill = guide_colourbar(theme = theme(

legend.text = element_text(colour = "blue", angle = 0)
)))

# small number of bins
p1 + guides(fill = guide_colourbar(nbin = 3))

# large number of bins
p1 + guides(fill = guide_colourbar(nbin = 100))

https://ggplot2-book.org/scales-colour#sec-guide-colourbar


212 guide_coloursteps

# make top- and bottom-most ticks invisible
p1 +

scale_fill_continuous(
limits = c(0,20), breaks = c(0, 5, 10, 15, 20),
guide = guide_colourbar(nbin = 100, draw.ulim = FALSE, draw.llim = FALSE)

)

# guides can be controlled independently
p2 +

scale_fill_continuous(guide = "colourbar") +
scale_size(guide = "legend")

p2 + guides(fill = "colourbar", size = "legend")

p2 +
scale_fill_continuous(guide = guide_colourbar(theme = theme(

legend.direction = "horizontal"
))) +
scale_size(guide = guide_legend(theme = theme(

legend.direction = "vertical"
)))

guide_coloursteps Discretized colourbar guide

Description

This guide is version of guide_colourbar() for binned colour and fill scales. It shows areas
between breaks as a single constant colour instead of the gradient known from the colourbar coun-
terpart.

Usage

guide_coloursteps(
title = waiver(),
theme = NULL,
alpha = NA,
even.steps = TRUE,
show.limits = NULL,
direction = NULL,
reverse = FALSE,
order = 0,
available_aes = c("colour", "color", "fill"),
...

)

guide_colorsteps(
title = waiver(),
theme = NULL,
alpha = NA,



guide_coloursteps 213

even.steps = TRUE,
show.limits = NULL,
direction = NULL,
reverse = FALSE,
order = 0,
available_aes = c("colour", "color", "fill"),
...

)

Arguments

title A character string or expression indicating a title of guide. If NULL, the title is
not shown. By default (waiver()), the name of the scale object or the name
specified in labs() is used for the title.

theme A theme object to style the guide individually or differently from the plot’s
theme settings. The theme argument in the guide overrides, and is combined
with, the plot’s theme.

alpha A numeric between 0 and 1 setting the colour transparency of the bar. Use NA to
preserve the alpha encoded in the colour itself (default).

even.steps Should the rendered size of the bins be equal, or should they be proportional to
their length in the data space? Defaults to TRUE

show.limits Logical. Should the limits of the scale be shown with labels and ticks. Default
is NULL meaning it will take the value from the scale. This argument is ignored
if labels is given as a vector of values. If one or both of the limits is also given
in breaks it will be shown irrespective of the value of show.limits.

direction A character string indicating the direction of the guide. One of "horizontal" or
"vertical."

reverse logical. If TRUE the colourbar is reversed. By default, the highest value is on the
top and the lowest value is on the bottom

order positive integer less than 99 that specifies the order of this guide among multiple
guides. This controls the order in which multiple guides are displayed, not the
contents of the guide itself. If 0 (default), the order is determined by a secret
algorithm.

available_aes A vector of character strings listing the aesthetics for which a colourbar can be
drawn.

... ignored.

Value

A guide object

Use with discrete scale

This guide is intended to show binned data and work together with ggplot2’s binning scales. How-
ever, it is sometimes desirable to perform the binning in a separate step, either as part of a stat (e.g.
stat_contour_filled()) or prior to the visualisation. If you want to use this guide for discrete



214 guide_custom

data the levels must follow the naming scheme implemented by base::cut(). This means that
a bin must be encoded as "(<lower>, <upper>]" with <lower> giving the lower bound of the
bin and <upper> giving the upper bound ("[<lower>, <upper>)" is also accepted). If you use
base::cut() to perform the binning everything should work as expected, if not, some recoding
may be needed.

See Also

The binned legend section of the online ggplot2 book.

Other guides: guide_bins(), guide_colourbar(), guide_legend(), guides()

Examples

df <- expand.grid(X1 = 1:10, X2 = 1:10)
df$value <- df$X1 * df$X2

p <- ggplot(df, aes(X1, X2)) + geom_tile(aes(fill = value))

# Coloursteps guide is the default for binned colour scales
p + scale_fill_binned()

# By default each bin in the guide is the same size irrespectively of how
# their sizes relate in data space
p + scale_fill_binned(breaks = c(10, 25, 50))

# This can be changed with the `even.steps` argument
p + scale_fill_binned(

breaks = c(10, 25, 50),
guide = guide_coloursteps(even.steps = FALSE)

)

# By default the limits is not shown, but this can be changed
p + scale_fill_binned(guide = guide_coloursteps(show.limits = TRUE))

# (can also be set in the scale)
p + scale_fill_binned(show.limits = TRUE)

guide_custom Custom guides

Description

This is a special guide that can be used to display any graphical object (grob) along with the regular
guides. This guide has no associated scale.

https://ggplot2-book.org/scales-colour#sec-guide-coloursteps


guide_custom 215

Usage

guide_custom(
grob,
width = grobWidth(grob),
height = grobHeight(grob),
title = NULL,
theme = NULL,
position = NULL,
order = 0

)

Arguments

grob A grob to display.

width, height The allocated width and height to display the grob, given in grid::unit()s.

title A character string or expression indicating the title of guide. If NULL (default),
no title is shown.

theme A theme object to style the guide individually or differently from the plot’s
theme settings. The theme argument in the guide overrides, and is combined
with, the plot’s theme.

position A character string indicating where the legend should be placed relative to the
plot panels.

order positive integer less than 99 that specifies the order of this guide among multiple
guides. This controls the order in which multiple guides are displayed, not the
contents of the guide itself. If 0 (default), the order is determined by a secret
algorithm.

Examples

# A standard plot
p <- ggplot(mpg, aes(displ, hwy)) +

geom_point()

# Define a graphical object
circle <- grid::circleGrob()

# Rendering a grob as a guide
p + guides(custom = guide_custom(circle, title = "My circle"))

# Controlling the size of the grob defined in relative units
p + guides(custom = guide_custom(

circle, title = "My circle",
width = unit(2, "cm"), height = unit(2, "cm"))

)

# Size of grobs in absolute units is taken directly without the need to
# set these manually
p + guides(custom = guide_custom(

title = "My circle",



216 guide_legend

grob = grid::circleGrob(r = unit(1, "cm"))
))

guide_legend Legend guide

Description

Legend type guide shows key (i.e., geoms) mapped onto values. Legend guides for various scales
are integrated if possible.

Usage

guide_legend(
title = waiver(),
theme = NULL,
position = NULL,
direction = NULL,
override.aes = list(),
nrow = NULL,
ncol = NULL,
reverse = FALSE,
order = 0,
...

)

Arguments

title A character string or expression indicating a title of guide. If NULL, the title is
not shown. By default (waiver()), the name of the scale object or the name
specified in labs() is used for the title.

theme A theme object to style the guide individually or differently from the plot’s
theme settings. The theme argument in the guide overrides, and is combined
with, the plot’s theme.

position A character string indicating where the legend should be placed relative to the
plot panels.

direction A character string indicating the direction of the guide. One of "horizontal" or
"vertical."

override.aes A list specifying aesthetic parameters of legend key. See details and examples.

nrow, ncol The desired number of rows and column of legends respectively.

reverse logical. If TRUE the order of legends is reversed.

order positive integer less than 99 that specifies the order of this guide among multiple
guides. This controls the order in which multiple guides are displayed, not the
contents of the guide itself. If 0 (default), the order is determined by a secret
algorithm.

... ignored.



guide_legend 217

Details

Guides can be specified in each scale_* or in guides(). guide = "legend" in scale_* is syntactic
sugar for guide = guide_legend() (e.g. scale_color_manual(guide = "legend")). As for how
to specify the guide for each scale in more detail, see guides().

See Also

The legends section of the online ggplot2 book.

Other guides: guide_bins(), guide_colourbar(), guide_coloursteps(), guides()

Examples

df <- expand.grid(X1 = 1:10, X2 = 1:10)
df$value <- df$X1 * df$X2

p1 <- ggplot(df, aes(X1, X2)) + geom_tile(aes(fill = value))
p2 <- p1 + geom_point(aes(size = value))

# Basic form
p1 + scale_fill_continuous(guide = guide_legend())

# Control styles

# title position
p1 + guides(fill = guide_legend(

title = "LEFT", theme(legend.title.position = "left")
))

# title text styles via element_text
p1 + guides(fill = guide_legend(theme = theme(

legend.title = element_text(size = 15, face = "italic", colour = "red")
)))

# label position
p1 + guides(fill = guide_legend(theme = theme(

legend.text.position = "left",
legend.text = element_text(hjust = 1)

)))

# label styles
p1 +

scale_fill_continuous(
breaks = c(5, 10, 15),
labels = paste("long", c(5, 10, 15)),
guide = guide_legend(theme = theme(

legend.direction = "horizontal",
legend.title.position = "top",
legend.text.position = "bottom",
legend.text = element_text(hjust = 0.5, vjust = 1, angle = 90)

))
)

https://ggplot2-book.org/scales-colour#sec-guide-legend


218 guide_none

# Set aesthetic of legend key
# very low alpha value make it difficult to see legend key
p3 <- ggplot(mtcars, aes(vs, am, colour = factor(cyl))) +

geom_jitter(alpha = 1/5, width = 0.01, height = 0.01)
p3
# override.aes overwrites the alpha
p3 + guides(colour = guide_legend(override.aes = list(alpha = 1)))

# multiple row/col legends
df <- data.frame(x = 1:20, y = 1:20, color = letters[1:20])
p <- ggplot(df, aes(x, y)) +

geom_point(aes(colour = color))
p + guides(col = guide_legend(nrow = 8))
p + guides(col = guide_legend(ncol = 8))
p + guides(col = guide_legend(nrow = 8, theme = theme(legend.byrow = TRUE)))

# reversed order legend
p + guides(col = guide_legend(reverse = TRUE))

guide_none Empty guide

Description

This guide draws nothing.

Usage

guide_none(title = waiver(), position = waiver())

Arguments

title A character string or expression indicating a title of guide. If NULL, the title is
not shown. By default (waiver()), the name of the scale object or the name
specified in labs() is used for the title.

position Where this guide should be drawn: one of top, bottom, left, or right.



hmisc 219

hmisc A selection of summary functions from Hmisc

Description

These are wrappers around functions from Hmisc designed to make them easier to use with stat_summary().
See the Hmisc documentation for more details:

• Hmisc::smean.cl.boot()

• Hmisc::smean.cl.normal()

• Hmisc::smean.sdl()

• Hmisc::smedian.hilow()

Usage

mean_cl_boot(x, ...)

mean_cl_normal(x, ...)

mean_sdl(x, ...)

median_hilow(x, ...)

Arguments

x a numeric vector

... other arguments passed on to the respective Hmisc function.

Value

A data frame with columns y, ymin, and ymax.

Examples

if (requireNamespace("Hmisc", quietly = TRUE)) {
set.seed(1)
x <- rnorm(100)
mean_cl_boot(x)
mean_cl_normal(x)
mean_sdl(x)
median_hilow(x)
}



220 labeller

labeller Construct labelling specification

Description

This function makes it easy to assign different labellers to different factors. The labeller can be a
function or it can be a named character vectors that will serve as a lookup table.

Usage

labeller(
...,
.rows = NULL,
.cols = NULL,
keep.as.numeric = deprecated(),
.multi_line = TRUE,
.default = label_value

)

Arguments

... Named arguments of the form variable = labeller. Each labeller is passed
to as_labeller() and can be a lookup table, a function taking and returning
character vectors, or simply a labeller function.

.rows, .cols Labeller for a whole margin (either the rows or the columns). It is passed to
as_labeller(). When a margin-wide labeller is set, make sure you don’t men-
tion in ... any variable belonging to the margin.

keep.as.numeric

[Deprecated] All supplied labellers and on-labeller functions should be able to
work with character labels.

.multi_line Whether to display the labels of multiple factors on separate lines. This is passed
to the labeller function.

.default Default labeller for variables not specified. Also used with lookup tables or
non-labeller functions.

Details

In case of functions, if the labeller has class labeller, it is directly applied on the data frame of
labels. Otherwise, it is applied to the columns of the data frame of labels. The data frame is then
processed with the function specified in the .default argument. This is intended to be used with
functions taking a character vector such as Hmisc::capitalize().

Value

A labeller function to supply to facet_grid() or facet_wrap() for the argument labeller.



labeller 221

See Also

as_labeller(), labellers

Examples

p1 <- ggplot(mtcars, aes(x = mpg, y = wt)) + geom_point()

# You can assign different labellers to variables:
p1 + facet_grid(

vs + am ~ gear,
labeller = labeller(vs = label_both, am = label_value)

)

# Or whole margins:
p1 + facet_grid(

vs + am ~ gear,
labeller = labeller(.rows = label_both, .cols = label_value)

)

# You can supply functions operating on strings:
capitalize <- function(string) {

substr(string, 1, 1) <- toupper(substr(string, 1, 1))
string

}
p2 <- ggplot(msleep, aes(x = sleep_total, y = awake)) + geom_point()
p2 + facet_grid(vore ~ conservation, labeller = labeller(vore = capitalize))

# Or use character vectors as lookup tables:
conservation_status <- c(

cd = "Conservation Dependent",
en = "Endangered",
lc = "Least concern",
nt = "Near Threatened",
vu = "Vulnerable",
domesticated = "Domesticated"

)
## Source: http://en.wikipedia.org/wiki/Wikipedia:Conservation_status

p2 + facet_grid(vore ~ conservation, labeller = labeller(
.default = capitalize,
conservation = conservation_status

))

# In the following example, we rename the levels to the long form,
# then apply a wrap labeller to the columns to prevent cropped text
idx <- match(msleep$conservation, names(conservation_status))
msleep$conservation2 <- conservation_status[idx]

p3 <- ggplot(msleep, aes(x = sleep_total, y = awake)) + geom_point()
p3 +

facet_grid(vore ~ conservation2,
labeller = labeller(conservation2 = label_wrap_gen(10))



222 labellers

)

# labeller() is especially useful to act as a global labeller. You
# can set it up once and use it on a range of different plots with
# different facet specifications.

global_labeller <- labeller(
vore = capitalize,
conservation = conservation_status,
conservation2 = label_wrap_gen(10),
.default = label_both

)

p2 + facet_grid(vore ~ conservation, labeller = global_labeller)
p3 + facet_wrap(~conservation2, labeller = global_labeller)

labellers Useful labeller functions

Description

Labeller functions are in charge of formatting the strip labels of facet grids and wraps. Most of
them accept a multi_line argument to control whether multiple factors (defined in formulae such
as ~first + second) should be displayed on a single line separated with commas, or each on their
own line.

Usage

label_value(labels, multi_line = TRUE)

label_both(labels, multi_line = TRUE, sep = ": ")

label_context(labels, multi_line = TRUE, sep = ": ")

label_parsed(labels, multi_line = TRUE)

label_wrap_gen(width = 25, multi_line = TRUE)

Arguments

labels Data frame of labels. Usually contains only one element, but faceting over mul-
tiple factors entails multiple label variables.

multi_line Whether to display the labels of multiple factors on separate lines.

sep String separating variables and values.

width Maximum number of characters before wrapping the strip.



labellers 223

Details

label_value() only displays the value of a factor while label_both() displays both the variable
name and the factor value. label_context() is context-dependent and uses label_value() for
single factor faceting and label_both() when multiple factors are involved. label_wrap_gen()
uses base::strwrap() for line wrapping.

label_parsed() interprets the labels as plotmath expressions. label_bquote() offers a more
flexible way of constructing plotmath expressions. See examples and bquote() for details on the
syntax of the argument.

Writing New Labeller Functions

Note that an easy way to write a labeller function is to transform a function operating on character
vectors with as_labeller().

A labeller function accepts a data frame of labels (character vectors) containing one column for
each factor. Multiple factors occur with formula of the type ~first + second.

The return value must be a rectangular list where each ’row’ characterises a single facet. The list
elements can be either character vectors or lists of plotmath expressions. When multiple elements
are returned, they get displayed on their own new lines (i.e., each facet gets a multi-line strip of
labels).

To illustrate, let’s say your labeller returns a list of two character vectors of length 3. This is a
rectangular list because all elements have the same length. The first facet will get the first elements
of each vector and display each of them on their own line. Then the second facet gets the second
elements of each vector, and so on.

If it’s useful to your labeller, you can retrieve the type attribute of the incoming data frame of
labels. The value of this attribute reflects the kind of strips your labeller is dealing with: "cols"
for columns and "rows" for rows. Note that facet_wrap() has columns by default and rows when
the strips are switched with the switch option. The facet attribute also provides metadata on the
labels. It takes the values "grid" or "wrap".

For compatibility with labeller(), each labeller function must have the labeller S3 class.

See Also

labeller(), as_labeller(), label_bquote()

Examples

mtcars$cyl2 <- factor(mtcars$cyl, labels = c("alpha", "beta", "gamma"))
p <- ggplot(mtcars, aes(wt, mpg)) + geom_point()

# The default is label_value
p + facet_grid(. ~ cyl, labeller = label_value)

# Displaying both the values and the variables
p + facet_grid(. ~ cyl, labeller = label_both)

# Displaying only the values or both the values and variables
# depending on whether multiple factors are facetted over



224 label_bquote

p + facet_grid(am ~ vs+cyl, labeller = label_context)

# Interpreting the labels as plotmath expressions
p + facet_grid(. ~ cyl2)
p + facet_grid(. ~ cyl2, labeller = label_parsed)

label_bquote Label with mathematical expressions

Description

label_bquote() offers a flexible way of labelling facet rows or columns with plotmath expressions.
Backquoted variables will be replaced with their value in the facet.

Usage

label_bquote(rows = NULL, cols = NULL, default)

Arguments

rows Backquoted labelling expression for rows.

cols Backquoted labelling expression for columns.

default Unused, kept for compatibility.

See Also

labellers, labeller(),

Examples

# The variables mentioned in the plotmath expression must be
# backquoted and referred to by their names.
p <- ggplot(mtcars, aes(wt, mpg)) + geom_point()
p + facet_grid(vs ~ ., labeller = label_bquote(alpha ^ .(vs)))
p + facet_grid(. ~ vs, labeller = label_bquote(cols = .(vs) ^ .(vs)))
p + facet_grid(. ~ vs + am, labeller = label_bquote(cols = .(am) ^ .(vs)))



labs 225

labs Modify axis, legend, and plot labels

Description

Good labels are critical for making your plots accessible to a wider audience. Always ensure the
axis and legend labels display the full variable name. Use the plot title and subtitle to explain
the main findings. It’s common to use the caption to provide information about the data source.
tag can be used for adding identification tags to differentiate between multiple plots.

get_labs() retrieves completed labels from a plot.

Usage

labs(
...,
title = waiver(),
subtitle = waiver(),
caption = waiver(),
tag = waiver(),
alt = waiver(),
alt_insight = waiver()

)

xlab(label)

ylab(label)

ggtitle(label, subtitle = waiver())

get_labs(plot = last_plot())

Arguments

... A list of new name-value pairs. The name should be an aesthetic.

title The text for the title.

subtitle The text for the subtitle for the plot which will be displayed below the title.

caption The text for the caption which will be displayed in the bottom-right of the plot
by default.

tag The text for the tag label which will be displayed at the top-left of the plot by
default.

alt, alt_insight
Text used for the generation of alt-text for the plot. See get_alt_text for exam-
ples.

label The title of the respective axis (for xlab() or ylab()) or of the plot (for ggtitle()).

plot A ggplot object



226 layer_geoms

Details

You can also set axis and legend labels in the individual scales (using the first argument, the name).
If you’re changing other scale options, this is recommended.

If a plot already has a title, subtitle, caption, etc., and you want to remove it, you can do so by setting
the respective argument to NULL. For example, if plot p has a subtitle, then p + labs(subtitle =
NULL) will remove the subtitle from the plot.

See Also

The plot and axis titles section of the online ggplot2 book.

Examples

p <- ggplot(mtcars, aes(mpg, wt, colour = cyl)) + geom_point()
p + labs(colour = "Cylinders")
p + labs(x = "New x label")

# The plot title appears at the top-left, with the subtitle
# display in smaller text underneath it
p + labs(title = "New plot title")
p + labs(title = "New plot title", subtitle = "A subtitle")

# The caption appears in the bottom-right, and is often used for
# sources, notes or copyright
p + labs(caption = "(based on data from ...)")

# The plot tag appears at the top-left, and is typically used
# for labelling a subplot with a letter.
p + labs(title = "title", tag = "A")

# If you want to remove a label, set it to NULL.
p +
labs(title = "title") +
labs(title = NULL)

layer_geoms Layer geometry display

Description

In ggplot2, a plot in constructed by adding layers to it. A layer consists of two important parts: the
geometry (geoms), and statistical transformations (stats). The ’geom’ part of a layer is important
because it determines the looks of the data. Geoms determine how something is displayed, not what
is displayed.

https://ggplot2-book.org/annotations#sec-titles


layer_geoms 227

Specifying geoms

There are five ways in which the ’geom’ part of a layer can be specified.

# 1. The geom can have a layer constructor
geom_area()

# 2. A stat can default to a particular geom
stat_density() # has `geom = "area"` as default

# 3. It can be given to a stat as a string
stat_function(geom = "area")

# 4. The ggproto object of a geom can be given
stat_bin(geom = GeomArea)

# 5. It can be given to `layer()` directly
layer(
geom = "area",
stat = "smooth",
position = "identity"

)

Many of these ways are absolutely equivalent. Using stat_density(geom = "line") is identical to
using geom_line(stat = "density"). Note that for layer(), you need to provide the "position"
argument as well. To give geoms as a string, take the function name, and remove the geom_ prefix,
such that geom_point becomes "point".

Some of the more well known geoms that can be used for the geom argument are: "point", "line",
"area", "bar" and "polygon".

Graphical display

A ggplot is build on top of the grid package. This package understands various graphical primitives,
such as points, lines, rectangles and polygons and their positions, as well as graphical attributes,
also termed aesthetics, such as colours, fills, linewidths and linetypes. The job of the geom part of
a layer, is to translate data to grid graphics that can be plotted.

To see how aesthetics are specified, run vignette("ggplot2-specs"). To see what geom uses
what aesthetics, you can find the Aesthetics section in their documentation, for example in ?geom_line.

While almost anything can be represented by polygons if you try hard enough, it is not always
convenient to do so manually. For this reason, the geoms provide abstractions that take most of this
hassle away. geom_ribbon() for example is a special case of geom_polygon(), where two sets of
y-positions have a shared x-position. In turn, geom_area() is a special case of a ribbon, where one
of the two sets of y-positions is set at 0.

# A hassle to build a polygon
my_polygon <- data.frame(
x = c(economics$date, rev(economics$date)),
y = c(economics$uempmed, rev(economics$psavert))



228 layer_geoms

)
ggplot(my_polygon, aes(x, y)) +
geom_polygon()

# More succinctly
ggplot(economics, aes(date)) +
geom_ribbon(aes(ymin = uempmed, ymax = psavert))

In addition to abstraction, geoms sometimes also perform composition. A boxplot is a particular
arrangement of lines, rectangles and points that people have agreed upon is a summary of some
data, which is performed by geom_boxplot().

Boxplot data
value <- fivenum(rnorm(100))
df <- data.frame(
min = value[1], lower = value[2], middle = value[3],
upper = value[4], max = value[5]

)

# Drawing a boxplot manually
ggplot(df, aes(x = 1, xend = 1)) +
geom_rect(
aes(
xmin = 0.55, xmax = 1.45,
ymin = lower, ymax = upper

),
colour = "black", fill = "white"

) +
geom_segment(
aes(
x = 0.55, xend = 1.45,
y = middle, yend = middle

),
size = 1

) +
geom_segment(aes(y = lower, yend = min)) +
geom_segment(aes(y = upper, yend = max))

# More succinctly
ggplot(df, aes(x = 1)) +
geom_boxplot(
aes(ymin = min, ymax = max,

lower = lower, upper = upper,
middle = middle),

stat = "identity"
)



layer_positions 229

Under the hood

Internally, geoms are represented as ggproto classes that occupy a slot in a layer. All these classes
inherit from the parental Geom ggproto object that orchestrates how geoms work. Briefly, geoms are
given the opportunity to draw the data of the layer as a whole, a facet panel, or of individual groups.
For more information on extending geoms, see the Creating a new geom section after running
vignette("extending-ggplot2"). Additionally, see the New geoms section of the online book.

See Also

For an overview of all geom layers, see the online reference.

Other layer documentation: layer(), layer_positions, layer_stats

layer_positions Layer position adjustments

Description

In ggplot2, a plot is constructed by adding layers to it. In addition to geoms and stats, position
adjustments are the third required part of a layer. The ’position’ part of a layer is responsible for
dodging, jittering and nudging groups of data to minimise their overlap, or otherwise tweaking their
positions.

For example if you add position = position_nudge(x = 1) to a layer, you can offset every x-
position by 1. For many layers, the default position adjustment is position_identity(), which
performs no adjustment.

Specifying positions

There are 4 ways in which the ’position’ part of a layer can be specified.

1. A layer can have default position adjustments
geom_jitter() # has `position = "jitter"`

2. It can be given to a layer as a string
geom_point(position = "jitter")

3. The position function can be used to pass extra arguments
geom_point(position = position_jitter(width = 1))

4. It can be given to `layer()` directly
layer(
geom = "point",
stat = "identity",
position = "jitter"

)

https://ggplot2-book.org/extensions.html#new-geoms
https://ggplot2.tidyverse.org/reference/index.html#geoms


230 layer_positions

These ways are not always equivalent. Some layers may not understand what to do with a position
adjustment, and require additional parameters passed through the position_*() function, or may
not work correctly. For example position_dodge() requires non-overlapping x intervals, whereas
geom_point() doesn’t have dimensions to calculate intervals for. To give positions as a string, take
the function name, and remove the position_ prefix, such that position_fill becomes "fill".

Pairing geoms with positions

Some geoms work better with some positions than others. Below follows a brief overview of geoms
and position adjustments that work well together.

Identity:
position_identity() can work with virtually any geom.

Dodging:
position_dodge() pushes overlapping objects away from one another and requires a group vari-
able. position_dodge2() can work without group variables and can handle variable widths. As
a rule of thumb, layers where groups occupy a range on the x-axis pair well with dodging. If layers
have no width, you may be required to specify it manually with position_dodge(width = ...).
Some geoms that pair well with dodging are geom_bar(), geom_boxplot(), geom_linerange(),
geom_errorbar() and geom_text().

Jittering:
position_jitter() adds a some random noise to every point, which can help with overplotting.
position_jitterdodge() does the same, but also dodges the points. As a rule of thumb, jittering
works best when points have discrete x-positions. Jittering is most useful for geom_point(), but
can also be used in geom_path() for example.

Nudging:
position_nudge() can add offsets to x- and y-positions. This can be useful for discrete positions
where you don’t want to put an object exactly in the middle. While most useful for geom_text(),
it can be used with virtually all geoms.

Stacking:
position_stack() is useful for displaying data on top of one another. It can be used for geoms
that are usually anchored to the x-axis, for example geom_bar(), geom_area() or geom_histogram().

Filling:
position_fill() can be used to give proportions at every x-position. Like stacking, filling
is most useful for geoms that are anchored to the x-axis, like geom_bar(), geom_area() or
geom_histogram().

Under the hood

Internally, positions are represented as ggproto classes that occupy a slot in a layer. All these
classes inherit from the parental Position ggproto object that orchestrates how positions work.
Briefly, positions are given the opportunity to adjust the data of each facet panel. For more infor-
mation about extending positions, see the New positions section of the online book.

https://ggplot2-book.org/extensions.html#new-positions


layer_stats 231

See Also

For an overview of all position adjustments, see the online reference.

Other layer documentation: layer(), layer_geoms, layer_stats

layer_stats Layer statistical transformations

Description

In ggplot2, a plot is constructed by adding layers to it. A layer consists of two important parts:
the geometry (geoms), and statistical transformations (stats). The ’stat’ part of a layer is impor-
tant because it performs a computation on the data before it is displayed. Stats determine what is
displayed, not how it is displayed.

For example, if you add stat_density() to a plot, a kernel density estimation is performed, which
can be displayed with the ’geom’ part of a layer. For many geom_*() functions, stat_identity()
is used, which performs no extra computation on the data.

Specifying stats

There are five ways in which the ’stat’ part of a layer can be specified.

# 1. The stat can have a layer constructor
stat_density()

# 2. A geom can default to a particular stat
geom_density() # has `stat = "density"` as default

# 3. It can be given to a geom as a string
geom_line(stat = "density")

# 4. The ggproto object of a stat can be given
geom_area(stat = StatDensity)

# 5. It can be given to `layer()` directly:
layer(
geom = "line",
stat = "density",
position = "identity"

)

Many of these ways are absolutely equivalent. Using stat_density(geom = "line") is identical to
using geom_line(stat = "density"). Note that for layer(), you need to provide the "position"
argument as well. To give stats as a string, take the function name, and remove the stat_ prefix,
such that stat_bin becomes "bin".

Some of the more well known stats that can be used for the stat argument are: "density", "bin",
"count", "function" and "smooth".

https://ggplot2.tidyverse.org/reference/index.html#position-adjustment


232 layer_stats

Paired geoms and stats

Some geoms have paired stats. In some cases, like geom_density(), it is just a variant of another
geom, geom_area(), with slightly different defaults.

In other cases, the relationship is more complex. In the case of boxplots for example, the stat and
the geom have distinct roles. The role of the stat is to compute the five-number summary of the data.
In addition to just displaying the box of the five-number summary, the geom also provides display
options for the outliers and widths of boxplots. In such cases, you cannot freely exchange geoms
and stats: using stat_boxplot(geom = "line") or geom_area(stat = "boxplot") give errors.

Some stats and geoms that are paired are:

• geom_violin() and stat_ydensity()

• geom_histogram() and stat_bin()

• geom_contour() and stat_contour()

• geom_function() and stat_function()

• geom_bin_2d() and stat_bin_2d()

• geom_boxplot() and stat_boxplot()

• geom_count() and stat_sum()

• geom_density() and stat_density()

• geom_density_2d() and stat_density_2d()

• geom_hex() and stat_binhex()

• geom_quantile() and stat_quantile()

• geom_smooth() and stat_smooth()

Using computed variables

As mentioned above, the role of stats is to perform computation on the data. As a result, stats
have ’computed variables’ that determine compatibility with geoms. These computed variables are
documented in the Computed variables sections of the documentation, for example in ?stat_bin.
While more thoroughly documented in after_stat(), it should briefly be mentioned that these
computed stats can be accessed in aes().

For example, the ?stat_density documentation states that, in addition to a variable called density,
the stat computes a variable named count. Instead of scaling such that the area integrates to 1, the
count variable scales the computed density such that the values can be interpreted as counts. If
stat_density(aes(y = after_stat(count))) is used, we can display these count-scaled densi-
ties instead of the regular densities.

The computed variables offer flexibility in that arbitrary geom-stat pairings can be made. While
not necessarily recommended, geom_line() can be paired with stat = "boxplot" if the line is
instructed on how to use the boxplot computed variables:

ggplot(mpg, aes(factor(cyl))) +
geom_line(
# Stage gives 'displ' to the stat, and afterwards chooses 'middle' as
# the y-variable to display
aes(y = stage(displ, after_stat = middle),



lims 233

# Regroup after computing the stats to display a single line
group = after_stat(1)),

stat = "boxplot"
)

Under the hood

Internally, stats are represented as ggproto classes that occupy a slot in a layer. All these classes
inherit from the parental Stat ggproto object that orchestrates how stats work. Briefly, stats are
given the opportunity to perform computation either on the layer as a whole, a facet panel, or on
individual groups. For more information on extending stats, see the Creating a new stat section
after running vignette("extending-ggplot2"). Additionally, see the New stats section of the
online book.

See Also

For an overview of all stat layers, see the online reference.

How computed aesthetics work.

Other layer documentation: layer(), layer_geoms, layer_positions

lims Set scale limits

Description

This is a shortcut for supplying the limits argument to the individual scales. By default, any values
outside the limits specified are replaced with NA. Be warned that this will remove data outside the
limits and this can produce unintended results. For changing x or y axis limits without dropping
data observations, see coord_cartesian().

Usage

lims(...)

xlim(...)

ylim(...)

Arguments

... For xlim() and ylim(): Two numeric values, specifying the left/lower limit
and the right/upper limit of the scale. If the larger value is given first, the scale
will be reversed. You can leave one value as NA if you want to compute the
corresponding limit from the range of the data.
For lims(): A name–value pair. The name must be an aesthetic, and the value
must be either a length-2 numeric, a character, a factor, or a date/time. A nu-
meric value will create a continuous scale. If the larger value comes first, the

https://ggplot2-book.org/extensions.html#new-stats
https://ggplot2.tidyverse.org/reference/index.html#stats


234 lims

scale will be reversed. You can leave one value as NA if you want to compute
the corresponding limit from the range of the data. A character or factor value
will create a discrete scale. A date-time value will create a continuous date/time
scale.

See Also

To expand the range of a plot to always include certain values, see expand_limits(). For other
types of data, see scale_x_discrete(), scale_x_continuous(), scale_x_date().

Examples

# Zoom into a specified area
ggplot(mtcars, aes(mpg, wt)) +

geom_point() +
xlim(15, 20)

# reverse scale
ggplot(mtcars, aes(mpg, wt)) +

geom_point() +
xlim(20, 15)

# with automatic lower limit
ggplot(mtcars, aes(mpg, wt)) +

geom_point() +
xlim(NA, 20)

# You can also supply limits that are larger than the data.
# This is useful if you want to match scales across different plots
small <- subset(mtcars, cyl == 4)
big <- subset(mtcars, cyl > 4)

ggplot(small, aes(mpg, wt, colour = factor(cyl))) +
geom_point() +
lims(colour = c("4", "6", "8"))

ggplot(big, aes(mpg, wt, colour = factor(cyl))) +
geom_point() +
lims(colour = c("4", "6", "8"))

# There are two ways of setting the axis limits: with limits or
# with coordinate systems. They work in two rather different ways.

set.seed(1)
last_month <- Sys.Date() - 0:59
df <- data.frame(

date = last_month,
price = c(rnorm(30, mean = 15), runif(30) + 0.2 * (1:30))

)

p <- ggplot(df, aes(date, price)) +
geom_line() +



luv_colours 235

stat_smooth()

p

# Setting the limits with the scale discards all data outside the range.
p + lims(x= c(Sys.Date() - 30, NA), y = c(10, 20))

# For changing x or y axis limits **without** dropping data
# observations use [coord_cartesian()]. Setting the limits on the
# coordinate system performs a visual zoom.
p + coord_cartesian(xlim =c(Sys.Date() - 30, NA), ylim = c(10, 20))

luv_colours colors() in Luv space

Description

All built-in colors() translated into Luv colour space.

Usage

luv_colours

Format

A data frame with 657 observations and 4 variables:

L,u,v Position in Luv colour space

col Colour name

mean_se Calculate mean and standard error of the mean

Description

For use with stat_summary()

Usage

mean_se(x, mult = 1)

Arguments

x numeric vector.

mult number of multiples of standard error.



236 midwest

Value

A data frame with three columns:

y The mean.

ymin The mean minus the multiples of the standard error.

ymax The mean plus the multiples of the standard error.

Examples

set.seed(1)
x <- rnorm(100)
mean_se(x)

midwest Midwest demographics

Description

Demographic information of midwest counties from 2000 US census

Usage

midwest

Format

A data frame with 437 rows and 28 variables:

PID Unique county identifier.

county County name.

state State to which county belongs to.

area Area of county (units unknown).

poptotal Total population.

popdensity Population density (person/unit area).

popwhite Number of whites.

popblack Number of blacks.

popamerindian Number of American Indians.

popasian Number of Asians.

popother Number of other races.

percwhite Percent white.

percblack Percent black.

percamerindan Percent American Indian.

percasian Percent Asian.



mpg 237

percother Percent other races.

popadults Number of adults.

perchsd Percent with high school diploma.

percollege Percent college educated.

percprof Percent with professional degree.

poppovertyknown Population with known poverty status.

percpovertyknown Percent of population with known poverty status.

percbelowpoverty Percent of people below poverty line.

percchildbelowpovert Percent of children below poverty line.

percadultpoverty Percent of adults below poverty line.

percelderlypoverty Percent of elderly below poverty line.

inmetro County considered in a metro area.

category Miscellaneous.

Details

Note: this dataset is included for illustrative purposes. The original descriptions were not docu-
mented and the current descriptions here are based on speculation. For more accurate and up-to-date
US census data, see the acs package.

mpg Fuel economy data from 1999 to 2008 for 38 popular models of cars

Description

This dataset contains a subset of the fuel economy data that the EPA makes available on https:
//fueleconomy.gov/. It contains only models which had a new release every year between 1999
and 2008 - this was used as a proxy for the popularity of the car.

Usage

mpg

Format

A data frame with 234 rows and 11 variables:

manufacturer manufacturer name

model model name

displ engine displacement, in litres

year year of manufacture

cyl number of cylinders

https://cran.r-project.org/package=acs
https://fueleconomy.gov/
https://fueleconomy.gov/


238 msleep

trans type of transmission

drv the type of drive train, where f = front-wheel drive, r = rear wheel drive, 4 = 4wd

cty city miles per gallon

hwy highway miles per gallon

fl fuel type

class "type" of car

msleep An updated and expanded version of the mammals sleep dataset

Description

This is an updated and expanded version of the mammals sleep dataset. Updated sleep times and
weights were taken from V. M. Savage and G. B. West. A quantitative, theoretical framework for
understanding mammalian sleep. Proceedings of the National Academy of Sciences, 104 (3):1051-
1056, 2007.

Usage

msleep

Format

A data frame with 83 rows and 11 variables:

name common name

genus

vore carnivore, omnivore or herbivore?

order

conservation the conservation status of the animal

sleep_total total amount of sleep, in hours

sleep_rem rem sleep, in hours

sleep_cycle length of sleep cycle, in hours

awake amount of time spent awake, in hours

brainwt brain weight in kilograms

bodywt body weight in kilograms

Details

Additional variables order, conservation status and vore were added from wikipedia.



position_dodge 239

position_dodge Dodge overlapping objects side-to-side

Description

Dodging preserves the vertical position of an geom while adjusting the horizontal position. position_dodge()
requires the grouping variable to be be specified in the global or geom_* layer. Unlike position_dodge(),
position_dodge2() works without a grouping variable in a layer. position_dodge2() works
with bars and rectangles, but is particularly useful for arranging box plots, which can have variable
widths.

Usage

position_dodge(width = NULL, preserve = "total")

position_dodge2(
width = NULL,
preserve = "total",
padding = 0.1,
reverse = FALSE

)

Arguments

width Dodging width, when different to the width of the individual elements. This
is useful when you want to align narrow geoms with wider geoms. See the
examples.

preserve Should dodging preserve the "total" width of all elements at a position, or the
width of a "single" element?

padding Padding between elements at the same position. Elements are shrunk by this
proportion to allow space between them. Defaults to 0.1.

reverse If TRUE, will reverse the default stacking order. This is useful if you’re rotating
both the plot and legend.

See Also

Other position adjustments: position_identity(), position_jitter(), position_jitterdodge(),
position_nudge(), position_stack()

Examples

ggplot(mtcars, aes(factor(cyl), fill = factor(vs))) +
geom_bar(position = "dodge2")

# By default, dodging with `position_dodge2()` preserves the total width of
# the elements. You can choose to preserve the width of each element with:
ggplot(mtcars, aes(factor(cyl), fill = factor(vs))) +



240 position_dodge

geom_bar(position = position_dodge2(preserve = "single"))

ggplot(diamonds, aes(price, fill = cut)) +
geom_histogram(position="dodge2")

# see ?geom_bar for more examples

# In this case a frequency polygon is probably a better choice
ggplot(diamonds, aes(price, colour = cut)) +

geom_freqpoly()

# Dodging with various widths -------------------------------------
# To dodge items with different widths, you need to be explicit
df <- data.frame(

x = c("a","a","b","b"),
y = 2:5,
g = rep(1:2, 2)

)
p <- ggplot(df, aes(x, y, group = g)) +

geom_col(position = "dodge", fill = "grey50", colour = "black")
p

# A line range has no width:
p + geom_linerange(aes(ymin = y - 1, ymax = y + 1), position = "dodge")

# So you must explicitly specify the width
p + geom_linerange(

aes(ymin = y - 1, ymax = y + 1),
position = position_dodge(width = 0.9)

)

# The same principle applies to error bars, which are usually
# narrower than the bars
p + geom_errorbar(

aes(ymin = y - 1, ymax = y + 1),
width = 0.2,
position = "dodge"

)
p + geom_errorbar(

aes(ymin = y - 1, ymax = y + 1),
width = 0.2,
position = position_dodge(width = 0.9)

)

# Box plots use position_dodge2 by default, and bars can use it too
ggplot(mpg, aes(factor(year), displ)) +

geom_boxplot(aes(colour = hwy < 30))

ggplot(mpg, aes(factor(year), displ)) +
geom_boxplot(aes(colour = hwy < 30), varwidth = TRUE)

ggplot(mtcars, aes(factor(cyl), fill = factor(vs))) +



position_identity 241

geom_bar(position = position_dodge2(preserve = "single"))

ggplot(mtcars, aes(factor(cyl), fill = factor(vs))) +
geom_bar(position = position_dodge2(preserve = "total"))

position_identity Don’t adjust position

Description

Don’t adjust position

Usage

position_identity()

See Also

Other position adjustments: position_dodge(), position_jitter(), position_jitterdodge(),
position_nudge(), position_stack()

position_jitter Jitter points to avoid overplotting

Description

Counterintuitively adding random noise to a plot can sometimes make it easier to read. Jittering is
particularly useful for small datasets with at least one discrete position.

Usage

position_jitter(width = NULL, height = NULL, seed = NA)

Arguments

width, height Amount of vertical and horizontal jitter. The jitter is added in both positive and
negative directions, so the total spread is twice the value specified here.
If omitted, defaults to 40% of the resolution of the data: this means the jitter
values will occupy 80% of the implied bins. Categorical data is aligned on the
integers, so a width or height of 0.5 will spread the data so it’s not possible to
see the distinction between the categories.

seed A random seed to make the jitter reproducible. Useful if you need to apply the
same jitter twice, e.g., for a point and a corresponding label. The random seed is
reset after jittering. If NA (the default value), the seed is initialised with a random
value; this makes sure that two subsequent calls start with a different seed. Use
NULL to use the current random seed and also avoid resetting (the behaviour of
ggplot 2.2.1 and earlier).



242 position_jitterdodge

See Also

Other position adjustments: position_dodge(), position_identity(), position_jitterdodge(),
position_nudge(), position_stack()

Examples

# Jittering is useful when you have a discrete position, and a relatively
# small number of points
# take up as much space as a boxplot or a bar
ggplot(mpg, aes(class, hwy)) +

geom_boxplot(colour = "grey50") +
geom_jitter()

# If the default jittering is too much, as in this plot:
ggplot(mtcars, aes(am, vs)) +

geom_jitter()

# You can adjust it in two ways
ggplot(mtcars, aes(am, vs)) +

geom_jitter(width = 0.1, height = 0.1)
ggplot(mtcars, aes(am, vs)) +

geom_jitter(position = position_jitter(width = 0.1, height = 0.1))

# Create a jitter object for reproducible jitter:
jitter <- position_jitter(width = 0.1, height = 0.1)
ggplot(mtcars, aes(am, vs)) +

geom_point(position = jitter) +
geom_point(position = jitter, color = "red", aes(am + 0.2, vs + 0.2))

position_jitterdodge Simultaneously dodge and jitter

Description

This is primarily used for aligning points generated through geom_point() with dodged boxplots
(e.g., a geom_boxplot() with a fill aesthetic supplied).

Usage

position_jitterdodge(
jitter.width = NULL,
jitter.height = 0,
dodge.width = 0.75,
seed = NA

)



position_nudge 243

Arguments

jitter.width degree of jitter in x direction. Defaults to 40% of the resolution of the data.

jitter.height degree of jitter in y direction. Defaults to 0.

dodge.width the amount to dodge in the x direction. Defaults to 0.75, the default position_dodge()
width.

seed A random seed to make the jitter reproducible. Useful if you need to apply the
same jitter twice, e.g., for a point and a corresponding label. The random seed is
reset after jittering. If NA (the default value), the seed is initialised with a random
value; this makes sure that two subsequent calls start with a different seed. Use
NULL to use the current random seed and also avoid resetting (the behaviour of
ggplot 2.2.1 and earlier).

See Also

Other position adjustments: position_dodge(), position_identity(), position_jitter(),
position_nudge(), position_stack()

Examples

set.seed(596)
dsub <- diamonds[sample(nrow(diamonds), 1000), ]
ggplot(dsub, aes(x = cut, y = carat, fill = clarity)) +

geom_boxplot(outlier.size = 0) +
geom_point(pch = 21, position = position_jitterdodge())

position_nudge Nudge points a fixed distance

Description

position_nudge() is generally useful for adjusting the position of items on discrete scales by a
small amount. Nudging is built in to geom_text() because it’s so useful for moving labels a small
distance from what they’re labelling.

Usage

position_nudge(x = 0, y = 0)

Arguments

x, y Amount of vertical and horizontal distance to move.

See Also

Other position adjustments: position_dodge(), position_identity(), position_jitter(),
position_jitterdodge(), position_stack()



244 position_stack

Examples

df <- data.frame(
x = c(1,3,2,5),
y = c("a","c","d","c")

)

ggplot(df, aes(x, y)) +
geom_point() +
geom_text(aes(label = y))

ggplot(df, aes(x, y)) +
geom_point() +
geom_text(aes(label = y), position = position_nudge(y = -0.1))

# Or, in brief
ggplot(df, aes(x, y)) +

geom_point() +
geom_text(aes(label = y), nudge_y = -0.1)

position_stack Stack overlapping objects on top of each another

Description

position_stack() stacks bars on top of each other; position_fill() stacks bars and standard-
ises each stack to have constant height.

Usage

position_stack(vjust = 1, reverse = FALSE)

position_fill(vjust = 1, reverse = FALSE)

Arguments

vjust Vertical adjustment for geoms that have a position (like points or lines), not a
dimension (like bars or areas). Set to 0 to align with the bottom, 0.5 for the
middle, and 1 (the default) for the top.

reverse If TRUE, will reverse the default stacking order. This is useful if you’re rotating
both the plot and legend.

Details

position_fill() and position_stack() automatically stack values in reverse order of the group
aesthetic, which for bar charts is usually defined by the fill aesthetic (the default group aesthetic is
formed by the combination of all discrete aesthetics except for x and y). This default ensures that
bar colours align with the default legend.

There are three ways to override the defaults depending on what you want:



position_stack 245

1. Change the order of the levels in the underlying factor. This will change the stacking order,
and the order of keys in the legend.

2. Set the legend breaks to change the order of the keys without affecting the stacking.

3. Manually set the group aesthetic to change the stacking order without affecting the legend.

Stacking of positive and negative values are performed separately so that positive values stack up-
wards from the x-axis and negative values stack downward.

Because stacking is performed after scale transformations, stacking with non-linear scales gives
distortions that easily lead to misinterpretations of the data. It is therefore discouraged to use these
position adjustments in combination with scale transformations, such as logarithmic or square root
scales.

See Also

See geom_bar() and geom_area() for more examples.

Other position adjustments: position_dodge(), position_identity(), position_jitter(),
position_jitterdodge(), position_nudge()

Examples

# Stacking and filling ------------------------------------------------------

# Stacking is the default behaviour for most area plots.
# Fill makes it easier to compare proportions
ggplot(mtcars, aes(factor(cyl), fill = factor(vs))) +

geom_bar()
ggplot(mtcars, aes(factor(cyl), fill = factor(vs))) +

geom_bar(position = "fill")

ggplot(diamonds, aes(price, fill = cut)) +
geom_histogram(binwidth = 500)

ggplot(diamonds, aes(price, fill = cut)) +
geom_histogram(binwidth = 500, position = "fill")

# Stacking is also useful for time series
set.seed(1)
series <- data.frame(

time = c(rep(1, 4),rep(2, 4), rep(3, 4), rep(4, 4)),
type = rep(c('a', 'b', 'c', 'd'), 4),
value = rpois(16, 10)

)
ggplot(series, aes(time, value)) +

geom_area(aes(fill = type))

# Stacking order ------------------------------------------------------------
# The stacking order is carefully designed so that the plot matches
# the legend.

# You control the stacking order by setting the levels of the underlying
# factor. See the forcats package for convenient helpers.



246 position_stack

series$type2 <- factor(series$type, levels = c('c', 'b', 'd', 'a'))
ggplot(series, aes(time, value)) +

geom_area(aes(fill = type2))

# You can change the order of the levels in the legend using the scale
ggplot(series, aes(time, value)) +

geom_area(aes(fill = type)) +
scale_fill_discrete(breaks = c('a', 'b', 'c', 'd'))

# If you've flipped the plot, use reverse = TRUE so the levels
# continue to match
ggplot(series, aes(time, value)) +

geom_area(aes(fill = type2), position = position_stack(reverse = TRUE)) +
coord_flip() +
theme(legend.position = "top")

# Non-area plots ------------------------------------------------------------

# When stacking across multiple layers it's a good idea to always set
# the `group` aesthetic in the ggplot() call. This ensures that all layers
# are stacked in the same way.
ggplot(series, aes(time, value, group = type)) +

geom_line(aes(colour = type), position = "stack") +
geom_point(aes(colour = type), position = "stack")

ggplot(series, aes(time, value, group = type)) +
geom_area(aes(fill = type)) +
geom_line(aes(group = type), position = "stack")

# You can also stack labels, but the default position is suboptimal.
ggplot(series, aes(time, value, group = type)) +

geom_area(aes(fill = type)) +
geom_text(aes(label = type), position = "stack")

# You can override this with the vjust parameter. A vjust of 0.5
# will center the labels inside the corresponding area
ggplot(series, aes(time, value, group = type)) +

geom_area(aes(fill = type)) +
geom_text(aes(label = type), position = position_stack(vjust = 0.5))

# Negative values -----------------------------------------------------------

df <- tibble::tribble(
~x, ~y, ~grp,
"a", 1, "x",
"a", 2, "y",
"b", 1, "x",
"b", 3, "y",
"b", -1, "y"

)
ggplot(data = df, aes(x, y, group = grp)) +

geom_col(aes(fill = grp), position = position_stack(reverse = TRUE)) +
geom_hline(yintercept = 0)



presidential 247

ggplot(data = df, aes(x, y, group = grp)) +
geom_col(aes(fill = grp)) +
geom_hline(yintercept = 0) +
geom_text(aes(label = grp), position = position_stack(vjust = 0.5))

presidential Terms of 12 presidents from Eisenhower to Trump

Description

The names of each president, the start and end date of their term, and their party of 12 US presidents
from Eisenhower to Trump. This data is in the public domain.

Usage

presidential

Format

A data frame with 12 rows and 4 variables:

name Last name of president

start Presidency start date

end Presidency end date

party Party of president

print.ggplot Explicitly draw plot

Description

Generally, you do not need to print or plot a ggplot2 plot explicitly: the default top-level print
method will do it for you. You will, however, need to call print() explicitly if you want to draw a
plot inside a function or for loop.

Usage

## S3 method for class 'ggplot'
print(x, newpage = is.null(vp), vp = NULL, ...)

## S3 method for class 'ggplot'
plot(x, newpage = is.null(vp), vp = NULL, ...)



248 print.ggproto

Arguments

x plot to display
newpage draw new (empty) page first?
vp viewport to draw plot in
... other arguments not used by this method

Value

Invisibly returns the original plot.

Examples

colours <- list(~class, ~drv, ~fl)

# Doesn't seem to do anything!
for (colour in colours) {

ggplot(mpg, aes_(~ displ, ~ hwy, colour = colour)) +
geom_point()

}

# Works when we explicitly print the plots
for (colour in colours) {

print(ggplot(mpg, aes_(~ displ, ~ hwy, colour = colour)) +
geom_point())

}

print.ggproto Format or print a ggproto object

Description

If a ggproto object has a $print method, this will call that method. Otherwise, it will print out the
members of the object, and optionally, the members of the inherited objects.

Usage

## S3 method for class 'ggproto'
print(x, ..., flat = TRUE)

## S3 method for class 'ggproto'
format(x, ..., flat = TRUE)

Arguments

x A ggproto object to print.
... If the ggproto object has a print method, further arguments will be passed to it.

Otherwise, these arguments are unused.
flat If TRUE (the default), show a flattened list of all local and inherited members. If

FALSE, show the inheritance hierarchy.



qplot 249

Examples

Dog <- ggproto(
print = function(self, n) {
cat("Woof!\n")

}
)

Dog
cat(format(Dog), "\n")

qplot Quick plot

Description

qplot() is now deprecated in order to encourage the users to learn ggplot() as it makes it easier
to create complex graphics.

Usage

qplot(
x,
y,
...,
data,
facets = NULL,
margins = FALSE,
geom = "auto",
xlim = c(NA, NA),
ylim = c(NA, NA),
log = "",
main = NULL,
xlab = NULL,
ylab = NULL,
asp = NA,
stat = deprecated(),
position = deprecated()

)

quickplot(
x,
y,
...,
data,
facets = NULL,
margins = FALSE,
geom = "auto",
xlim = c(NA, NA),



250 qplot

ylim = c(NA, NA),
log = "",
main = NULL,
xlab = NULL,
ylab = NULL,
asp = NA,
stat = deprecated(),
position = deprecated()

)

Arguments

x, y, ... Aesthetics passed into each layer

data Data frame to use (optional). If not specified, will create one, extracting vectors
from the current environment.

facets faceting formula to use. Picks facet_wrap() or facet_grid() depending on
whether the formula is one- or two-sided

margins See facet_grid(): display marginal facets?

geom Character vector specifying geom(s) to draw. Defaults to "point" if x and y are
specified, and "histogram" if only x is specified.

xlim, ylim X and y axis limits

log Which variables to log transform ("x", "y", or "xy")

main, xlab, ylab Character vector (or expression) giving plot title, x axis label, and y axis label
respectively.

asp The y/x aspect ratio

stat, position [Deprecated]

Examples

# Use data from data.frame
qplot(mpg, wt, data = mtcars)
qplot(mpg, wt, data = mtcars, colour = cyl)
qplot(mpg, wt, data = mtcars, size = cyl)
qplot(mpg, wt, data = mtcars, facets = vs ~ am)

set.seed(1)
qplot(1:10, rnorm(10), colour = runif(10))
qplot(1:10, letters[1:10])
mod <- lm(mpg ~ wt, data = mtcars)
qplot(resid(mod), fitted(mod))

f <- function() {
a <- 1:10
b <- a ^ 2
qplot(a, b)

}
f()



resolution 251

# To set aesthetics, wrap in I()
qplot(mpg, wt, data = mtcars, colour = I("red"))

# qplot will attempt to guess what geom you want depending on the input
# both x and y supplied = scatterplot
qplot(mpg, wt, data = mtcars)
# just x supplied = histogram
qplot(mpg, data = mtcars)
# just y supplied = scatterplot, with x = seq_along(y)
qplot(y = mpg, data = mtcars)

# Use different geoms
qplot(mpg, wt, data = mtcars, geom = "path")
qplot(factor(cyl), wt, data = mtcars, geom = c("boxplot", "jitter"))
qplot(mpg, data = mtcars, geom = "dotplot")

resolution Compute the "resolution" of a numeric vector

Description

The resolution is the smallest non-zero distance between adjacent values. If there is only one unique
value, then the resolution is defined to be one. If x is an integer vector, then it is assumed to represent
a discrete variable, and the resolution is 1.

Usage

resolution(x, zero = TRUE, discrete = FALSE)

Arguments

x numeric vector

zero should a zero value be automatically included in the computation of resolution

discrete should vectors mapped with a discrete scale be treated as having a resolution of
1?

Examples

resolution(1:10)
resolution((1:10) - 0.5)
resolution((1:10) - 0.5, FALSE)

# Note the difference between numeric and integer vectors
resolution(c(2, 10, 20, 50))
resolution(c(2L, 10L, 20L, 50L))



252 scale_alpha

scale_alpha Alpha transparency scales

Description

Alpha-transparency scales are not tremendously useful, but can be a convenient way to visually
down-weight less important observations. scale_alpha() is an alias for scale_alpha_continuous()
since that is the most common use of alpha, and it saves a bit of typing.

Usage

scale_alpha(name = waiver(), ..., range = c(0.1, 1))

scale_alpha_continuous(name = waiver(), ..., range = c(0.1, 1))

scale_alpha_binned(name = waiver(), ..., range = c(0.1, 1))

scale_alpha_discrete(...)

scale_alpha_ordinal(name = waiver(), ..., range = c(0.1, 1))

Arguments

name The name of the scale. Used as the axis or legend title. If waiver(), the default,
the name of the scale is taken from the first mapping used for that aesthetic. If
NULL, the legend title will be omitted.

... Other arguments passed on to continuous_scale(), binned_scale(), or discrete_scale()
as appropriate, to control name, limits, breaks, labels and so forth.

range Output range of alpha values. Must lie between 0 and 1.

See Also

The documentation on colour aesthetics.

Other alpha scales: scale_alpha_manual(), scale_alpha_identity().

The alpha scales section of the online ggplot2 book.

Other colour scales: scale_colour_brewer(), scale_colour_continuous(), scale_colour_gradient(),
scale_colour_grey(), scale_colour_hue(), scale_colour_identity(), scale_colour_manual(),
scale_colour_steps(), scale_colour_viridis_d()

Examples

p <- ggplot(mpg, aes(displ, hwy)) +
geom_point(aes(alpha = year))

# The default range of 0.1-1.0 leaves all data visible
p

https://ggplot2-book.org/scales-colour#sec-scales-alpha


scale_binned 253

# Include 0 in the range to make data invisible
p + scale_alpha(range = c(0, 1))

# Changing the title
p + scale_alpha("cylinders")

scale_binned Positional scales for binning continuous data (x & y)

Description

scale_x_binned() and scale_y_binned() are scales that discretize continuous position data.
You can use these scales to transform continuous inputs before using it with a geom that requires
discrete positions. An example is using scale_x_binned() with geom_bar() to create a histogram.

Usage

scale_x_binned(
name = waiver(),
n.breaks = 10,
nice.breaks = TRUE,
breaks = waiver(),
labels = waiver(),
limits = NULL,
expand = waiver(),
oob = squish,
na.value = NA_real_,
right = TRUE,
show.limits = FALSE,
transform = "identity",
trans = deprecated(),
guide = waiver(),
position = "bottom"

)

scale_y_binned(
name = waiver(),
n.breaks = 10,
nice.breaks = TRUE,
breaks = waiver(),
labels = waiver(),
limits = NULL,
expand = waiver(),
oob = squish,
na.value = NA_real_,
right = TRUE,



254 scale_binned

show.limits = FALSE,
transform = "identity",
trans = deprecated(),
guide = waiver(),
position = "left"

)

Arguments

name The name of the scale. Used as the axis or legend title. If waiver(), the default,
the name of the scale is taken from the first mapping used for that aesthetic. If
NULL, the legend title will be omitted.

n.breaks The number of break points to create if breaks are not given directly.

nice.breaks Logical. Should breaks be attempted placed at nice values instead of exactly
evenly spaced between the limits. If TRUE (default) the scale will ask the trans-
formation object to create breaks, and this may result in a different number of
breaks than requested. Ignored if breaks are given explicitly.

breaks One of:

• NULL for no breaks
• waiver() for the default breaks computed by the transformation object
• A numeric vector of positions
• A function that takes the limits as input and returns breaks as output (e.g.,

a function returned by scales::extended_breaks()). Note that for po-
sition scales, limits are provided after scale expansion. Also accepts rlang
lambda function notation.

labels One of:

• NULL for no labels
• waiver() for the default labels computed by the transformation object
• A character vector giving labels (must be same length as breaks)
• An expression vector (must be the same length as breaks). See ?plotmath

for details.
• A function that takes the breaks as input and returns labels as output. Also

accepts rlang lambda function notation.

limits One of:

• NULL to use the default scale range
• A numeric vector of length two providing limits of the scale. Use NA to

refer to the existing minimum or maximum
• A function that accepts the existing (automatic) limits and returns new

limits. Also accepts rlang lambda function notation. Note that setting
limits on positional scales will remove data outside of the limits. If the
purpose is to zoom, use the limit argument in the coordinate system (see
coord_cartesian()).

expand For position scales, a vector of range expansion constants used to add some
padding around the data to ensure that they are placed some distance away from
the axes. Use the convenience function expansion() to generate the values for



scale_binned 255

the expand argument. The defaults are to expand the scale by 5% on each side
for continuous variables, and by 0.6 units on each side for discrete variables.

oob One of:

• Function that handles limits outside of the scale limits (out of bounds). Also
accepts rlang lambda function notation.

• The default (scales::squish()) squishes out of bounds values into range.
• scales::censor for replacing out of bounds values with NA.
• scales::squish_infinite() for squishing infinite values into range.

na.value Missing values will be replaced with this value.

right Should the intervals be closed on the right (TRUE, default) or should the intervals
be closed on the left (FALSE)? ’Closed on the right’ means that values at break
positions are part of the lower bin (open on the left), whereas they are part of the
upper bin when intervals are closed on the left (open on the right).

show.limits should the limits of the scale appear as ticks

transform For continuous scales, the name of a transformation object or the object itself.
Built-in transformations include "asn", "atanh", "boxcox", "date", "exp", "hms",
"identity", "log", "log10", "log1p", "log2", "logit", "modulus", "probability",
"probit", "pseudo_log", "reciprocal", "reverse", "sqrt" and "time".
A transformation object bundles together a transform, its inverse, and methods
for generating breaks and labels. Transformation objects are defined in the scales
package, and are called transform_<name>. If transformations require argu-
ments, you can call them from the scales package, e.g. scales::transform_boxcox(p
= 2). You can create your own transformation with scales::new_transform().

trans [Deprecated] Deprecated in favour of transform.

guide A function used to create a guide or its name. See guides() for more informa-
tion.

position For position scales, The position of the axis. left or right for y axes, top or
bottom for x axes.

See Also

The position documentation.

The binned position scales section of the online ggplot2 book.

Other position scales: scale_x_continuous(), scale_x_date(), scale_x_discrete()

Examples

# Create a histogram by binning the x-axis
ggplot(mtcars) +

geom_bar(aes(mpg)) +
scale_x_binned()

https://ggplot2-book.org/scales-position#sec-binned-position


256 scale_colour_brewer

scale_colour_brewer Sequential, diverging and qualitative colour scales from ColorBrewer

Description

The brewer scales provide sequential, diverging and qualitative colour schemes from ColorBrewer.
These are particularly well suited to display discrete values on a map. See https://colorbrewer2.
org for more information.

Usage

scale_colour_brewer(
name = waiver(),
...,
type = "seq",
palette = 1,
direction = 1,
aesthetics = "colour"

)

scale_fill_brewer(
name = waiver(),
...,
type = "seq",
palette = 1,
direction = 1,
aesthetics = "fill"

)

scale_colour_distiller(
name = waiver(),
...,
type = "seq",
palette = 1,
direction = -1,
values = NULL,
space = "Lab",
na.value = "grey50",
guide = "colourbar",
aesthetics = "colour"

)

scale_fill_distiller(
name = waiver(),
...,
type = "seq",
palette = 1,

https://colorbrewer2.org
https://colorbrewer2.org


scale_colour_brewer 257

direction = -1,
values = NULL,
space = "Lab",
na.value = "grey50",
guide = "colourbar",
aesthetics = "fill"

)

scale_colour_fermenter(
name = waiver(),
...,
type = "seq",
palette = 1,
direction = -1,
na.value = "grey50",
guide = "coloursteps",
aesthetics = "colour"

)

scale_fill_fermenter(
name = waiver(),
...,
type = "seq",
palette = 1,
direction = -1,
na.value = "grey50",
guide = "coloursteps",
aesthetics = "fill"

)

Arguments

name The name of the scale. Used as the axis or legend title. If waiver(), the default,
the name of the scale is taken from the first mapping used for that aesthetic. If
NULL, the legend title will be omitted.

... Other arguments passed on to discrete_scale(), continuous_scale(), or
binned_scale(), for brewer, distiller, and fermenter variants respectively,
to control name, limits, breaks, labels and so forth.

type One of "seq" (sequential), "div" (diverging) or "qual" (qualitative)
palette If a string, will use that named palette. If a number, will index into the list

of palettes of appropriate type. The list of available palettes can found in the
Palettes section.

direction Sets the order of colours in the scale. If 1, the default, colours are as output by
RColorBrewer::brewer.pal(). If -1, the order of colours is reversed.

aesthetics Character string or vector of character strings listing the name(s) of the aes-
thetic(s) that this scale works with. This can be useful, for example, to ap-
ply colour settings to the colour and fill aesthetics at the same time, via
aesthetics = c("colour", "fill").



258 scale_colour_brewer

values if colours should not be evenly positioned along the gradient this vector gives
the position (between 0 and 1) for each colour in the colours vector. See
rescale() for a convenience function to map an arbitrary range to between
0 and 1.

space colour space in which to calculate gradient. Must be "Lab" - other values are
deprecated.

na.value Colour to use for missing values

guide Type of legend. Use "colourbar" for continuous colour bar, or "legend" for
discrete colour legend.

Details

The brewer scales were carefully designed and tested on discrete data. They were not designed to
be extended to continuous data, but results often look good. Your mileage may vary.

Palettes

The following palettes are available for use with these scales:

Diverging BrBG, PiYG, PRGn, PuOr, RdBu, RdGy, RdYlBu, RdYlGn, Spectral

Qualitative Accent, Dark2, Paired, Pastel1, Pastel2, Set1, Set2, Set3

Sequential Blues, BuGn, BuPu, GnBu, Greens, Greys, Oranges, OrRd, PuBu, PuBuGn, PuRd,
Purples, RdPu, Reds, YlGn, YlGnBu, YlOrBr, YlOrRd

Modify the palette through the palette argument.

Note

The distiller scales extend brewer scales by smoothly interpolating 7 colours from any palette
to a continuous scale. The distiller scales have a default direction = -1. To reverse, use direction
= 1. The fermenter scales provide binned versions of the brewer scales.

See Also

The documentation on colour aesthetics.

The brewer scales section of the online ggplot2 book.

Other colour scales: scale_alpha(), scale_colour_continuous(), scale_colour_gradient(),
scale_colour_grey(), scale_colour_hue(), scale_colour_identity(), scale_colour_manual(),
scale_colour_steps(), scale_colour_viridis_d()

Examples

set.seed(596)
dsamp <- diamonds[sample(nrow(diamonds), 1000), ]
(d <- ggplot(dsamp, aes(carat, price)) +

geom_point(aes(colour = clarity)))
d + scale_colour_brewer()

# Change scale label

https://ggplot2-book.org/scales-colour#brewer-scales


scale_colour_continuous 259

d + scale_colour_brewer("Diamond\nclarity")

# Select brewer palette to use, see ?scales::pal_brewer for more details
d + scale_colour_brewer(palette = "Greens")
d + scale_colour_brewer(palette = "Set1")

# scale_fill_brewer works just the same as
# scale_colour_brewer but for fill colours
p <- ggplot(diamonds, aes(x = price, fill = cut)) +

geom_histogram(position = "dodge", binwidth = 1000)
p + scale_fill_brewer()
# the order of colour can be reversed
p + scale_fill_brewer(direction = -1)
# the brewer scales look better on a darker background
p +

scale_fill_brewer(direction = -1) +
theme_dark()

# Use distiller variant with continuous data
v <- ggplot(faithfuld) +

geom_tile(aes(waiting, eruptions, fill = density))
v
v + scale_fill_distiller()
v + scale_fill_distiller(palette = "Spectral")
# the order of colour can be reversed, but with scale_*_distiller(),
# the default direction = -1, so to reverse, use direction = 1.
v + scale_fill_distiller(palette = "Spectral", direction = 1)

# or use blender variants to discretise continuous data
v + scale_fill_fermenter()

scale_colour_continuous

Continuous and binned colour scales

Description

The scales scale_colour_continuous() and scale_fill_continuous() are the default colour
scales ggplot2 uses when continuous data values are mapped onto the colour or fill aesthetics,
respectively. The scales scale_colour_binned() and scale_fill_binned() are equivalent scale
functions that assign discrete color bins to the continuous values instead of using a continuous color
spectrum.

Usage

scale_colour_continuous(..., type = getOption("ggplot2.continuous.colour"))



260 scale_colour_continuous

scale_fill_continuous(..., type = getOption("ggplot2.continuous.fill"))

scale_colour_binned(..., type = getOption("ggplot2.binned.colour"))

scale_fill_binned(..., type = getOption("ggplot2.binned.fill"))

Arguments

... Additional parameters passed on to the scale type

type One of the following:

• "gradient" (the default)
• "viridis"
• A function that returns a continuous colour scale.

Details

All these colour scales use the options() mechanism to determine default settings. Continuous
colour scales default to the values of the ggplot2.continuous.colour and ggplot2.continuous.fill
options, and binned colour scales default to the values of the ggplot2.binned.colour and ggplot2.binned.fill
options. These option values default to "gradient", which means that the scale functions ac-
tually used are scale_colour_gradient()/scale_fill_gradient() for continuous scales and
scale_colour_steps()/scale_fill_steps() for binned scales. Alternative option values are
"viridis" or a different scale function. See description of the type argument for details.

Note that the binned colour scales will use the settings of ggplot2.continuous.colour and
ggplot2.continuous.fill as fallback, respectively, if ggplot2.binned.colour or ggplot2.binned.fill
are not set.

These scale functions are meant to provide simple defaults. If you want to manually set the colors
of a scale, consider using scale_colour_gradient() or scale_colour_steps().

Color Blindness

Many color palettes derived from RGB combinations (like the "rainbow" color palette) are not
suitable to support all viewers, especially those with color vision deficiencies. Using viridis type,
which is perceptually uniform in both colour and black-and-white display is an easy option to ensure
good perceptive properties of your visualizations. The colorspace package offers functionalities

• to generate color palettes with good perceptive properties,

• to analyse a given color palette, like emulating color blindness,

• and to modify a given color palette for better perceptivity.

For more information on color vision deficiencies and suitable color choices see the paper on the
colorspace package and references therein.

See Also

scale_colour_gradient(), scale_colour_viridis_c(), scale_colour_steps(), scale_colour_viridis_b(),
scale_fill_gradient(), scale_fill_viridis_c(), scale_fill_steps(), and scale_fill_viridis_b()

The documentation on colour aesthetics.

https://arxiv.org/abs/1903.06490
https://arxiv.org/abs/1903.06490


scale_colour_discrete 261

The continuous colour scales section of the online ggplot2 book.

Other colour scales: scale_alpha(), scale_colour_brewer(), scale_colour_gradient(), scale_colour_grey(),
scale_colour_hue(), scale_colour_identity(), scale_colour_manual(), scale_colour_steps(),
scale_colour_viridis_d()

Examples

v <- ggplot(faithfuld, aes(waiting, eruptions, fill = density)) +
geom_tile()
v

v + scale_fill_continuous(type = "gradient")
v + scale_fill_continuous(type = "viridis")

# The above are equivalent to
v + scale_fill_gradient()
v + scale_fill_viridis_c()

# To make a binned version of this plot
v + scale_fill_binned(type = "viridis")

# Set a different default scale using the options
# mechanism
tmp <- getOption("ggplot2.continuous.fill") # store current setting
options(ggplot2.continuous.fill = scale_fill_distiller)
v
options(ggplot2.continuous.fill = tmp) # restore previous setting

scale_colour_discrete Discrete colour scales

Description

The default discrete colour scale. Defaults to scale_fill_hue()/scale_fill_brewer() unless
type (which defaults to the ggplot2.discrete.fill/ggplot2.discrete.colour options) is spec-
ified.

Usage

scale_colour_discrete(..., type = getOption("ggplot2.discrete.colour"))

scale_fill_discrete(..., type = getOption("ggplot2.discrete.fill"))

Arguments

... Additional parameters passed on to the scale type,

type One of the following:

https://ggplot2-book.org/scales-colour#sec-colour-continuous


262 scale_colour_discrete

• A character vector of color codes. The codes are used for a ’manual’ color
scale as long as the number of codes exceeds the number of data levels (if
there are more levels than codes, scale_colour_hue()/scale_fill_hue()
are used to construct the default scale). If this is a named vector, then the
color values will be matched to levels based on the names of the vectors.
Data values that don’t match will be set as na.value.

• A list of character vectors of color codes. The minimum length vector that
exceeds the number of data levels is chosen for the color scaling. This is
useful if you want to change the color palette based on the number of levels.

• A function that returns a discrete colour/fill scale (e.g., scale_fill_hue(),
scale_fill_brewer(), etc).

See Also

The discrete colour scales section of the online ggplot2 book.

Examples

# Template function for creating densities grouped by a variable
cty_by_var <- function(var) {

ggplot(mpg, aes(cty, colour = factor({{var}}), fill = factor({{var}}))) +
geom_density(alpha = 0.2)

}

# The default, scale_fill_hue(), is not colour-blind safe
cty_by_var(class)

# (Temporarily) set the default to Okabe-Ito (which is colour-blind safe)
okabe <- c("#E69F00", "#56B4E9", "#009E73", "#F0E442", "#0072B2", "#D55E00", "#CC79A7")
withr::with_options(

list(ggplot2.discrete.fill = okabe),
print(cty_by_var(class))

)

# Define a collection of palettes to alter the default based on number of levels to encode
discrete_palettes <- list(

c("skyblue", "orange"),
RColorBrewer::brewer.pal(3, "Set2"),
RColorBrewer::brewer.pal(6, "Accent")

)
withr::with_options(

list(ggplot2.discrete.fill = discrete_palettes), {
# 1st palette is used when there 1-2 levels (e.g., year)
print(cty_by_var(year))
# 2nd palette is used when there are 3 levels
print(cty_by_var(drv))
# 3rd palette is used when there are 4-6 levels
print(cty_by_var(fl))

})

https://ggplot2-book.org/scales-colour#sec-colour-discrete


scale_colour_gradient 263

scale_colour_gradient Gradient colour scales

Description
scale_*_gradient creates a two colour gradient (low-high), scale_*_gradient2 creates a diverg-
ing colour gradient (low-mid-high), scale_*_gradientn creates a n-colour gradient. For binned
variants of these scales, see the color steps scales.

Usage

scale_colour_gradient(
name = waiver(),
...,
low = "#132B43",
high = "#56B1F7",
space = "Lab",
na.value = "grey50",
guide = "colourbar",
aesthetics = "colour"

)

scale_fill_gradient(
name = waiver(),
...,
low = "#132B43",
high = "#56B1F7",
space = "Lab",
na.value = "grey50",
guide = "colourbar",
aesthetics = "fill"

)

scale_colour_gradient2(
name = waiver(),
...,
low = muted("red"),
mid = "white",
high = muted("blue"),
midpoint = 0,
space = "Lab",
na.value = "grey50",
transform = "identity",
guide = "colourbar",
aesthetics = "colour"

)



264 scale_colour_gradient

scale_fill_gradient2(
name = waiver(),
...,
low = muted("red"),
mid = "white",
high = muted("blue"),
midpoint = 0,
space = "Lab",
na.value = "grey50",
transform = "identity",
guide = "colourbar",
aesthetics = "fill"

)

scale_colour_gradientn(
name = waiver(),
...,
colours,
values = NULL,
space = "Lab",
na.value = "grey50",
guide = "colourbar",
aesthetics = "colour",
colors

)

scale_fill_gradientn(
name = waiver(),
...,
colours,
values = NULL,
space = "Lab",
na.value = "grey50",
guide = "colourbar",
aesthetics = "fill",
colors

)

Arguments

name The name of the scale. Used as the axis or legend title. If waiver(), the default,
the name of the scale is taken from the first mapping used for that aesthetic. If
NULL, the legend title will be omitted.

... Arguments passed on to continuous_scale

scale_name [Deprecated] The name of the scale that should be used for error
messages associated with this scale.

palette A palette function that when called with a numeric vector with values
between 0 and 1 returns the corresponding output values (e.g., scales::pal_area()).



scale_colour_gradient 265

breaks One of:
• NULL for no breaks
• waiver() for the default breaks computed by the transformation object
• A numeric vector of positions
• A function that takes the limits as input and returns breaks as output

(e.g., a function returned by scales::extended_breaks()). Note that
for position scales, limits are provided after scale expansion. Also ac-
cepts rlang lambda function notation.

minor_breaks One of:
• NULL for no minor breaks
• waiver() for the default breaks (one minor break between each major

break)
• A numeric vector of positions
• A function that given the limits returns a vector of minor breaks. Also

accepts rlang lambda function notation. When the function has two
arguments, it will be given the limits and major breaks.

n.breaks An integer guiding the number of major breaks. The algorithm may
choose a slightly different number to ensure nice break labels. Will only
have an effect if breaks = waiver(). Use NULL to use the default number
of breaks given by the transformation.

labels One of:
• NULL for no labels
• waiver() for the default labels computed by the transformation object
• A character vector giving labels (must be same length as breaks)
• An expression vector (must be the same length as breaks). See ?plot-

math for details.
• A function that takes the breaks as input and returns labels as output.

Also accepts rlang lambda function notation.
limits One of:

• NULL to use the default scale range
• A numeric vector of length two providing limits of the scale. Use NA to

refer to the existing minimum or maximum
• A function that accepts the existing (automatic) limits and returns new

limits. Also accepts rlang lambda function notation. Note that setting
limits on positional scales will remove data outside of the limits. If
the purpose is to zoom, use the limit argument in the coordinate system
(see coord_cartesian()).

rescaler A function used to scale the input values to the range [0, 1]. This is
always scales::rescale(), except for diverging and n colour gradients
(i.e., scale_colour_gradient2(), scale_colour_gradientn()). The
rescaler is ignored by position scales, which always use scales::rescale().
Also accepts rlang lambda function notation.

oob One of:
• Function that handles limits outside of the scale limits (out of bounds).

Also accepts rlang lambda function notation.



266 scale_colour_gradient

• The default (scales::censor()) replaces out of bounds values with
NA.

• scales::squish() for squishing out of bounds values into range.
• scales::squish_infinite() for squishing infinite values into range.

trans [Deprecated] Deprecated in favour of transform.
call The call used to construct the scale for reporting messages.
super The super class to use for the constructed scale

low, high Colours for low and high ends of the gradient.

space colour space in which to calculate gradient. Must be "Lab" - other values are
deprecated.

na.value Colour to use for missing values

guide Type of legend. Use "colourbar" for continuous colour bar, or "legend" for
discrete colour legend.

aesthetics Character string or vector of character strings listing the name(s) of the aes-
thetic(s) that this scale works with. This can be useful, for example, to ap-
ply colour settings to the colour and fill aesthetics at the same time, via
aesthetics = c("colour", "fill").

mid colour for mid point

midpoint The midpoint (in data value) of the diverging scale. Defaults to 0.

transform For continuous scales, the name of a transformation object or the object itself.
Built-in transformations include "asn", "atanh", "boxcox", "date", "exp", "hms",
"identity", "log", "log10", "log1p", "log2", "logit", "modulus", "probability",
"probit", "pseudo_log", "reciprocal", "reverse", "sqrt" and "time".
A transformation object bundles together a transform, its inverse, and methods
for generating breaks and labels. Transformation objects are defined in the scales
package, and are called transform_<name>. If transformations require argu-
ments, you can call them from the scales package, e.g. scales::transform_boxcox(p
= 2). You can create your own transformation with scales::new_transform().

colours, colors Vector of colours to use for n-colour gradient.

values if colours should not be evenly positioned along the gradient this vector gives
the position (between 0 and 1) for each colour in the colours vector. See
rescale() for a convenience function to map an arbitrary range to between
0 and 1.

Details

Default colours are generated with munsell and mnsl(c("2.5PB 2/4", "2.5PB 7/10")). Gener-
ally, for continuous colour scales you want to keep hue constant, but vary chroma and luminance.
The munsell package makes this easy to do using the Munsell colour system.

See Also

scales::pal_seq_gradient() for details on underlying palette, scale_colour_steps() for binned
variants of these scales.

The documentation on colour aesthetics.



scale_colour_gradient 267

Other colour scales: scale_alpha(), scale_colour_brewer(), scale_colour_continuous(),
scale_colour_grey(), scale_colour_hue(), scale_colour_identity(), scale_colour_manual(),
scale_colour_steps(), scale_colour_viridis_d()

Examples

set.seed(1)
df <- data.frame(

x = runif(100),
y = runif(100),
z1 = rnorm(100),
z2 = abs(rnorm(100))

)

df_na <- data.frame(
value = seq(1, 20),
x = runif(20),
y = runif(20),
z1 = c(rep(NA, 10), rnorm(10))

)

# Default colour scale colours from light blue to dark blue
ggplot(df, aes(x, y)) +

geom_point(aes(colour = z2))

# For diverging colour scales use gradient2
ggplot(df, aes(x, y)) +

geom_point(aes(colour = z1)) +
scale_colour_gradient2()

# Use your own colour scale with gradientn
ggplot(df, aes(x, y)) +

geom_point(aes(colour = z1)) +
scale_colour_gradientn(colours = terrain.colors(10))

# Equivalent fill scales do the same job for the fill aesthetic
ggplot(faithfuld, aes(waiting, eruptions)) +

geom_raster(aes(fill = density)) +
scale_fill_gradientn(colours = terrain.colors(10))

# Adjust colour choices with low and high
ggplot(df, aes(x, y)) +

geom_point(aes(colour = z2)) +
scale_colour_gradient(low = "white", high = "black")

# Avoid red-green colour contrasts because ~10% of men have difficulty
# seeing them

# Use `na.value = NA` to hide missing values but keep the original axis range
ggplot(df_na, aes(x = value, y)) +

geom_bar(aes(fill = z1), stat = "identity") +
scale_fill_gradient(low = "yellow", high = "red", na.value = NA)

ggplot(df_na, aes(x, y)) +



268 scale_colour_grey

geom_point(aes(colour = z1)) +
scale_colour_gradient(low = "yellow", high = "red", na.value = NA)

scale_colour_grey Sequential grey colour scales

Description

Based on gray.colors(). This is black and white equivalent of scale_colour_gradient().

Usage

scale_colour_grey(
name = waiver(),
...,
start = 0.2,
end = 0.8,
na.value = "red",
aesthetics = "colour"

)

scale_fill_grey(
name = waiver(),
...,
start = 0.2,
end = 0.8,
na.value = "red",
aesthetics = "fill"

)

Arguments

name The name of the scale. Used as the axis or legend title. If waiver(), the default,
the name of the scale is taken from the first mapping used for that aesthetic. If
NULL, the legend title will be omitted.

... Arguments passed on to discrete_scale

palette A palette function that when called with a single integer argument (the
number of levels in the scale) returns the values that they should take (e.g.,
scales::pal_hue()).

breaks One of:
• NULL for no breaks
• waiver() for the default breaks (the scale limits)
• A character vector of breaks
• A function that takes the limits as input and returns breaks as output.

Also accepts rlang lambda function notation.



scale_colour_grey 269

limits One of:
• NULL to use the default scale values
• A character vector that defines possible values of the scale and their

order
• A function that accepts the existing (automatic) values and returns new

ones. Also accepts rlang lambda function notation.
drop Should unused factor levels be omitted from the scale? The default, TRUE,

uses the levels that appear in the data; FALSE includes the levels in the
factor. Please note that to display every level in a legend, the layer should
use show.legend = TRUE.

na.translate Unlike continuous scales, discrete scales can easily show miss-
ing values, and do so by default. If you want to remove missing values from
a discrete scale, specify na.translate = FALSE.

labels One of:
• NULL for no labels
• waiver() for the default labels computed by the transformation object
• A character vector giving labels (must be same length as breaks)
• An expression vector (must be the same length as breaks). See ?plot-

math for details.
• A function that takes the breaks as input and returns labels as output.

Also accepts rlang lambda function notation.
guide A function used to create a guide or its name. See guides() for more

information.
call The call used to construct the scale for reporting messages.
super The super class to use for the constructed scale

start grey value at low end of palette

end grey value at high end of palette

na.value Colour to use for missing values

aesthetics Character string or vector of character strings listing the name(s) of the aes-
thetic(s) that this scale works with. This can be useful, for example, to ap-
ply colour settings to the colour and fill aesthetics at the same time, via
aesthetics = c("colour", "fill").

See Also

The documentation on colour aesthetics.

The hue and grey scales section of the online ggplot2 book.

Other colour scales: scale_alpha(), scale_colour_brewer(), scale_colour_continuous(),
scale_colour_gradient(), scale_colour_hue(), scale_colour_identity(), scale_colour_manual(),
scale_colour_steps(), scale_colour_viridis_d()

Examples

p <- ggplot(mtcars, aes(mpg, wt)) + geom_point(aes(colour = factor(cyl)))
p + scale_colour_grey()

https://ggplot2-book.org/scales-colour#hue-and-grey-scales


270 scale_colour_hue

p + scale_colour_grey(end = 0)

# You may want to turn off the pale grey background with this scale
p + scale_colour_grey() + theme_bw()

# Colour of missing values is controlled with na.value:
miss <- factor(sample(c(NA, 1:5), nrow(mtcars), replace = TRUE))
ggplot(mtcars, aes(mpg, wt)) +

geom_point(aes(colour = miss)) +
scale_colour_grey()

ggplot(mtcars, aes(mpg, wt)) +
geom_point(aes(colour = miss)) +
scale_colour_grey(na.value = "green")

scale_colour_hue Evenly spaced colours for discrete data

Description

Maps each level to an evenly spaced hue on the colour wheel. It does not generate colour-blind safe
palettes.

Usage

scale_colour_hue(
name = waiver(),
...,
h = c(0, 360) + 15,
c = 100,
l = 65,
h.start = 0,
direction = 1,
na.value = "grey50",
aesthetics = "colour"

)

scale_fill_hue(
name = waiver(),
...,
h = c(0, 360) + 15,
c = 100,
l = 65,
h.start = 0,
direction = 1,
na.value = "grey50",
aesthetics = "fill"

)



scale_colour_hue 271

Arguments

name The name of the scale. Used as the axis or legend title. If waiver(), the default,
the name of the scale is taken from the first mapping used for that aesthetic. If
NULL, the legend title will be omitted.

... Arguments passed on to discrete_scale

palette A palette function that when called with a single integer argument (the
number of levels in the scale) returns the values that they should take (e.g.,
scales::pal_hue()).

breaks One of:
• NULL for no breaks
• waiver() for the default breaks (the scale limits)
• A character vector of breaks
• A function that takes the limits as input and returns breaks as output.

Also accepts rlang lambda function notation.
limits One of:

• NULL to use the default scale values
• A character vector that defines possible values of the scale and their

order
• A function that accepts the existing (automatic) values and returns new

ones. Also accepts rlang lambda function notation.
drop Should unused factor levels be omitted from the scale? The default, TRUE,

uses the levels that appear in the data; FALSE includes the levels in the
factor. Please note that to display every level in a legend, the layer should
use show.legend = TRUE.

na.translate Unlike continuous scales, discrete scales can easily show miss-
ing values, and do so by default. If you want to remove missing values from
a discrete scale, specify na.translate = FALSE.

labels One of:
• NULL for no labels
• waiver() for the default labels computed by the transformation object
• A character vector giving labels (must be same length as breaks)
• An expression vector (must be the same length as breaks). See ?plot-

math for details.
• A function that takes the breaks as input and returns labels as output.

Also accepts rlang lambda function notation.
guide A function used to create a guide or its name. See guides() for more

information.
call The call used to construct the scale for reporting messages.
super The super class to use for the constructed scale

h range of hues to use, in [0, 360]

c chroma (intensity of colour), maximum value varies depending on combination
of hue and luminance.

l luminance (lightness), in [0, 100]



272 scale_colour_hue

h.start hue to start at

direction direction to travel around the colour wheel, 1 = clockwise, -1 = counter-clockwise

na.value Colour to use for missing values

aesthetics Character string or vector of character strings listing the name(s) of the aes-
thetic(s) that this scale works with. This can be useful, for example, to ap-
ply colour settings to the colour and fill aesthetics at the same time, via
aesthetics = c("colour", "fill").

See Also

The documentation on colour aesthetics.

The hue and grey scales section of the online ggplot2 book.

Other colour scales: scale_alpha(), scale_colour_brewer(), scale_colour_continuous(),
scale_colour_gradient(), scale_colour_grey(), scale_colour_identity(), scale_colour_manual(),
scale_colour_steps(), scale_colour_viridis_d()

Examples

set.seed(596)
dsamp <- diamonds[sample(nrow(diamonds), 1000), ]
(d <- ggplot(dsamp, aes(carat, price)) + geom_point(aes(colour = clarity)))

# Change scale label
d + scale_colour_hue()
d + scale_colour_hue("clarity")
d + scale_colour_hue(expression(clarity[beta]))

# Adjust luminosity and chroma
d + scale_colour_hue(l = 40, c = 30)
d + scale_colour_hue(l = 70, c = 30)
d + scale_colour_hue(l = 70, c = 150)
d + scale_colour_hue(l = 80, c = 150)

# Change range of hues used
d + scale_colour_hue(h = c(0, 90))
d + scale_colour_hue(h = c(90, 180))
d + scale_colour_hue(h = c(180, 270))
d + scale_colour_hue(h = c(270, 360))

# Vary opacity
# (only works with pdf, quartz and cairo devices)
d <- ggplot(dsamp, aes(carat, price, colour = clarity))
d + geom_point(alpha = 0.9)
d + geom_point(alpha = 0.5)
d + geom_point(alpha = 0.2)

# Colour of missing values is controlled with na.value:
miss <- factor(sample(c(NA, 1:5), nrow(mtcars), replace = TRUE))
ggplot(mtcars, aes(mpg, wt)) +

geom_point(aes(colour = miss))

https://ggplot2-book.org/scales-colour#hue-and-grey-scales


scale_colour_steps 273

ggplot(mtcars, aes(mpg, wt)) +
geom_point(aes(colour = miss)) +
scale_colour_hue(na.value = "black")

scale_colour_steps Binned gradient colour scales

Description
scale_*_steps creates a two colour binned gradient (low-high), scale_*_steps2 creates a di-
verging binned colour gradient (low-mid-high), and scale_*_stepsn creates a n-colour binned
gradient. These scales are binned variants of the gradient scale family and works in the same way.

Usage

scale_colour_steps(
name = waiver(),
...,
low = "#132B43",
high = "#56B1F7",
space = "Lab",
na.value = "grey50",
guide = "coloursteps",
aesthetics = "colour"

)

scale_colour_steps2(
name = waiver(),
...,
low = muted("red"),
mid = "white",
high = muted("blue"),
midpoint = 0,
space = "Lab",
na.value = "grey50",
transform = "identity",
guide = "coloursteps",
aesthetics = "colour"

)

scale_colour_stepsn(
name = waiver(),
...,
colours,
values = NULL,
space = "Lab",
na.value = "grey50",



274 scale_colour_steps

guide = "coloursteps",
aesthetics = "colour",
colors

)

scale_fill_steps(
name = waiver(),
...,
low = "#132B43",
high = "#56B1F7",
space = "Lab",
na.value = "grey50",
guide = "coloursteps",
aesthetics = "fill"

)

scale_fill_steps2(
name = waiver(),
...,
low = muted("red"),
mid = "white",
high = muted("blue"),
midpoint = 0,
space = "Lab",
na.value = "grey50",
transform = "identity",
guide = "coloursteps",
aesthetics = "fill"

)

scale_fill_stepsn(
name = waiver(),
...,
colours,
values = NULL,
space = "Lab",
na.value = "grey50",
guide = "coloursteps",
aesthetics = "fill",
colors

)

Arguments

name The name of the scale. Used as the axis or legend title. If waiver(), the default,
the name of the scale is taken from the first mapping used for that aesthetic. If
NULL, the legend title will be omitted.

... Arguments passed on to binned_scale



scale_colour_steps 275

n.breaks The number of break points to create if breaks are not given directly.
nice.breaks Logical. Should breaks be attempted placed at nice values in-

stead of exactly evenly spaced between the limits. If TRUE (default) the
scale will ask the transformation object to create breaks, and this may re-
sult in a different number of breaks than requested. Ignored if breaks are
given explicitly.

oob One of:
• Function that handles limits outside of the scale limits (out of bounds).

Also accepts rlang lambda function notation.
• The default (scales::squish()) squishes out of bounds values into

range.
• scales::censor for replacing out of bounds values with NA.
• scales::squish_infinite() for squishing infinite values into range.

right Should the intervals be closed on the right (TRUE, default) or should the
intervals be closed on the left (FALSE)? ’Closed on the right’ means that
values at break positions are part of the lower bin (open on the left), whereas
they are part of the upper bin when intervals are closed on the left (open on
the right).

show.limits should the limits of the scale appear as ticks
breaks One of:

• NULL for no breaks
• waiver() for the default breaks computed by the transformation object
• A numeric vector of positions
• A function that takes the limits as input and returns breaks as output

(e.g., a function returned by scales::extended_breaks()). Note that
for position scales, limits are provided after scale expansion. Also ac-
cepts rlang lambda function notation.

labels One of:
• NULL for no labels
• waiver() for the default labels computed by the transformation object
• A character vector giving labels (must be same length as breaks)
• An expression vector (must be the same length as breaks). See ?plot-

math for details.
• A function that takes the breaks as input and returns labels as output.

Also accepts rlang lambda function notation.
limits One of:

• NULL to use the default scale range
• A numeric vector of length two providing limits of the scale. Use NA to

refer to the existing minimum or maximum
• A function that accepts the existing (automatic) limits and returns new

limits. Also accepts rlang lambda function notation. Note that setting
limits on positional scales will remove data outside of the limits. If
the purpose is to zoom, use the limit argument in the coordinate system
(see coord_cartesian()).

trans [Deprecated] Deprecated in favour of transform.



276 scale_colour_steps

call The call used to construct the scale for reporting messages.
super The super class to use for the constructed scale

low, high Colours for low and high ends of the gradient.

space colour space in which to calculate gradient. Must be "Lab" - other values are
deprecated.

na.value Colour to use for missing values

guide Type of legend. Use "colourbar" for continuous colour bar, or "legend" for
discrete colour legend.

aesthetics Character string or vector of character strings listing the name(s) of the aes-
thetic(s) that this scale works with. This can be useful, for example, to ap-
ply colour settings to the colour and fill aesthetics at the same time, via
aesthetics = c("colour", "fill").

mid colour for mid point

midpoint The midpoint (in data value) of the diverging scale. Defaults to 0.

transform For continuous scales, the name of a transformation object or the object itself.
Built-in transformations include "asn", "atanh", "boxcox", "date", "exp", "hms",
"identity", "log", "log10", "log1p", "log2", "logit", "modulus", "probability",
"probit", "pseudo_log", "reciprocal", "reverse", "sqrt" and "time".
A transformation object bundles together a transform, its inverse, and methods
for generating breaks and labels. Transformation objects are defined in the scales
package, and are called transform_<name>. If transformations require argu-
ments, you can call them from the scales package, e.g. scales::transform_boxcox(p
= 2). You can create your own transformation with scales::new_transform().

colours, colors Vector of colours to use for n-colour gradient.

values if colours should not be evenly positioned along the gradient this vector gives
the position (between 0 and 1) for each colour in the colours vector. See
rescale() for a convenience function to map an arbitrary range to between
0 and 1.

Details

Default colours are generated with munsell and mnsl(c("2.5PB 2/4", "2.5PB 7/10")). Gener-
ally, for continuous colour scales you want to keep hue constant, but vary chroma and luminance.
The munsell package makes this easy to do using the Munsell colour system.

See Also

scales::pal_seq_gradient() for details on underlying palette, scale_colour_gradient() for
continuous scales without binning.

The documentation on colour aesthetics.

The binned colour scales section of the online ggplot2 book.

Other colour scales: scale_alpha(), scale_colour_brewer(), scale_colour_continuous(),
scale_colour_gradient(), scale_colour_grey(), scale_colour_hue(), scale_colour_identity(),
scale_colour_manual(), scale_colour_viridis_d()

https://ggplot2-book.org/scales-colour#sec-binned-colour


scale_colour_viridis_d 277

Examples

set.seed(1)
df <- data.frame(

x = runif(100),
y = runif(100),
z1 = rnorm(100)

)

# Use scale_colour_steps for a standard binned gradient
ggplot(df, aes(x, y)) +

geom_point(aes(colour = z1)) +
scale_colour_steps()

# Get a divergent binned scale with the *2 variant
ggplot(df, aes(x, y)) +

geom_point(aes(colour = z1)) +
scale_colour_steps2()

# Define your own colour ramp to extract binned colours from
ggplot(df, aes(x, y)) +

geom_point(aes(colour = z1)) +
scale_colour_stepsn(colours = terrain.colors(10))

scale_colour_viridis_d

Viridis colour scales from viridisLite

Description

The viridis scales provide colour maps that are perceptually uniform in both colour and black-
and-white. They are also designed to be perceived by viewers with common forms of colour blind-
ness. See also https://bids.github.io/colormap/.

Usage

scale_colour_viridis_d(
name = waiver(),
...,
alpha = 1,
begin = 0,
end = 1,
direction = 1,
option = "D",
aesthetics = "colour"

)

scale_fill_viridis_d(
name = waiver(),

https://bids.github.io/colormap/


278 scale_colour_viridis_d

...,
alpha = 1,
begin = 0,
end = 1,
direction = 1,
option = "D",
aesthetics = "fill"

)

scale_colour_viridis_c(
name = waiver(),
...,
alpha = 1,
begin = 0,
end = 1,
direction = 1,
option = "D",
values = NULL,
space = "Lab",
na.value = "grey50",
guide = "colourbar",
aesthetics = "colour"

)

scale_fill_viridis_c(
name = waiver(),
...,
alpha = 1,
begin = 0,
end = 1,
direction = 1,
option = "D",
values = NULL,
space = "Lab",
na.value = "grey50",
guide = "colourbar",
aesthetics = "fill"

)

scale_colour_viridis_b(
name = waiver(),
...,
alpha = 1,
begin = 0,
end = 1,
direction = 1,
option = "D",
values = NULL,



scale_colour_viridis_d 279

space = "Lab",
na.value = "grey50",
guide = "coloursteps",
aesthetics = "colour"

)

scale_fill_viridis_b(
name = waiver(),
...,
alpha = 1,
begin = 0,
end = 1,
direction = 1,
option = "D",
values = NULL,
space = "Lab",
na.value = "grey50",
guide = "coloursteps",
aesthetics = "fill"

)

Arguments

name The name of the scale. Used as the axis or legend title. If waiver(), the default,
the name of the scale is taken from the first mapping used for that aesthetic. If
NULL, the legend title will be omitted.

... Other arguments passed on to discrete_scale(), continuous_scale(), or
binned_scale() to control name, limits, breaks, labels and so forth.

alpha The alpha transparency, a number in [0,1], see argument alpha in hsv.

begin, end The (corrected) hue in [0,1] at which the color map begins and ends.

direction Sets the order of colors in the scale. If 1, the default, colors are ordered from
darkest to lightest. If -1, the order of colors is reversed.

option A character string indicating the color map option to use. Eight options are
available:

• "magma" (or "A")
• "inferno" (or "B")
• "plasma" (or "C")
• "viridis" (or "D")
• "cividis" (or "E")
• "rocket" (or "F")
• "mako" (or "G")
• "turbo" (or "H")

aesthetics Character string or vector of character strings listing the name(s) of the aes-
thetic(s) that this scale works with. This can be useful, for example, to ap-
ply colour settings to the colour and fill aesthetics at the same time, via
aesthetics = c("colour", "fill").



280 scale_colour_viridis_d

values if colours should not be evenly positioned along the gradient this vector gives
the position (between 0 and 1) for each colour in the colours vector. See
rescale() for a convenience function to map an arbitrary range to between
0 and 1.

space colour space in which to calculate gradient. Must be "Lab" - other values are
deprecated.

na.value Missing values will be replaced with this value.

guide A function used to create a guide or its name. See guides() for more informa-
tion.

See Also

The documentation on colour aesthetics.

Other colour scales: scale_alpha(), scale_colour_brewer(), scale_colour_continuous(),
scale_colour_gradient(), scale_colour_grey(), scale_colour_hue(), scale_colour_identity(),
scale_colour_manual(), scale_colour_steps()

Examples

# viridis is the default colour/fill scale for ordered factors
set.seed(596)
dsamp <- diamonds[sample(nrow(diamonds), 1000), ]
ggplot(dsamp, aes(carat, price)) +

geom_point(aes(colour = clarity))

# Use viridis_d with discrete data
txsamp <- subset(txhousing, city %in%

c("Houston", "Fort Worth", "San Antonio", "Dallas", "Austin"))
(d <- ggplot(data = txsamp, aes(x = sales, y = median)) +

geom_point(aes(colour = city)))
d + scale_colour_viridis_d()

# Change scale label
d + scale_colour_viridis_d("City\nCenter")

# Select palette to use, see ?scales::pal_viridis for more details
d + scale_colour_viridis_d(option = "plasma")
d + scale_colour_viridis_d(option = "inferno")

# scale_fill_viridis_d works just the same as
# scale_colour_viridis_d but for fill colours
p <- ggplot(txsamp, aes(x = median, fill = city)) +

geom_histogram(position = "dodge", binwidth = 15000)
p + scale_fill_viridis_d()
# the order of colour can be reversed
p + scale_fill_viridis_d(direction = -1)

# Use viridis_c with continuous data
(v <- ggplot(faithfuld) +

geom_tile(aes(waiting, eruptions, fill = density)))



scale_continuous 281

v + scale_fill_viridis_c()
v + scale_fill_viridis_c(option = "plasma")

# Use viridis_b to bin continuous data before mapping
v + scale_fill_viridis_b()

scale_continuous Position scales for continuous data (x & y)

Description

scale_x_continuous() and scale_y_continuous() are the default scales for continuous x and
y aesthetics. There are three variants that set the transform argument for commonly used transfor-
mations: scale_*_log10(), scale_*_sqrt() and scale_*_reverse().

Usage

scale_x_continuous(
name = waiver(),
breaks = waiver(),
minor_breaks = waiver(),
n.breaks = NULL,
labels = waiver(),
limits = NULL,
expand = waiver(),
oob = censor,
na.value = NA_real_,
transform = "identity",
trans = deprecated(),
guide = waiver(),
position = "bottom",
sec.axis = waiver()

)

scale_y_continuous(
name = waiver(),
breaks = waiver(),
minor_breaks = waiver(),
n.breaks = NULL,
labels = waiver(),
limits = NULL,
expand = waiver(),
oob = censor,
na.value = NA_real_,
transform = "identity",
trans = deprecated(),



282 scale_continuous

guide = waiver(),
position = "left",
sec.axis = waiver()

)

scale_x_log10(...)

scale_y_log10(...)

scale_x_reverse(...)

scale_y_reverse(...)

scale_x_sqrt(...)

scale_y_sqrt(...)

Arguments

name The name of the scale. Used as the axis or legend title. If waiver(), the default,
the name of the scale is taken from the first mapping used for that aesthetic. If
NULL, the legend title will be omitted.

breaks One of:

• NULL for no breaks
• waiver() for the default breaks computed by the transformation object
• A numeric vector of positions
• A function that takes the limits as input and returns breaks as output (e.g.,

a function returned by scales::extended_breaks()). Note that for po-
sition scales, limits are provided after scale expansion. Also accepts rlang
lambda function notation.

minor_breaks One of:

• NULL for no minor breaks
• waiver() for the default breaks (one minor break between each major

break)
• A numeric vector of positions
• A function that given the limits returns a vector of minor breaks. Also

accepts rlang lambda function notation. When the function has two argu-
ments, it will be given the limits and major breaks.

n.breaks An integer guiding the number of major breaks. The algorithm may choose a
slightly different number to ensure nice break labels. Will only have an effect if
breaks = waiver(). Use NULL to use the default number of breaks given by the
transformation.

labels One of:

• NULL for no labels
• waiver() for the default labels computed by the transformation object



scale_continuous 283

• A character vector giving labels (must be same length as breaks)
• An expression vector (must be the same length as breaks). See ?plotmath

for details.
• A function that takes the breaks as input and returns labels as output. Also

accepts rlang lambda function notation.

limits One of:

• NULL to use the default scale range
• A numeric vector of length two providing limits of the scale. Use NA to

refer to the existing minimum or maximum
• A function that accepts the existing (automatic) limits and returns new

limits. Also accepts rlang lambda function notation. Note that setting
limits on positional scales will remove data outside of the limits. If the
purpose is to zoom, use the limit argument in the coordinate system (see
coord_cartesian()).

expand For position scales, a vector of range expansion constants used to add some
padding around the data to ensure that they are placed some distance away from
the axes. Use the convenience function expansion() to generate the values for
the expand argument. The defaults are to expand the scale by 5% on each side
for continuous variables, and by 0.6 units on each side for discrete variables.

oob One of:

• Function that handles limits outside of the scale limits (out of bounds). Also
accepts rlang lambda function notation.

• The default (scales::censor()) replaces out of bounds values with NA.
• scales::squish() for squishing out of bounds values into range.
• scales::squish_infinite() for squishing infinite values into range.

na.value Missing values will be replaced with this value.

transform For continuous scales, the name of a transformation object or the object itself.
Built-in transformations include "asn", "atanh", "boxcox", "date", "exp", "hms",
"identity", "log", "log10", "log1p", "log2", "logit", "modulus", "probability",
"probit", "pseudo_log", "reciprocal", "reverse", "sqrt" and "time".
A transformation object bundles together a transform, its inverse, and methods
for generating breaks and labels. Transformation objects are defined in the scales
package, and are called transform_<name>. If transformations require argu-
ments, you can call them from the scales package, e.g. scales::transform_boxcox(p
= 2). You can create your own transformation with scales::new_transform().

trans [Deprecated] Deprecated in favour of transform.

guide A function used to create a guide or its name. See guides() for more informa-
tion.

position For position scales, The position of the axis. left or right for y axes, top or
bottom for x axes.

sec.axis sec_axis() is used to specify a secondary axis.

... Other arguments passed on to scale_(x|y)_continuous()



284 scale_continuous

Details

For simple manipulation of labels and limits, you may wish to use labs() and lims() instead.

See Also

The position documentation.

The numeric position scales section of the online ggplot2 book.

Other position scales: scale_x_binned(), scale_x_date(), scale_x_discrete()

Examples

p1 <- ggplot(mpg, aes(displ, hwy)) +
geom_point()

p1

# Manipulating the default position scales lets you:
# * change the axis labels
p1 +

scale_x_continuous("Engine displacement (L)") +
scale_y_continuous("Highway MPG")

# You can also use the short-cut labs().
# Use NULL to suppress axis labels
p1 + labs(x = NULL, y = NULL)

# * modify the axis limits
p1 + scale_x_continuous(limits = c(2, 6))
p1 + scale_x_continuous(limits = c(0, 10))

# you can also use the short hand functions `xlim()` and `ylim()`
p1 + xlim(2, 6)

# * choose where the ticks appear
p1 + scale_x_continuous(breaks = c(2, 4, 6))

# * choose your own labels
p1 + scale_x_continuous(

breaks = c(2, 4, 6),
label = c("two", "four", "six")

)

# Typically you'll pass a function to the `labels` argument.
# Some common formats are built into the scales package:
set.seed(1)
df <- data.frame(

x = rnorm(10) * 100000,
y = seq(0, 1, length.out = 10)

)
p2 <- ggplot(df, aes(x, y)) + geom_point()
p2 + scale_y_continuous(labels = scales::label_percent())
p2 + scale_y_continuous(labels = scales::label_dollar())

https://ggplot2-book.org/scales-position#sec-numeric-position-scales


scale_date 285

p2 + scale_x_continuous(labels = scales::label_comma())

# You can also override the default linear mapping by using a
# transformation. There are three shortcuts:
p1 + scale_y_log10()
p1 + scale_y_sqrt()
p1 + scale_y_reverse()

# Or you can supply a transformation in the `trans` argument:
p1 + scale_y_continuous(transform = scales::transform_reciprocal())

# You can also create your own. See ?scales::new_transform

scale_date Position scales for date/time data

Description

These are the default scales for the three date/time class. These will usually be added automatically.
To override manually, use scale_*_date for dates (class Date), scale_*_datetime for datetimes
(class POSIXct), and scale_*_time for times (class hms).

Usage

scale_x_date(
name = waiver(),
breaks = waiver(),
date_breaks = waiver(),
labels = waiver(),
date_labels = waiver(),
minor_breaks = waiver(),
date_minor_breaks = waiver(),
limits = NULL,
expand = waiver(),
oob = censor,
guide = waiver(),
position = "bottom",
sec.axis = waiver()

)

scale_y_date(
name = waiver(),
breaks = waiver(),
date_breaks = waiver(),
labels = waiver(),
date_labels = waiver(),
minor_breaks = waiver(),



286 scale_date

date_minor_breaks = waiver(),
limits = NULL,
expand = waiver(),
oob = censor,
guide = waiver(),
position = "left",
sec.axis = waiver()

)

scale_x_datetime(
name = waiver(),
breaks = waiver(),
date_breaks = waiver(),
labels = waiver(),
date_labels = waiver(),
minor_breaks = waiver(),
date_minor_breaks = waiver(),
timezone = NULL,
limits = NULL,
expand = waiver(),
oob = censor,
guide = waiver(),
position = "bottom",
sec.axis = waiver()

)

scale_y_datetime(
name = waiver(),
breaks = waiver(),
date_breaks = waiver(),
labels = waiver(),
date_labels = waiver(),
minor_breaks = waiver(),
date_minor_breaks = waiver(),
timezone = NULL,
limits = NULL,
expand = waiver(),
oob = censor,
guide = waiver(),
position = "left",
sec.axis = waiver()

)

scale_x_time(
name = waiver(),
breaks = waiver(),
minor_breaks = waiver(),
labels = waiver(),



scale_date 287

limits = NULL,
expand = waiver(),
oob = censor,
na.value = NA_real_,
guide = waiver(),
position = "bottom",
sec.axis = waiver()

)

scale_y_time(
name = waiver(),
breaks = waiver(),
minor_breaks = waiver(),
labels = waiver(),
limits = NULL,
expand = waiver(),
oob = censor,
na.value = NA_real_,
guide = waiver(),
position = "left",
sec.axis = waiver()

)

Arguments

name The name of the scale. Used as the axis or legend title. If waiver(), the default,
the name of the scale is taken from the first mapping used for that aesthetic. If
NULL, the legend title will be omitted.

breaks One of:

• NULL for no breaks
• waiver() for the breaks specified by date_breaks

• A Date/POSIXct vector giving positions of breaks
• A function that takes the limits as input and returns breaks as output

date_breaks A string giving the distance between breaks like "2 weeks", or "10 years". If
both breaks and date_breaks are specified, date_breaks wins. Valid spec-
ifications are ’sec’, ’min’, ’hour’, ’day’, ’week’, ’month’ or ’year’, optionally
followed by ’s’.

labels One of:

• NULL for no labels
• waiver() for the default labels computed by the transformation object
• A character vector giving labels (must be same length as breaks)
• An expression vector (must be the same length as breaks). See ?plotmath

for details.
• A function that takes the breaks as input and returns labels as output. Also

accepts rlang lambda function notation.



288 scale_date

date_labels A string giving the formatting specification for the labels. Codes are defined
in strftime(). If both labels and date_labels are specified, date_labels
wins.

minor_breaks One of:

• NULL for no breaks
• waiver() for the breaks specified by date_minor_breaks

• A Date/POSIXct vector giving positions of minor breaks
• A function that takes the limits as input and returns minor breaks as output

date_minor_breaks

A string giving the distance between minor breaks like "2 weeks", or "10 years".
If both minor_breaks and date_minor_breaks are specified, date_minor_breaks
wins. Valid specifications are ’sec’, ’min’, ’hour’, ’day’, ’week’, ’month’ or
’year’, optionally followed by ’s’.

limits One of:

• NULL to use the default scale range
• A numeric vector of length two providing limits of the scale. Use NA to

refer to the existing minimum or maximum
• A function that accepts the existing (automatic) limits and returns new

limits. Also accepts rlang lambda function notation. Note that setting
limits on positional scales will remove data outside of the limits. If the
purpose is to zoom, use the limit argument in the coordinate system (see
coord_cartesian()).

expand For position scales, a vector of range expansion constants used to add some
padding around the data to ensure that they are placed some distance away from
the axes. Use the convenience function expansion() to generate the values for
the expand argument. The defaults are to expand the scale by 5% on each side
for continuous variables, and by 0.6 units on each side for discrete variables.

oob One of:

• Function that handles limits outside of the scale limits (out of bounds). Also
accepts rlang lambda function notation.

• The default (scales::censor()) replaces out of bounds values with NA.
• scales::squish() for squishing out of bounds values into range.
• scales::squish_infinite() for squishing infinite values into range.

guide A function used to create a guide or its name. See guides() for more informa-
tion.

position For position scales, The position of the axis. left or right for y axes, top or
bottom for x axes.

sec.axis sec_axis() is used to specify a secondary axis.

timezone The timezone to use for display on the axes. The default (NULL) uses the time-
zone encoded in the data.

na.value Missing values will be replaced with this value.



scale_identity 289

See Also

sec_axis() for how to specify secondary axes.

The date-time position scales section of the online ggplot2 book.

The position documentation.

Other position scales: scale_x_binned(), scale_x_continuous(), scale_x_discrete()

Examples

last_month <- Sys.Date() - 0:29
set.seed(1)
df <- data.frame(

date = last_month,
price = runif(30)

)
base <- ggplot(df, aes(date, price)) +

geom_line()

# The date scale will attempt to pick sensible defaults for
# major and minor tick marks. Override with date_breaks, date_labels
# date_minor_breaks arguments.
base + scale_x_date(date_labels = "%b %d")
base + scale_x_date(date_breaks = "1 week", date_labels = "%W")
base + scale_x_date(date_minor_breaks = "1 day")

# Set limits
base + scale_x_date(limits = c(Sys.Date() - 7, NA))

scale_identity Use values without scaling

Description

Use this set of scales when your data has already been scaled, i.e. it already represents aesthetic
values that ggplot2 can handle directly. These scales will not produce a legend unless you also
supply the breaks, labels, and type of guide you want.

Usage

scale_colour_identity(
name = waiver(),
...,
guide = "none",
aesthetics = "colour"

)

scale_fill_identity(name = waiver(), ..., guide = "none", aesthetics = "fill")

https://ggplot2-book.org/scales-position#sec-date-scales


290 scale_identity

scale_shape_identity(name = waiver(), ..., guide = "none")

scale_linetype_identity(name = waiver(), ..., guide = "none")

scale_linewidth_identity(name = waiver(), ..., guide = "none")

scale_alpha_identity(name = waiver(), ..., guide = "none")

scale_size_identity(name = waiver(), ..., guide = "none")

scale_discrete_identity(aesthetics, name = waiver(), ..., guide = "none")

scale_continuous_identity(aesthetics, name = waiver(), ..., guide = "none")

Arguments

name The name of the scale. Used as the axis or legend title. If waiver(), the default,
the name of the scale is taken from the first mapping used for that aesthetic. If
NULL, the legend title will be omitted.

... Other arguments passed on to discrete_scale() or continuous_scale()

guide Guide to use for this scale. Defaults to "none".

aesthetics Character string or vector of character strings listing the name(s) of the aes-
thetic(s) that this scale works with. This can be useful, for example, to ap-
ply colour settings to the colour and fill aesthetics at the same time, via
aesthetics = c("colour", "fill").

Details

The functions scale_colour_identity(), scale_fill_identity(), scale_size_identity(),
etc. work on the aesthetics specified in the scale name: colour, fill, size, etc. However,
the functions scale_colour_identity() and scale_fill_identity() also have an optional
aesthetics argument that can be used to define both colour and fill aesthetic mappings via a sin-
gle function call. The functions scale_discrete_identity() and scale_continuous_identity()
are generic scales that can work with any aesthetic or set of aesthetics provided via the aesthetics
argument.

See Also

The identity scales section of the online ggplot2 book.

Other shape scales: scale_shape(), scale_shape_manual().

Other linetype scales: scale_linetype(), scale_linetype_manual().

Other alpha scales: scale_alpha(), scale_alpha_manual().

Other size scales: scale_size(), scale_size_manual().

Other colour scales: scale_alpha(), scale_colour_brewer(), scale_colour_continuous(),
scale_colour_gradient(), scale_colour_grey(), scale_colour_hue(), scale_colour_manual(),
scale_colour_steps(), scale_colour_viridis_d()

https://ggplot2-book.org/scales-other#sec-scale-identity


scale_linetype 291

Examples

ggplot(luv_colours, aes(u, v)) +
geom_point(aes(colour = col), size = 3) +
scale_color_identity() +
coord_fixed()

df <- data.frame(
x = 1:4,
y = 1:4,
colour = c("red", "green", "blue", "yellow")

)
ggplot(df, aes(x, y)) + geom_tile(aes(fill = colour))
ggplot(df, aes(x, y)) +

geom_tile(aes(fill = colour)) +
scale_fill_identity()

# To get a legend guide, specify guide = "legend"
ggplot(df, aes(x, y)) +

geom_tile(aes(fill = colour)) +
scale_fill_identity(guide = "legend")

# But you'll typically also need to supply breaks and labels:
ggplot(df, aes(x, y)) +

geom_tile(aes(fill = colour)) +
scale_fill_identity("trt", labels = letters[1:4], breaks = df$colour,
guide = "legend")

# cyl scaled to appropriate size
ggplot(mtcars, aes(mpg, wt)) +

geom_point(aes(size = cyl))

# cyl used as point size
ggplot(mtcars, aes(mpg, wt)) +

geom_point(aes(size = cyl)) +
scale_size_identity()

scale_linetype Scale for line patterns

Description

Default line types based on a set supplied by Richard Pearson, University of Manchester. Contin-
uous values can not be mapped to line types unless scale_linetype_binned() is used. Still, as
linetypes has no inherent order, this use is not advised.

Usage

scale_linetype(name = waiver(), ..., na.value = "blank")

scale_linetype_binned(name = waiver(), ..., na.value = "blank")



292 scale_linetype

scale_linetype_continuous(...)

scale_linetype_discrete(name = waiver(), ..., na.value = "blank")

Arguments

name The name of the scale. Used as the axis or legend title. If waiver(), the default,
the name of the scale is taken from the first mapping used for that aesthetic. If
NULL, the legend title will be omitted.

... Arguments passed on to discrete_scale

palette A palette function that when called with a single integer argument (the
number of levels in the scale) returns the values that they should take (e.g.,
scales::pal_hue()).

breaks One of:
• NULL for no breaks
• waiver() for the default breaks (the scale limits)
• A character vector of breaks
• A function that takes the limits as input and returns breaks as output.

Also accepts rlang lambda function notation.
limits One of:

• NULL to use the default scale values
• A character vector that defines possible values of the scale and their

order
• A function that accepts the existing (automatic) values and returns new

ones. Also accepts rlang lambda function notation.
drop Should unused factor levels be omitted from the scale? The default, TRUE,

uses the levels that appear in the data; FALSE includes the levels in the
factor. Please note that to display every level in a legend, the layer should
use show.legend = TRUE.

na.translate Unlike continuous scales, discrete scales can easily show miss-
ing values, and do so by default. If you want to remove missing values from
a discrete scale, specify na.translate = FALSE.

aesthetics The names of the aesthetics that this scale works with.
labels One of:

• NULL for no labels
• waiver() for the default labels computed by the transformation object
• A character vector giving labels (must be same length as breaks)
• An expression vector (must be the same length as breaks). See ?plot-

math for details.
• A function that takes the breaks as input and returns labels as output.

Also accepts rlang lambda function notation.
guide A function used to create a guide or its name. See guides() for more

information.
call The call used to construct the scale for reporting messages.



scale_linewidth 293

super The super class to use for the constructed scale

na.value The linetype to use for NA values.

See Also

The documentation for differentiation related aesthetics.

Other linetype scales: scale_linetype_manual(), scale_linetype_identity().

The line type section of the online ggplot2 book.

Examples

base <- ggplot(economics_long, aes(date, value01))
base + geom_line(aes(group = variable))
base + geom_line(aes(linetype = variable))

# See scale_manual for more flexibility

# Common line types ----------------------------
df_lines <- data.frame(

linetype = factor(
1:4,
labels = c("solid", "longdash", "dashed", "dotted")

)
)
ggplot(df_lines) +

geom_hline(aes(linetype = linetype, yintercept = 0), linewidth = 2) +
scale_linetype_identity() +
facet_grid(linetype ~ .) +
theme_void(20)

scale_linewidth Scales for line width

Description

scale_linewidth scales the width of lines and polygon strokes. Due to historical reasons, it is
also possible to control this with the size aesthetic, but using linewidth is encourage to clearly
differentiate area aesthetics from stroke width aesthetics.

Usage

scale_linewidth(
name = waiver(),
breaks = waiver(),
labels = waiver(),
limits = NULL,
range = c(1, 6),
transform = "identity",

https://ggplot2-book.org/scales-other#sec-scale-linetype


294 scale_linewidth

trans = deprecated(),
guide = "legend"

)

scale_linewidth_binned(
name = waiver(),
breaks = waiver(),
labels = waiver(),
limits = NULL,
range = c(1, 6),
n.breaks = NULL,
nice.breaks = TRUE,
transform = "identity",
trans = deprecated(),
guide = "bins"

)

Arguments

name The name of the scale. Used as the axis or legend title. If waiver(), the default,
the name of the scale is taken from the first mapping used for that aesthetic. If
NULL, the legend title will be omitted.

breaks One of:
• NULL for no breaks
• waiver() for the default breaks computed by the transformation object
• A numeric vector of positions
• A function that takes the limits as input and returns breaks as output (e.g.,

a function returned by scales::extended_breaks()). Note that for po-
sition scales, limits are provided after scale expansion. Also accepts rlang
lambda function notation.

labels One of:
• NULL for no labels
• waiver() for the default labels computed by the transformation object
• A character vector giving labels (must be same length as breaks)
• An expression vector (must be the same length as breaks). See ?plotmath

for details.
• A function that takes the breaks as input and returns labels as output. Also

accepts rlang lambda function notation.
limits One of:

• NULL to use the default scale range
• A numeric vector of length two providing limits of the scale. Use NA to

refer to the existing minimum or maximum
• A function that accepts the existing (automatic) limits and returns new

limits. Also accepts rlang lambda function notation. Note that setting
limits on positional scales will remove data outside of the limits. If the
purpose is to zoom, use the limit argument in the coordinate system (see
coord_cartesian()).



scale_manual 295

range a numeric vector of length 2 that specifies the minimum and maximum size of
the plotting symbol after transformation.

transform For continuous scales, the name of a transformation object or the object itself.
Built-in transformations include "asn", "atanh", "boxcox", "date", "exp", "hms",
"identity", "log", "log10", "log1p", "log2", "logit", "modulus", "probability",
"probit", "pseudo_log", "reciprocal", "reverse", "sqrt" and "time".
A transformation object bundles together a transform, its inverse, and methods
for generating breaks and labels. Transformation objects are defined in the scales
package, and are called transform_<name>. If transformations require argu-
ments, you can call them from the scales package, e.g. scales::transform_boxcox(p
= 2). You can create your own transformation with scales::new_transform().

trans [Deprecated] Deprecated in favour of transform.

guide A function used to create a guide or its name. See guides() for more informa-
tion.

n.breaks An integer guiding the number of major breaks. The algorithm may choose a
slightly different number to ensure nice break labels. Will only have an effect if
breaks = waiver(). Use NULL to use the default number of breaks given by the
transformation.

nice.breaks Logical. Should breaks be attempted placed at nice values instead of exactly
evenly spaced between the limits. If TRUE (default) the scale will ask the trans-
formation object to create breaks, and this may result in a different number of
breaks than requested. Ignored if breaks are given explicitly.

See Also

The documentation for differentiation related aesthetics.

The line width section of the online ggplot2 book.

Examples

p <- ggplot(economics, aes(date, unemploy, linewidth = uempmed)) +
geom_line(lineend = "round")

p
p + scale_linewidth("Duration of\nunemployment")
p + scale_linewidth(range = c(0, 4))

# Binning can sometimes make it easier to match the scaled data to the legend
p + scale_linewidth_binned()

scale_manual Create your own discrete scale

Description

These functions allow you to specify your own set of mappings from levels in the data to aesthetic
values.

https://ggplot2-book.org/scales-other#sec-scale-linewidth


296 scale_manual

Usage

scale_colour_manual(
...,
values,
aesthetics = "colour",
breaks = waiver(),
na.value = "grey50"

)

scale_fill_manual(
...,
values,
aesthetics = "fill",
breaks = waiver(),
na.value = "grey50"

)

scale_size_manual(..., values, breaks = waiver(), na.value = NA)

scale_shape_manual(..., values, breaks = waiver(), na.value = NA)

scale_linetype_manual(..., values, breaks = waiver(), na.value = "blank")

scale_linewidth_manual(..., values, breaks = waiver(), na.value = NA)

scale_alpha_manual(..., values, breaks = waiver(), na.value = NA)

scale_discrete_manual(aesthetics, ..., values, breaks = waiver())

Arguments

... Arguments passed on to discrete_scale

limits One of:
• NULL to use the default scale values
• A character vector that defines possible values of the scale and their

order
• A function that accepts the existing (automatic) values and returns new

ones. Also accepts rlang lambda function notation.
drop Should unused factor levels be omitted from the scale? The default, TRUE,

uses the levels that appear in the data; FALSE includes the levels in the
factor. Please note that to display every level in a legend, the layer should
use show.legend = TRUE.

na.translate Unlike continuous scales, discrete scales can easily show miss-
ing values, and do so by default. If you want to remove missing values from
a discrete scale, specify na.translate = FALSE.

name The name of the scale. Used as the axis or legend title. If waiver(), the
default, the name of the scale is taken from the first mapping used for that



scale_manual 297

aesthetic. If NULL, the legend title will be omitted.
labels One of:

• NULL for no labels
• waiver() for the default labels computed by the transformation object
• A character vector giving labels (must be same length as breaks)
• An expression vector (must be the same length as breaks). See ?plot-

math for details.
• A function that takes the breaks as input and returns labels as output.

Also accepts rlang lambda function notation.
guide A function used to create a guide or its name. See guides() for more

information.
call The call used to construct the scale for reporting messages.
super The super class to use for the constructed scale

values a set of aesthetic values to map data values to. The values will be matched
in order (usually alphabetical) with the limits of the scale, or with breaks if
provided. If this is a named vector, then the values will be matched based on the
names instead. Data values that don’t match will be given na.value.

aesthetics Character string or vector of character strings listing the name(s) of the aes-
thetic(s) that this scale works with. This can be useful, for example, to ap-
ply colour settings to the colour and fill aesthetics at the same time, via
aesthetics = c("colour", "fill").

breaks One of:

• NULL for no breaks
• waiver() for the default breaks (the scale limits)
• A character vector of breaks
• A function that takes the limits as input and returns breaks as output

na.value The aesthetic value to use for missing (NA) values

Details

The functions scale_colour_manual(), scale_fill_manual(), scale_size_manual(), etc. work
on the aesthetics specified in the scale name: colour, fill, size, etc. However, the functions
scale_colour_manual() and scale_fill_manual() also have an optional aesthetics argument
that can be used to define both colour and fill aesthetic mappings via a single function call (see
examples). The function scale_discrete_manual() is a generic scale that can work with any
aesthetic or set of aesthetics provided via the aesthetics argument.

Color Blindness

Many color palettes derived from RGB combinations (like the "rainbow" color palette) are not
suitable to support all viewers, especially those with color vision deficiencies. Using viridis type,
which is perceptually uniform in both colour and black-and-white display is an easy option to ensure
good perceptive properties of your visualizations. The colorspace package offers functionalities

• to generate color palettes with good perceptive properties,

• to analyse a given color palette, like emulating color blindness,



298 scale_manual

• and to modify a given color palette for better perceptivity.

For more information on color vision deficiencies and suitable color choices see the paper on the
colorspace package and references therein.

See Also

The documentation for differentiation related aesthetics.

The documentation on colour aesthetics.

The manual scales and manual colour scales sections of the online ggplot2 book.

Other size scales: scale_size(), scale_size_identity().

Other shape scales: scale_shape(), scale_shape_identity().

Other linetype scales: scale_linetype(), scale_linetype_identity().

Other alpha scales: scale_alpha(), scale_alpha_identity().

Other colour scales: scale_alpha(), scale_colour_brewer(), scale_colour_continuous(),
scale_colour_gradient(), scale_colour_grey(), scale_colour_hue(), scale_colour_identity(),
scale_colour_steps(), scale_colour_viridis_d()

Examples

p <- ggplot(mtcars, aes(mpg, wt)) +
geom_point(aes(colour = factor(cyl)))

p + scale_colour_manual(values = c("red", "blue", "green"))

# It's recommended to use a named vector
cols <- c("8" = "red", "4" = "blue", "6" = "darkgreen", "10" = "orange")
p + scale_colour_manual(values = cols)

# You can set color and fill aesthetics at the same time
ggplot(

mtcars,
aes(mpg, wt, colour = factor(cyl), fill = factor(cyl))

) +
geom_point(shape = 21, alpha = 0.5, size = 2) +
scale_colour_manual(
values = cols,
aesthetics = c("colour", "fill")

)

# As with other scales you can use breaks to control the appearance
# of the legend.
p + scale_colour_manual(values = cols)
p + scale_colour_manual(

values = cols,
breaks = c("4", "6", "8"),
labels = c("four", "six", "eight")

)

# And limits to control the possible values of the scale
p + scale_colour_manual(values = cols, limits = c("4", "8"))

https://arxiv.org/abs/1903.06490
https://arxiv.org/abs/1903.06490
https://ggplot2-book.org/scales-other#sec-scale-manual
https://ggplot2-book.org/scales-colour#sec-manual-colour


scale_shape 299

p + scale_colour_manual(values = cols, limits = c("4", "6", "8", "10"))

scale_shape Scales for shapes, aka glyphs

Description

scale_shape() maps discrete variables to six easily discernible shapes. If you have more than six
levels, you will get a warning message, and the seventh and subsequent levels will not appear on
the plot. Use scale_shape_manual() to supply your own values. You can not map a continuous
variable to shape unless scale_shape_binned() is used. Still, as shape has no inherent order, this
use is not advised.

Usage

scale_shape(name = waiver(), ..., solid = TRUE)

scale_shape_binned(name = waiver(), ..., solid = TRUE)

Arguments

name The name of the scale. Used as the axis or legend title. If waiver(), the default,
the name of the scale is taken from the first mapping used for that aesthetic. If
NULL, the legend title will be omitted.

... Arguments passed on to discrete_scale

palette A palette function that when called with a single integer argument (the
number of levels in the scale) returns the values that they should take (e.g.,
scales::pal_hue()).

breaks One of:
• NULL for no breaks
• waiver() for the default breaks (the scale limits)
• A character vector of breaks
• A function that takes the limits as input and returns breaks as output.

Also accepts rlang lambda function notation.
limits One of:

• NULL to use the default scale values
• A character vector that defines possible values of the scale and their

order
• A function that accepts the existing (automatic) values and returns new

ones. Also accepts rlang lambda function notation.
drop Should unused factor levels be omitted from the scale? The default, TRUE,

uses the levels that appear in the data; FALSE includes the levels in the
factor. Please note that to display every level in a legend, the layer should
use show.legend = TRUE.



300 scale_shape

na.translate Unlike continuous scales, discrete scales can easily show miss-
ing values, and do so by default. If you want to remove missing values from
a discrete scale, specify na.translate = FALSE.

na.value If na.translate = TRUE, what aesthetic value should the missing
values be displayed as? Does not apply to position scales where NA is al-
ways placed at the far right.

aesthetics The names of the aesthetics that this scale works with.
labels One of:

• NULL for no labels
• waiver() for the default labels computed by the transformation object
• A character vector giving labels (must be same length as breaks)
• An expression vector (must be the same length as breaks). See ?plot-

math for details.
• A function that takes the breaks as input and returns labels as output.

Also accepts rlang lambda function notation.
guide A function used to create a guide or its name. See guides() for more

information.
call The call used to construct the scale for reporting messages.
super The super class to use for the constructed scale

solid Should the shapes be solid, TRUE, or hollow, FALSE?

See Also

The documentation for differentiation related aesthetics.

Other shape scales: scale_shape_manual(), scale_shape_identity().

The shape section of the online ggplot2 book.

Examples

set.seed(596)
dsmall <- diamonds[sample(nrow(diamonds), 100), ]

(d <- ggplot(dsmall, aes(carat, price)) + geom_point(aes(shape = cut)))
d + scale_shape(solid = TRUE) # the default
d + scale_shape(solid = FALSE)
d + scale_shape(name = "Cut of diamond")

# To change order of levels, change order of
# underlying factor
levels(dsmall$cut) <- c("Fair", "Good", "Very Good", "Premium", "Ideal")

# Need to recreate plot to pick up new data
ggplot(dsmall, aes(price, carat)) + geom_point(aes(shape = cut))

# Show a list of available shapes
df_shapes <- data.frame(shape = 0:24)
ggplot(df_shapes, aes(0, 0, shape = shape)) +

geom_point(aes(shape = shape), size = 5, fill = 'red') +

https://ggplot2-book.org/scales-other#sec-scale-shape


scale_size 301

scale_shape_identity() +
facet_wrap(~shape) +
theme_void()

scale_size Scales for area or radius

Description

scale_size() scales area, scale_radius() scales radius. The size aesthetic is most commonly
used for points and text, and humans perceive the area of points (not their radius), so this pro-
vides for optimal perception. scale_size_area() ensures that a value of 0 is mapped to a size of
0. scale_size_binned() is a binned version of scale_size() that scales by area (but does not en-
sure 0 equals an area of zero). For a binned equivalent of scale_size_area() use scale_size_binned_area().

Usage

scale_size(
name = waiver(),
breaks = waiver(),
labels = waiver(),
limits = NULL,
range = c(1, 6),
transform = "identity",
trans = deprecated(),
guide = "legend"

)

scale_radius(
name = waiver(),
breaks = waiver(),
labels = waiver(),
limits = NULL,
range = c(1, 6),
transform = "identity",
trans = deprecated(),
guide = "legend"

)

scale_size_binned(
name = waiver(),
breaks = waiver(),
labels = waiver(),
limits = NULL,
range = c(1, 6),
n.breaks = NULL,
nice.breaks = TRUE,



302 scale_size

transform = "identity",
trans = deprecated(),
guide = "bins"

)

scale_size_area(name = waiver(), ..., max_size = 6)

scale_size_binned_area(name = waiver(), ..., max_size = 6)

Arguments

name The name of the scale. Used as the axis or legend title. If waiver(), the default,
the name of the scale is taken from the first mapping used for that aesthetic. If
NULL, the legend title will be omitted.

breaks One of:

• NULL for no breaks
• waiver() for the default breaks computed by the transformation object
• A numeric vector of positions
• A function that takes the limits as input and returns breaks as output (e.g.,

a function returned by scales::extended_breaks()). Note that for po-
sition scales, limits are provided after scale expansion. Also accepts rlang
lambda function notation.

labels One of:

• NULL for no labels
• waiver() for the default labels computed by the transformation object
• A character vector giving labels (must be same length as breaks)
• An expression vector (must be the same length as breaks). See ?plotmath

for details.
• A function that takes the breaks as input and returns labels as output. Also

accepts rlang lambda function notation.

limits One of:

• NULL to use the default scale range
• A numeric vector of length two providing limits of the scale. Use NA to

refer to the existing minimum or maximum
• A function that accepts the existing (automatic) limits and returns new

limits. Also accepts rlang lambda function notation. Note that setting
limits on positional scales will remove data outside of the limits. If the
purpose is to zoom, use the limit argument in the coordinate system (see
coord_cartesian()).

range a numeric vector of length 2 that specifies the minimum and maximum size of
the plotting symbol after transformation.

transform For continuous scales, the name of a transformation object or the object itself.
Built-in transformations include "asn", "atanh", "boxcox", "date", "exp", "hms",
"identity", "log", "log10", "log1p", "log2", "logit", "modulus", "probability",
"probit", "pseudo_log", "reciprocal", "reverse", "sqrt" and "time".



scale_size 303

A transformation object bundles together a transform, its inverse, and methods
for generating breaks and labels. Transformation objects are defined in the scales
package, and are called transform_<name>. If transformations require argu-
ments, you can call them from the scales package, e.g. scales::transform_boxcox(p
= 2). You can create your own transformation with scales::new_transform().

trans [Deprecated] Deprecated in favour of transform.

guide A function used to create a guide or its name. See guides() for more informa-
tion.

n.breaks An integer guiding the number of major breaks. The algorithm may choose a
slightly different number to ensure nice break labels. Will only have an effect if
breaks = waiver(). Use NULL to use the default number of breaks given by the
transformation.

nice.breaks Logical. Should breaks be attempted placed at nice values instead of exactly
evenly spaced between the limits. If TRUE (default) the scale will ask the trans-
formation object to create breaks, and this may result in a different number of
breaks than requested. Ignored if breaks are given explicitly.

... Arguments passed on to continuous_scale

minor_breaks One of:
• NULL for no minor breaks
• waiver() for the default breaks (one minor break between each major

break)
• A numeric vector of positions
• A function that given the limits returns a vector of minor breaks. Also

accepts rlang lambda function notation. When the function has two
arguments, it will be given the limits and major breaks.

oob One of:
• Function that handles limits outside of the scale limits (out of bounds).

Also accepts rlang lambda function notation.
• The default (scales::censor()) replaces out of bounds values with
NA.

• scales::squish() for squishing out of bounds values into range.
• scales::squish_infinite() for squishing infinite values into range.

na.value Missing values will be replaced with this value.
call The call used to construct the scale for reporting messages.
super The super class to use for the constructed scale

max_size Size of largest points.

Note

Historically the size aesthetic was used for two different things: Scaling the size of object (like
points and glyphs) and scaling the width of lines. From ggplot2 3.4.0 the latter has been moved to
its own linewidth aesthetic. For backwards compatibility using size is still possible, but it is highly
advised to switch to the new linewidth aesthetic for these cases.



304 scale_x_discrete

See Also

scale_size_area() if you want 0 values to be mapped to points with size 0. scale_linewidth()
if you want to scale the width of lines.

The documentation for differentiation related aesthetics.

The size section of the online ggplot2 book.

Examples

p <- ggplot(mpg, aes(displ, hwy, size = hwy)) +
geom_point()

p
p + scale_size("Highway mpg")
p + scale_size(range = c(0, 10))

# If you want zero value to have zero size, use scale_size_area:
p + scale_size_area()

# Binning can sometimes make it easier to match the scaled data to the legend
p + scale_size_binned()

# This is most useful when size is a count
ggplot(mpg, aes(class, cyl)) +

geom_count() +
scale_size_area()

# If you want to map size to radius (usually bad idea), use scale_radius
p + scale_radius()

scale_x_discrete Position scales for discrete data

Description

scale_x_discrete() and scale_y_discrete() are used to set the values for discrete x and y
scale aesthetics. For simple manipulation of scale labels and limits, you may wish to use labs()
and lims() instead.

Usage

scale_x_discrete(
name = waiver(),
...,
expand = waiver(),
guide = waiver(),
position = "bottom"

)

https://ggplot2-book.org/scales-other#sec-scale-size


scale_x_discrete 305

scale_y_discrete(
name = waiver(),
...,
expand = waiver(),
guide = waiver(),
position = "left"

)

Arguments

name The name of the scale. Used as the axis or legend title. If waiver(), the default,
the name of the scale is taken from the first mapping used for that aesthetic. If
NULL, the legend title will be omitted.

... Arguments passed on to discrete_scale

palette A palette function that when called with a single integer argument (the
number of levels in the scale) returns the values that they should take (e.g.,
scales::pal_hue()).

breaks One of:
• NULL for no breaks
• waiver() for the default breaks (the scale limits)
• A character vector of breaks
• A function that takes the limits as input and returns breaks as output.

Also accepts rlang lambda function notation.
limits One of:

• NULL to use the default scale values
• A character vector that defines possible values of the scale and their

order
• A function that accepts the existing (automatic) values and returns new

ones. Also accepts rlang lambda function notation.
drop Should unused factor levels be omitted from the scale? The default, TRUE,

uses the levels that appear in the data; FALSE includes the levels in the
factor. Please note that to display every level in a legend, the layer should
use show.legend = TRUE.

na.translate Unlike continuous scales, discrete scales can easily show miss-
ing values, and do so by default. If you want to remove missing values from
a discrete scale, specify na.translate = FALSE.

na.value If na.translate = TRUE, what aesthetic value should the missing
values be displayed as? Does not apply to position scales where NA is al-
ways placed at the far right.

aesthetics The names of the aesthetics that this scale works with.
labels One of:

• NULL for no labels
• waiver() for the default labels computed by the transformation object
• A character vector giving labels (must be same length as breaks)
• An expression vector (must be the same length as breaks). See ?plot-

math for details.



306 scale_x_discrete

• A function that takes the breaks as input and returns labels as output.
Also accepts rlang lambda function notation.

call The call used to construct the scale for reporting messages.
super The super class to use for the constructed scale

expand For position scales, a vector of range expansion constants used to add some
padding around the data to ensure that they are placed some distance away from
the axes. Use the convenience function expansion() to generate the values for
the expand argument. The defaults are to expand the scale by 5% on each side
for continuous variables, and by 0.6 units on each side for discrete variables.

guide A function used to create a guide or its name. See guides() for more informa-
tion.

position For position scales, The position of the axis. left or right for y axes, top or
bottom for x axes.

Details

You can use continuous positions even with a discrete position scale - this allows you (e.g.) to place
labels between bars in a bar chart. Continuous positions are numeric values starting at one for the
first level, and increasing by one for each level (i.e. the labels are placed at integer positions). This
is what allows jittering to work.

See Also

The position documentation.

The discrete position scales section of the online ggplot2 book.

Other position scales: scale_x_binned(), scale_x_continuous(), scale_x_date()

Examples

ggplot(diamonds, aes(cut)) + geom_bar()

# The discrete position scale is added automatically whenever you
# have a discrete position.

(d <- ggplot(subset(diamonds, carat > 1), aes(cut, clarity)) +
geom_jitter())

d + scale_x_discrete("Cut")
d +

scale_x_discrete(
"Cut",
labels = c(

"Fair" = "F",
"Good" = "G",
"Very Good" = "VG",
"Perfect" = "P",
"Ideal" = "I"

)

https://ggplot2-book.org/scales-position#sec-discrete-position


seals 307

)

# Use limits to adjust the which levels (and in what order)
# are displayed
d + scale_x_discrete(limits = c("Fair","Ideal"))

# you can also use the short hand functions xlim and ylim
d + xlim("Fair","Ideal", "Good")
d + ylim("I1", "IF")

# See ?reorder to reorder based on the values of another variable
ggplot(mpg, aes(manufacturer, cty)) +

geom_point()
ggplot(mpg, aes(reorder(manufacturer, cty), cty)) +

geom_point()
ggplot(mpg, aes(reorder(manufacturer, displ), cty)) +

geom_point()

# Use abbreviate as a formatter to reduce long names
ggplot(mpg, aes(reorder(manufacturer, displ), cty)) +

geom_point() +
scale_x_discrete(labels = abbreviate)

seals Vector field of seal movements

Description

This vector field was produced from the data described in Brillinger, D.R., Preisler, H.K., Ager,
A.A. and Kie, J.G. "An exploratory data analysis (EDA) of the paths of moving animals". J. Statis-
tical Planning and Inference 122 (2004), 43-63, using the methods of Brillinger, D.R., "Learning a
potential function from a trajectory", Signal Processing Letters. December (2007).

Usage

seals

Format

A data frame with 1155 rows and 4 variables

References

https://www.stat.berkeley.edu/~brill/Papers/jspifinal.pdf

https://www.stat.berkeley.edu/~brill/Papers/jspifinal.pdf


308 sec_axis

sec_axis Specify a secondary axis

Description

This function is used in conjunction with a position scale to create a secondary axis, positioned
opposite of the primary axis. All secondary axes must be based on a one-to-one transformation of
the primary axes.

Usage

sec_axis(
transform = NULL,
name = waiver(),
breaks = waiver(),
labels = waiver(),
guide = waiver(),
trans = deprecated()

)

dup_axis(
transform = ~.,
name = derive(),
breaks = derive(),
labels = derive(),
guide = derive(),
trans = deprecated()

)

derive()

Arguments

transform A formula or function of a strictly monotonic transformation

name The name of the secondary axis

breaks One of:

• NULL for no breaks
• waiver() for the default breaks computed by the transformation object
• A numeric vector of positions
• A function that takes the limits as input and returns breaks as output

labels One of:

• NULL for no labels
• waiver() for the default labels computed by the transformation object
• A character vector giving labels (must be same length as breaks)
• A function that takes the breaks as input and returns labels as output



sec_axis 309

guide A position guide that will be used to render the axis on the plot. Usually this is
guide_axis().

trans [Deprecated]

Details

sec_axis() is used to create the specifications for a secondary axis. Except for the trans argument
any of the arguments can be set to derive() which would result in the secondary axis inheriting
the settings from the primary axis.

dup_axis() is provide as a shorthand for creating a secondary axis that is a duplication of the
primary axis, effectively mirroring the primary axis.

As of v3.1, date and datetime scales have limited secondary axis capabilities. Unlike other contin-
uous scales, secondary axis transformations for date and datetime scales must respect their primary
POSIX data structure. This means they may only be transformed via addition or subtraction, e.g.
~ . + hms::hms(days = 8), or ~ . - 8*60*60. Nonlinear transformations will return an error. To
produce a time-since-event secondary axis in this context, users may consider adapting secondary
axis labels.

Examples

p <- ggplot(mtcars, aes(cyl, mpg)) +
geom_point()

# Create a simple secondary axis
p + scale_y_continuous(sec.axis = sec_axis(~ . + 10))

# Inherit the name from the primary axis
p + scale_y_continuous("Miles/gallon", sec.axis = sec_axis(~ . + 10, name = derive()))

# Duplicate the primary axis
p + scale_y_continuous(sec.axis = dup_axis())

# You can pass in a formula as a shorthand
p + scale_y_continuous(sec.axis = ~ .^2)

# Secondary axes work for date and datetime scales too:
df <- data.frame(

dx = seq(
as.POSIXct("2012-02-29 12:00:00", tz = "UTC"),
length.out = 10,
by = "4 hour"

),
price = seq(20, 200000, length.out = 10)
)

# This may useful for labelling different time scales in the same plot
ggplot(df, aes(x = dx, y = price)) +

geom_line() +
scale_x_datetime(

"Date",
date_labels = "%b %d",



310 stat_ecdf

date_breaks = "6 hour",
sec.axis = dup_axis(

name = "Time of Day",
labels = scales::label_time("%I %p")

)
)

# or to transform axes for different timezones
ggplot(df, aes(x = dx, y = price)) +

geom_line() +
scale_x_datetime("

GMT",
date_labels = "%b %d %I %p",
sec.axis = sec_axis(

~ . + 8 * 3600,
name = "GMT+8",
labels = scales::label_time("%b %d %I %p")

)
)

stat_ecdf Compute empirical cumulative distribution

Description

The empirical cumulative distribution function (ECDF) provides an alternative visualisation of dis-
tribution. Compared to other visualisations that rely on density (like geom_histogram()), the
ECDF doesn’t require any tuning parameters and handles both continuous and categorical vari-
ables. The downside is that it requires more training to accurately interpret, and the underlying
visual tasks are somewhat more challenging.

Usage

stat_ecdf(
mapping = NULL,
data = NULL,
geom = "step",
position = "identity",
...,
n = NULL,
pad = TRUE,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)



stat_ecdf 311

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

geom The geometric object to use to display the data for this layer. When using a
stat_*() function to construct a layer, the geom argument can be used to over-
ride the default coupling between stats and geoms. The geom argument accepts
the following:

• A Geom ggproto subclass, for example GeomPoint.
• A string naming the geom. To give the geom as a string, strip the function

name of the geom_ prefix. For example, to use geom_point(), give the
geom as "point".

• For more information and other ways to specify the geom, see the layer
geom documentation.

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

• The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

• A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

• For more information and other ways to specify the position, see the layer
position documentation.

... Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through
.... Unknown arguments that are not part of the 4 categories below are ignored.

• Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red" or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.



312 stat_ecdf

• When constructing a layer using a stat_*() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area", outline.type = "both"). The
geom’s documentation lists which parameters it can accept.

• Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density", adjust = 0.5). The
stat’s documentation lists which parameters it can accept.

• The key_glyph argument of layer() may also be passed on through ....
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

n if NULL, do not interpolate. If not NULL, this is the number of points to inter-
polate with.

pad If TRUE, pad the ecdf with additional points (-Inf, 0) and (Inf, 1)

na.rm If FALSE (the default), removes missing values with a warning. If TRUE silently
removes missing values.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

Details

The statistic relies on the aesthetics assignment to guess which variable to use as the input and
which to use as the output. Either x or y must be provided and one of them must be unused. The
ECDF will be calculated on the given aesthetic and will be output on the unused one.

Computed variables

These are calculated by the ’stat’ part of layers and can be accessed with delayed evaluation.

• after_stat(ecdf)
Cumulative density corresponding to x.

• after_stat(y)
[Superseded] For backward compatibility.

Examples

set.seed(1)
df <- data.frame(

x = c(rnorm(100, 0, 3), rnorm(100, 0, 10)),
g = gl(2, 100)

)
ggplot(df, aes(x)) +

stat_ecdf(geom = "step")



stat_ellipse 313

# Don't go to positive/negative infinity
ggplot(df, aes(x)) +

stat_ecdf(geom = "step", pad = FALSE)

# Multiple ECDFs
ggplot(df, aes(x, colour = g)) +

stat_ecdf()

stat_ellipse Compute normal data ellipses

Description

The method for calculating the ellipses has been modified from car::dataEllipse (Fox and Weis-
berg 2011, Friendly and Monette 2013)

Usage

stat_ellipse(
mapping = NULL,
data = NULL,
geom = "path",
position = "identity",
...,
type = "t",
level = 0.95,
segments = 51,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).



314 stat_ellipse

geom The geometric object to use to display the data for this layer. When using a
stat_*() function to construct a layer, the geom argument can be used to over-
ride the default coupling between stats and geoms. The geom argument accepts
the following:

• A Geom ggproto subclass, for example GeomPoint.
• A string naming the geom. To give the geom as a string, strip the function

name of the geom_ prefix. For example, to use geom_point(), give the
geom as "point".

• For more information and other ways to specify the geom, see the layer
geom documentation.

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

• The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

• A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

• For more information and other ways to specify the position, see the layer
position documentation.

... Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through
.... Unknown arguments that are not part of the 4 categories below are ignored.

• Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red" or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

• When constructing a layer using a stat_*() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area", outline.type = "both"). The
geom’s documentation lists which parameters it can accept.

• Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density", adjust = 0.5). The
stat’s documentation lists which parameters it can accept.

• The key_glyph argument of layer() may also be passed on through ....
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

type The type of ellipse. The default "t" assumes a multivariate t-distribution, and
"norm" assumes a multivariate normal distribution. "euclid" draws a circle
with the radius equal to level, representing the euclidean distance from the
center. This ellipse probably won’t appear circular unless coord_fixed() is
applied.



stat_ellipse 315

level The level at which to draw an ellipse, or, if type="euclid", the radius of the
circle to be drawn.

segments The number of segments to be used in drawing the ellipse.

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

References

John Fox and Sanford Weisberg (2011). An R Companion to Applied Regression, Second Edition.
Thousand Oaks CA: Sage. URL: https://uk.sagepub.com/en-gb/eur/an-r-companion-to-applied-regression/
book246125

Michael Friendly. Georges Monette. John Fox. "Elliptical Insights: Understanding Statistical
Methods through Elliptical Geometry." Statist. Sci. 28 (1) 1 - 39, February 2013. URL: https://
projecteuclid.org/journals/statistical-science/volume-28/issue-1/Elliptical-Insights-Understanding-Statistical-Methods-through-Elliptical-Geometry/
10.1214/12-STS402.full

Examples

ggplot(faithful, aes(waiting, eruptions)) +
geom_point() +
stat_ellipse()

ggplot(faithful, aes(waiting, eruptions, color = eruptions > 3)) +
geom_point() +
stat_ellipse()

ggplot(faithful, aes(waiting, eruptions, color = eruptions > 3)) +
geom_point() +
stat_ellipse(type = "norm", linetype = 2) +
stat_ellipse(type = "t")

ggplot(faithful, aes(waiting, eruptions, color = eruptions > 3)) +
geom_point() +
stat_ellipse(type = "norm", linetype = 2) +
stat_ellipse(type = "euclid", level = 3) +
coord_fixed()

ggplot(faithful, aes(waiting, eruptions, fill = eruptions > 3)) +
stat_ellipse(geom = "polygon")

https://uk.sagepub.com/en-gb/eur/an-r-companion-to-applied-regression/book246125
https://uk.sagepub.com/en-gb/eur/an-r-companion-to-applied-regression/book246125
https://projecteuclid.org/journals/statistical-science/volume-28/issue-1/Elliptical-Insights-Understanding-Statistical-Methods-through-Elliptical-Geometry/10.1214/12-STS402.full
https://projecteuclid.org/journals/statistical-science/volume-28/issue-1/Elliptical-Insights-Understanding-Statistical-Methods-through-Elliptical-Geometry/10.1214/12-STS402.full
https://projecteuclid.org/journals/statistical-science/volume-28/issue-1/Elliptical-Insights-Understanding-Statistical-Methods-through-Elliptical-Geometry/10.1214/12-STS402.full


316 stat_identity

stat_identity Leave data as is

Description

The identity statistic leaves the data unchanged.

Usage

stat_identity(
mapping = NULL,
data = NULL,
geom = "point",
position = "identity",
...,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

geom The geometric object to use to display the data for this layer. When using a
stat_*() function to construct a layer, the geom argument can be used to over-
ride the default coupling between stats and geoms. The geom argument accepts
the following:

• A Geom ggproto subclass, for example GeomPoint.
• A string naming the geom. To give the geom as a string, strip the function

name of the geom_ prefix. For example, to use geom_point(), give the
geom as "point".

• For more information and other ways to specify the geom, see the layer
geom documentation.

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:



stat_sf_coordinates 317

• The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

• A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

• For more information and other ways to specify the position, see the layer
position documentation.

... Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through
.... Unknown arguments that are not part of the 4 categories below are ignored.

• Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red" or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

• When constructing a layer using a stat_*() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area", outline.type = "both"). The
geom’s documentation lists which parameters it can accept.

• Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density", adjust = 0.5). The
stat’s documentation lists which parameters it can accept.

• The key_glyph argument of layer() may also be passed on through ....
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

Examples

p <- ggplot(mtcars, aes(wt, mpg))
p + stat_identity()

stat_sf_coordinates Extract coordinates from ’sf’ objects



318 stat_sf_coordinates

Description

stat_sf_coordinates() extracts the coordinates from ’sf’ objects and summarises them to one
pair of coordinates (x and y) per geometry. This is convenient when you draw an sf object as geoms
like text and labels (so geom_sf_text() and geom_sf_label() relies on this).

Usage

stat_sf_coordinates(
mapping = aes(),
data = NULL,
geom = "point",
position = "identity",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
fun.geometry = NULL,
...

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

geom The geometric object to use to display the data for this layer. When using a
stat_*() function to construct a layer, the geom argument can be used to over-
ride the default coupling between stats and geoms. The geom argument accepts
the following:

• A Geom ggproto subclass, for example GeomPoint.
• A string naming the geom. To give the geom as a string, strip the function

name of the geom_ prefix. For example, to use geom_point(), give the
geom as "point".

• For more information and other ways to specify the geom, see the layer
geom documentation.

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:



stat_sf_coordinates 319

• The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

• A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

• For more information and other ways to specify the position, see the layer
position documentation.

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

fun.geometry A function that takes a sfc object and returns a sfc_POINT with the same length
as the input. If NULL, function(x) sf::st_point_on_surface(sf::st_zm(x))
will be used. Note that the function may warn about the incorrectness of the re-
sult if the data is not projected, but you can ignore this except when you really
care about the exact locations.

... Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through
.... Unknown arguments that are not part of the 4 categories below are ignored.

• Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red" or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

• When constructing a layer using a stat_*() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area", outline.type = "both"). The
geom’s documentation lists which parameters it can accept.

• Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density", adjust = 0.5). The
stat’s documentation lists which parameters it can accept.

• The key_glyph argument of layer() may also be passed on through ....
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

Details

coordinates of an sf object can be retrieved by sf::st_coordinates(). But, we cannot simply
use sf::st_coordinates() because, whereas text and labels require exactly one coordinate per



320 stat_summary_2d

geometry, it returns multiple ones for a polygon or a line. Thus, these two steps are needed:

1. Choose one point per geometry by some function like sf::st_centroid() or sf::st_point_on_surface().

2. Retrieve coordinates from the points by sf::st_coordinates().

For the first step, you can use an arbitrary function via fun.geometry. By default, function(x)
sf::st_point_on_surface(sf::st_zm(x)) is used; sf::st_point_on_surface() seems more
appropriate than sf::st_centroid() since labels and text usually are intended to be put within
the polygon or the line. sf::st_zm() is needed to drop Z and M dimension beforehand, otherwise
sf::st_point_on_surface() may fail when the geometries have M dimension.

Computed variables

These are calculated by the ’stat’ part of layers and can be accessed with delayed evaluation.

• after_stat(x)
X dimension of the simple feature.

• after_stat(y)
Y dimension of the simple feature.

Examples

if (requireNamespace("sf", quietly = TRUE)) {
nc <- sf::st_read(system.file("shape/nc.shp", package="sf"))

ggplot(nc) +
stat_sf_coordinates()

ggplot(nc) +
geom_errorbarh(
aes(geometry = geometry,

xmin = after_stat(x) - 0.1,
xmax = after_stat(x) + 0.1,
y = after_stat(y),
height = 0.04),

stat = "sf_coordinates"
)

}

stat_summary_2d Bin and summarise in 2d (rectangle & hexagons)

Description

stat_summary_2d() is a 2d variation of stat_summary(). stat_summary_hex() is a hexagonal
variation of stat_summary_2d(). The data are divided into bins defined by x and y, and then the
values of z in each cell is are summarised with fun.



stat_summary_2d 321

Usage

stat_summary_2d(
mapping = NULL,
data = NULL,
geom = "tile",
position = "identity",
...,
bins = 30,
binwidth = NULL,
drop = TRUE,
fun = "mean",
fun.args = list(),
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

stat_summary_hex(
mapping = NULL,
data = NULL,
geom = "hex",
position = "identity",
...,
bins = 30,
binwidth = NULL,
drop = TRUE,
fun = "mean",
fun.args = list(),
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).



322 stat_summary_2d

geom The geometric object to use to display the data for this layer. When using a
stat_*() function to construct a layer, the geom argument can be used to over-
ride the default coupling between stats and geoms. The geom argument accepts
the following:

• A Geom ggproto subclass, for example GeomPoint.
• A string naming the geom. To give the geom as a string, strip the function

name of the geom_ prefix. For example, to use geom_point(), give the
geom as "point".

• For more information and other ways to specify the geom, see the layer
geom documentation.

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

• The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

• A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

• For more information and other ways to specify the position, see the layer
position documentation.

... Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through
.... Unknown arguments that are not part of the 4 categories below are ignored.

• Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red" or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

• When constructing a layer using a stat_*() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area", outline.type = "both"). The
geom’s documentation lists which parameters it can accept.

• Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density", adjust = 0.5). The
stat’s documentation lists which parameters it can accept.

• The key_glyph argument of layer() may also be passed on through ....
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

bins numeric vector giving number of bins in both vertical and horizontal directions.
Set to 30 by default.

binwidth Numeric vector giving bin width in both vertical and horizontal directions. Over-
rides bins if both set.



stat_summary_2d 323

drop drop if the output of fun is NA.
fun function for summary.
fun.args A list of extra arguments to pass to fun

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

Aesthetics

• x: horizontal position
• y: vertical position
• z: value passed to the summary function

Computed variables

These are calculated by the ’stat’ part of layers and can be accessed with delayed evaluation.

• after_stat(x), after_stat(y)
Location.

• after_stat(value)
Value of summary statistic.

Dropped variables

z After binning, the z values of individual data points are no longer available.

See Also

stat_summary_hex() for hexagonal summarization. stat_bin_2d() for the binning options.

Examples

d <- ggplot(diamonds, aes(carat, depth, z = price))
d + stat_summary_2d()

# Specifying function
d + stat_summary_2d(fun = function(x) sum(x^2))
d + stat_summary_2d(fun = ~ sum(.x^2))
d + stat_summary_2d(fun = var)
d + stat_summary_2d(fun = "quantile", fun.args = list(probs = 0.1))

if (requireNamespace("hexbin")) {
d + stat_summary_hex()
d + stat_summary_hex(fun = ~ sum(.x^2))
}



324 stat_summary_bin

stat_summary_bin Summarise y values at unique/binned x

Description

stat_summary() operates on unique x or y; stat_summary_bin() operates on binned x or y. They
are more flexible versions of stat_bin(): instead of just counting, they can compute any aggregate.

Usage

stat_summary_bin(
mapping = NULL,
data = NULL,
geom = "pointrange",
position = "identity",
...,
fun.data = NULL,
fun = NULL,
fun.max = NULL,
fun.min = NULL,
fun.args = list(),
bins = 30,
binwidth = NULL,
breaks = NULL,
na.rm = FALSE,
orientation = NA,
show.legend = NA,
inherit.aes = TRUE,
fun.y = deprecated(),
fun.ymin = deprecated(),
fun.ymax = deprecated()

)

stat_summary(
mapping = NULL,
data = NULL,
geom = "pointrange",
position = "identity",
...,
fun.data = NULL,
fun = NULL,
fun.max = NULL,
fun.min = NULL,
fun.args = list(),
na.rm = FALSE,
orientation = NA,
show.legend = NA,



stat_summary_bin 325

inherit.aes = TRUE,
fun.y = deprecated(),
fun.ymin = deprecated(),
fun.ymax = deprecated()

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

geom The geometric object to use to display the data for this layer. When using a
stat_*() function to construct a layer, the geom argument can be used to over-
ride the default coupling between stats and geoms. The geom argument accepts
the following:

• A Geom ggproto subclass, for example GeomPoint.
• A string naming the geom. To give the geom as a string, strip the function

name of the geom_ prefix. For example, to use geom_point(), give the
geom as "point".

• For more information and other ways to specify the geom, see the layer
geom documentation.

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

• The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

• A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

• For more information and other ways to specify the position, see the layer
position documentation.

... Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through
.... Unknown arguments that are not part of the 4 categories below are ignored.

• Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red" or linewidth



326 stat_summary_bin

= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

• When constructing a layer using a stat_*() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area", outline.type = "both"). The
geom’s documentation lists which parameters it can accept.

• Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density", adjust = 0.5). The
stat’s documentation lists which parameters it can accept.

• The key_glyph argument of layer() may also be passed on through ....
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

fun.data A function that is given the complete data and should return a data frame with
variables ymin, y, and ymax.

fun.min, fun, fun.max
Alternatively, supply three individual functions that are each passed a vector of
values and should return a single number.

fun.args Optional additional arguments passed on to the functions.
bins Number of bins. Overridden by binwidth. Defaults to 30.
binwidth The width of the bins. Can be specified as a numeric value or as a function that

calculates width from unscaled x. Here, "unscaled x" refers to the original x val-
ues in the data, before application of any scale transformation. When specifying
a function along with a grouping structure, the function will be called once per
group. The default is to use the number of bins in bins, covering the range of
the data. You should always override this value, exploring multiple widths to
find the best to illustrate the stories in your data.
The bin width of a date variable is the number of days in each time; the bin
width of a time variable is the number of seconds.

breaks Alternatively, you can supply a numeric vector giving the bin boundaries. Over-
rides binwidth and bins.

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

orientation The orientation of the layer. The default (NA) automatically determines the ori-
entation from the aesthetic mapping. In the rare event that this fails it can be
given explicitly by setting orientation to either "x" or "y". See the Orienta-
tion section for more detail.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().



stat_summary_bin 327

fun.ymin, fun.y, fun.ymax
[Deprecated] Use the versions specified above instead.

Orientation

This geom treats each axis differently and, thus, can thus have two orientations. Often the orienta-
tion is easy to deduce from a combination of the given mappings and the types of positional scales
in use. Thus, ggplot2 will by default try to guess which orientation the layer should have. Under
rare circumstances, the orientation is ambiguous and guessing may fail. In that case the orientation
can be specified directly using the orientation parameter, which can be either "x" or "y". The
value gives the axis that the geom should run along, "x" being the default orientation you would
expect for the geom.

Aesthetics

stat_summary() understands the following aesthetics (required aesthetics are in bold):

• x

• y

• group

Learn more about setting these aesthetics in vignette("ggplot2-specs").

Summary functions

You can either supply summary functions individually (fun, fun.max, fun.min), or as a single
function (fun.data):

fun.data Complete summary function. Should take numeric vector as input and return data frame
as output

fun.min min summary function (should take numeric vector and return single number)

fun main summary function (should take numeric vector and return single number)

fun.max max summary function (should take numeric vector and return single number)

A simple vector function is easiest to work with as you can return a single number, but is somewhat
less flexible. If your summary function computes multiple values at once (e.g. min and max), use
fun.data.

fun.data will receive data as if it was oriented along the x-axis and should return a data.frame
that corresponds to that orientation. The layer will take care of flipping the input and output if it is
oriented along the y-axis.

If no aggregation functions are supplied, will default to mean_se().

See Also

geom_errorbar(), geom_pointrange(), geom_linerange(), geom_crossbar() for geoms to
display summarised data



328 stat_summary_bin

Examples

d <- ggplot(mtcars, aes(cyl, mpg)) + geom_point()
d + stat_summary(fun.data = "mean_cl_boot", colour = "red", linewidth = 2, size = 3)

# Orientation follows the discrete axis
ggplot(mtcars, aes(mpg, factor(cyl))) +

geom_point() +
stat_summary(fun.data = "mean_cl_boot", colour = "red", linewidth = 2, size = 3)

# You can supply individual functions to summarise the value at
# each x:
d + stat_summary(fun = "median", colour = "red", size = 2, geom = "point")
d + stat_summary(fun = "mean", colour = "red", size = 2, geom = "point")
d + aes(colour = factor(vs)) + stat_summary(fun = mean, geom="line")

d + stat_summary(fun = mean, fun.min = min, fun.max = max, colour = "red")

d <- ggplot(diamonds, aes(cut))
d + geom_bar()
d + stat_summary(aes(y = price), fun = "mean", geom = "bar")

# Orientation of stat_summary_bin is ambiguous and must be specified directly
ggplot(diamonds, aes(carat, price)) +

stat_summary_bin(fun = "mean", geom = "bar", orientation = 'y')

# Don't use ylim to zoom into a summary plot - this throws the
# data away
p <- ggplot(mtcars, aes(cyl, mpg)) +

stat_summary(fun = "mean", geom = "point")
p
p + ylim(15, 30)
# Instead use coord_cartesian
p + coord_cartesian(ylim = c(15, 30))

# A set of useful summary functions is provided from the Hmisc package:
stat_sum_df <- function(fun, geom="crossbar", ...) {

stat_summary(fun.data = fun, colour = "red", geom = geom, width = 0.2, ...)
}
d <- ggplot(mtcars, aes(cyl, mpg)) + geom_point()
# The crossbar geom needs grouping to be specified when used with
# a continuous x axis.
d + stat_sum_df("mean_cl_boot", mapping = aes(group = cyl))
d + stat_sum_df("mean_sdl", mapping = aes(group = cyl))
d + stat_sum_df("mean_sdl", fun.args = list(mult = 1), mapping = aes(group = cyl))
d + stat_sum_df("median_hilow", mapping = aes(group = cyl))

# An example with highly skewed distributions:
if (require("ggplot2movies")) {
set.seed(596)
mov <- movies[sample(nrow(movies), 1000), ]
m2 <-



stat_unique 329

ggplot(mov, aes(x = factor(round(rating)), y = votes)) +
geom_point()

m2 <-
m2 +
stat_summary(

fun.data = "mean_cl_boot",
geom = "crossbar",
colour = "red", width = 0.3

) +
xlab("rating")

m2
# Notice how the overplotting skews off visual perception of the mean
# supplementing the raw data with summary statistics is _very_ important

# Next, we'll look at votes on a log scale.

# Transforming the scale means the data are transformed
# first, after which statistics are computed:
m2 + scale_y_log10()
# Transforming the coordinate system occurs after the
# statistic has been computed. This means we're calculating the summary on the raw data
# and stretching the geoms onto the log scale. Compare the widths of the
# standard errors.
m2 + coord_trans(y="log10")
}

stat_unique Remove duplicates

Description

Remove duplicates

Usage

stat_unique(
mapping = NULL,
data = NULL,
geom = "point",
position = "identity",
...,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)



330 stat_unique

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

geom The geometric object to use to display the data for this layer. When using a
stat_*() function to construct a layer, the geom argument can be used to over-
ride the default coupling between stats and geoms. The geom argument accepts
the following:

• A Geom ggproto subclass, for example GeomPoint.
• A string naming the geom. To give the geom as a string, strip the function

name of the geom_ prefix. For example, to use geom_point(), give the
geom as "point".

• For more information and other ways to specify the geom, see the layer
geom documentation.

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

• The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

• A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

• For more information and other ways to specify the position, see the layer
position documentation.

... Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through
.... Unknown arguments that are not part of the 4 categories below are ignored.

• Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red" or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.



theme 331

• When constructing a layer using a stat_*() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area", outline.type = "both"). The
geom’s documentation lists which parameters it can accept.

• Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density", adjust = 0.5). The
stat’s documentation lists which parameters it can accept.

• The key_glyph argument of layer() may also be passed on through ....
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

Aesthetics

stat_unique() understands the following aesthetics (required aesthetics are in bold):

• group

Learn more about setting these aesthetics in vignette("ggplot2-specs").

Examples

ggplot(mtcars, aes(vs, am)) +
geom_point(alpha = 0.1)

ggplot(mtcars, aes(vs, am)) +
geom_point(alpha = 0.1, stat = "unique")

theme Modify components of a theme

Description

Themes are a powerful way to customize the non-data components of your plots: i.e. titles, labels,
fonts, background, gridlines, and legends. Themes can be used to give plots a consistent customized
look. Modify a single plot’s theme using theme(); see theme_update() if you want modify the
active theme, to affect all subsequent plots. Use the themes available in complete themes if you
would like to use a complete theme such as theme_bw(), theme_minimal(), and more. Theme
elements are documented together according to inheritance, read more about theme inheritance
below.



332 theme

Usage

theme(
...,
line,
rect,
text,
title,
aspect.ratio,
axis.title,
axis.title.x,
axis.title.x.top,
axis.title.x.bottom,
axis.title.y,
axis.title.y.left,
axis.title.y.right,
axis.text,
axis.text.x,
axis.text.x.top,
axis.text.x.bottom,
axis.text.y,
axis.text.y.left,
axis.text.y.right,
axis.text.theta,
axis.text.r,
axis.ticks,
axis.ticks.x,
axis.ticks.x.top,
axis.ticks.x.bottom,
axis.ticks.y,
axis.ticks.y.left,
axis.ticks.y.right,
axis.ticks.theta,
axis.ticks.r,
axis.minor.ticks.x.top,
axis.minor.ticks.x.bottom,
axis.minor.ticks.y.left,
axis.minor.ticks.y.right,
axis.minor.ticks.theta,
axis.minor.ticks.r,
axis.ticks.length,
axis.ticks.length.x,
axis.ticks.length.x.top,
axis.ticks.length.x.bottom,
axis.ticks.length.y,
axis.ticks.length.y.left,
axis.ticks.length.y.right,
axis.ticks.length.theta,
axis.ticks.length.r,



theme 333

axis.minor.ticks.length,
axis.minor.ticks.length.x,
axis.minor.ticks.length.x.top,
axis.minor.ticks.length.x.bottom,
axis.minor.ticks.length.y,
axis.minor.ticks.length.y.left,
axis.minor.ticks.length.y.right,
axis.minor.ticks.length.theta,
axis.minor.ticks.length.r,
axis.line,
axis.line.x,
axis.line.x.top,
axis.line.x.bottom,
axis.line.y,
axis.line.y.left,
axis.line.y.right,
axis.line.theta,
axis.line.r,
legend.background,
legend.margin,
legend.spacing,
legend.spacing.x,
legend.spacing.y,
legend.key,
legend.key.size,
legend.key.height,
legend.key.width,
legend.key.spacing,
legend.key.spacing.x,
legend.key.spacing.y,
legend.frame,
legend.ticks,
legend.ticks.length,
legend.axis.line,
legend.text,
legend.text.position,
legend.title,
legend.title.position,
legend.position,
legend.position.inside,
legend.direction,
legend.byrow,
legend.justification,
legend.justification.top,
legend.justification.bottom,
legend.justification.left,
legend.justification.right,
legend.justification.inside,



334 theme

legend.location,
legend.box,
legend.box.just,
legend.box.margin,
legend.box.background,
legend.box.spacing,
panel.background,
panel.border,
panel.spacing,
panel.spacing.x,
panel.spacing.y,
panel.grid,
panel.grid.major,
panel.grid.minor,
panel.grid.major.x,
panel.grid.major.y,
panel.grid.minor.x,
panel.grid.minor.y,
panel.ontop,
plot.background,
plot.title,
plot.title.position,
plot.subtitle,
plot.caption,
plot.caption.position,
plot.tag,
plot.tag.position,
plot.tag.location,
plot.margin,
strip.background,
strip.background.x,
strip.background.y,
strip.clip,
strip.placement,
strip.text,
strip.text.x,
strip.text.x.bottom,
strip.text.x.top,
strip.text.y,
strip.text.y.left,
strip.text.y.right,
strip.switch.pad.grid,
strip.switch.pad.wrap,
complete = FALSE,
validate = TRUE

)



theme 335

Arguments

... additional element specifications not part of base ggplot2. In general, these
should also be defined in the element tree argument. Splicing a list is also
supported.

line all line elements (element_line())

rect all rectangular elements (element_rect())

text all text elements (element_text())

title all title elements: plot, axes, legends (element_text(); inherits from text)

aspect.ratio aspect ratio of the panel

axis.title, axis.title.x, axis.title.y, axis.title.x.top,
axis.title.x.bottom, axis.title.y.left, axis.title.y.right

labels of axes (element_text()). Specify all axes’ labels (axis.title), la-
bels by plane (using axis.title.x or axis.title.y), or individually for each
axis (using axis.title.x.bottom, axis.title.x.top, axis.title.y.left,
axis.title.y.right). axis.title.*.* inherits from axis.title.* which
inherits from axis.title, which in turn inherits from text

axis.text, axis.text.x, axis.text.y, axis.text.x.top,
axis.text.x.bottom, axis.text.y.left, axis.text.y.right,
axis.text.theta, axis.text.r

tick labels along axes (element_text()). Specify all axis tick labels (axis.text),
tick labels by plane (using axis.text.x or axis.text.y), or individually for
each axis (using axis.text.x.bottom, axis.text.x.top, axis.text.y.left,
axis.text.y.right). axis.text.*.* inherits from axis.text.* which in-
herits from axis.text, which in turn inherits from text

axis.ticks, axis.ticks.x, axis.ticks.x.top, axis.ticks.x.bottom,
axis.ticks.y, axis.ticks.y.left, axis.ticks.y.right,
axis.ticks.theta, axis.ticks.r

tick marks along axes (element_line()). Specify all tick marks (axis.ticks),
ticks by plane (using axis.ticks.x or axis.ticks.y), or individually for each
axis (using axis.ticks.x.bottom, axis.ticks.x.top, axis.ticks.y.left,
axis.ticks.y.right). axis.ticks.*.* inherits from axis.ticks.* which
inherits from axis.ticks, which in turn inherits from line

axis.minor.ticks.x.top, axis.minor.ticks.x.bottom,
axis.minor.ticks.y.left, axis.minor.ticks.y.right,
axis.minor.ticks.theta, axis.minor.ticks.r

minor tick marks along axes (element_line()). axis.minor.ticks.*.* in-
herit from the corresponding major ticks axis.ticks.*.*.

axis.ticks.length, axis.ticks.length.x, axis.ticks.length.x.top,
axis.ticks.length.x.bottom, axis.ticks.length.y,
axis.ticks.length.y.left, axis.ticks.length.y.right,
axis.ticks.length.theta, axis.ticks.length.r

length of tick marks (unit)



336 theme

axis.minor.ticks.length, axis.minor.ticks.length.x,
axis.minor.ticks.length.x.top, axis.minor.ticks.length.x.bottom,
axis.minor.ticks.length.y, axis.minor.ticks.length.y.left,
axis.minor.ticks.length.y.right, axis.minor.ticks.length.theta,
axis.minor.ticks.length.r

length of minor tick marks (unit), or relative to axis.ticks.length when
provided with rel().

axis.line, axis.line.x, axis.line.x.top, axis.line.x.bottom,
axis.line.y, axis.line.y.left, axis.line.y.right, axis.line.theta,
axis.line.r

lines along axes (element_line()). Specify lines along all axes (axis.line),
lines for each plane (using axis.line.x or axis.line.y), or individually for
each axis (using axis.line.x.bottom, axis.line.x.top, axis.line.y.left,
axis.line.y.right). axis.line.*.* inherits from axis.line.* which in-
herits from axis.line, which in turn inherits from line

legend.background

background of legend (element_rect(); inherits from rect)

legend.margin the margin around each legend (margin())
legend.spacing, legend.spacing.x, legend.spacing.y

the spacing between legends (unit). legend.spacing.x & legend.spacing.y
inherit from legend.spacing or can be specified separately

legend.key background underneath legend keys (element_rect(); inherits from rect)
legend.key.size, legend.key.height, legend.key.width

size of legend keys (unit); key background height & width inherit from legend.key.size
or can be specified separately

legend.key.spacing, legend.key.spacing.x, legend.key.spacing.y
spacing between legend keys given as a unit. Spacing in the horizontal (x)
and vertical (y) direction inherit from legend.key.spacing or can be specified
separately.

legend.frame frame drawn around the bar (element_rect()).

legend.ticks tick marks shown along bars or axes (element_line())
legend.ticks.length

length of tick marks in legend (unit)
legend.axis.line

lines along axes in legends (element_line())

legend.text legend item labels (element_text(); inherits from text)
legend.text.position

placement of legend text relative to legend keys or bars ("top", "right", "bottom"
or "left"). The legend text placement might be incompatible with the legend’s
direction for some guides.

legend.title title of legend (element_text(); inherits from title)
legend.title.position

placement of legend title relative to the main legend ("top", "right", "bottom" or
"left").



theme 337

legend.position

the default position of legends ("none", "left", "right", "bottom", "top", "inside")
legend.position.inside

A numeric vector of length two setting the placement of legends that have the
"inside" position.

legend.direction

layout of items in legends ("horizontal" or "vertical")

legend.byrow whether the legend-matrix is filled by columns (FALSE, the default) or by rows
(TRUE).

legend.justification

anchor point for positioning legend inside plot ("center" or two-element numeric
vector) or the justification according to the plot area when positioned outside the
plot

legend.justification.top, legend.justification.bottom,
legend.justification.left, legend.justification.right,
legend.justification.inside

Same as legend.justification but specified per legend.position option.
legend.location

Relative placement of legends outside the plot as a string. Can be "panel"
(default) to align legends to the panels or "plot" to align legends to the plot as
a whole.

legend.box arrangement of multiple legends ("horizontal" or "vertical")
legend.box.just

justification of each legend within the overall bounding box, when there are
multiple legends ("top", "bottom", "left", or "right")

legend.box.margin

margins around the full legend area, as specified using margin()

legend.box.background

background of legend area (element_rect(); inherits from rect)
legend.box.spacing

The spacing between the plotting area and the legend box (unit)
panel.background

background of plotting area, drawn underneath plot (element_rect(); inherits
from rect)

panel.border border around plotting area, drawn on top of plot so that it covers tick marks and
grid lines. This should be used with fill = NA (element_rect(); inherits from
rect)

panel.spacing, panel.spacing.x, panel.spacing.y
spacing between facet panels (unit). panel.spacing.x & panel.spacing.y
inherit from panel.spacing or can be specified separately.

panel.grid, panel.grid.major, panel.grid.minor, panel.grid.major.x,
panel.grid.major.y, panel.grid.minor.x, panel.grid.minor.y

grid lines (element_line()). Specify major grid lines, or minor grid lines sep-
arately (using panel.grid.major or panel.grid.minor) or individually for
each axis (using panel.grid.major.x, panel.grid.minor.x, panel.grid.major.y,



338 theme

panel.grid.minor.y). Y axis grid lines are horizontal and x axis grid lines
are vertical. panel.grid.*.* inherits from panel.grid.* which inherits from
panel.grid, which in turn inherits from line

panel.ontop option to place the panel (background, gridlines) over the data layers (logical).
Usually used with a transparent or blank panel.background.

plot.background

background of the entire plot (element_rect(); inherits from rect)

plot.title plot title (text appearance) (element_text(); inherits from title) left-aligned
by default

plot.title.position, plot.caption.position
Alignment of the plot title/subtitle and caption. The setting for plot.title.position
applies to both the title and the subtitle. A value of "panel" (the default) means
that titles and/or caption are aligned to the plot panels. A value of "plot" means
that titles and/or caption are aligned to the entire plot (minus any space for mar-
gins and plot tag).

plot.subtitle plot subtitle (text appearance) (element_text(); inherits from title) left-
aligned by default

plot.caption caption below the plot (text appearance) (element_text(); inherits from title)
right-aligned by default

plot.tag upper-left label to identify a plot (text appearance) (element_text(); inherits
from title) left-aligned by default

plot.tag.position

The position of the tag as a string ("topleft", "top", "topright", "left", "right",
"bottomleft", "bottom", "bottomright") or a coordinate. If a coordinate, can be
a numeric vector of length 2 to set the x,y-coordinate relative to the whole plot.
The coordinate option is unavailable for plot.tag.location = "margin".

plot.tag.location

The placement of the tag as a string, one of "panel", "plot" or "margin".
Respectively, these will place the tag inside the panel space, anywhere in the
plot as a whole, or in the margin around the panel space.

plot.margin margin around entire plot (unit with the sizes of the top, right, bottom, and left
margins)

strip.background, strip.background.x, strip.background.y
background of facet labels (element_rect(); inherits from rect). Horizontal
facet background (strip.background.x) & vertical facet background (strip.background.y)
inherit from strip.background or can be specified separately

strip.clip should strip background edges and strip labels be clipped to the extend of the
strip background? Options are "on" to clip, "off" to disable clipping or "inherit"
(default) to take the clipping setting from the parent viewport.

strip.placement

placement of strip with respect to axes, either "inside" or "outside". Only im-
portant when axes and strips are on the same side of the plot.

strip.text, strip.text.x, strip.text.y, strip.text.x.top,
strip.text.x.bottom, strip.text.y.left, strip.text.y.right

facet labels (element_text(); inherits from text). Horizontal facet labels
(strip.text.x) & vertical facet labels (strip.text.y) inherit from strip.text



theme 339

or can be specified separately. Facet strips have dedicated position-dependent
theme elements (strip.text.x.top, strip.text.x.bottom, strip.text.y.left,
strip.text.y.right) that inherit from strip.text.x and strip.text.y, re-
spectively. As a consequence, some theme stylings need to be applied to the
position-dependent elements rather than to the parent elements

strip.switch.pad.grid

space between strips and axes when strips are switched (unit)
strip.switch.pad.wrap

space between strips and axes when strips are switched (unit)

complete set this to TRUE if this is a complete theme, such as the one returned by theme_grey().
Complete themes behave differently when added to a ggplot object. Also, when
setting complete = TRUE all elements will be set to inherit from blank elements.

validate TRUE to run validate_element(), FALSE to bypass checks.

Theme inheritance

Theme elements inherit properties from other theme elements hierarchically. For example, axis.title.x.bottom
inherits from axis.title.x which inherits from axis.title, which in turn inherits from text.
All text elements inherit directly or indirectly from text; all lines inherit from line, and all rect-
angular objects inherit from rect. This means that you can modify the appearance of multiple
elements by setting a single high-level component.

Learn more about setting these aesthetics in vignette("ggplot2-specs").

See Also

+.gg() and %+replace%, element_blank(), element_line(), element_rect(), and element_text()
for details of the specific theme elements.

The modifying theme components and theme elements sections of the online ggplot2 book.

Examples

p1 <- ggplot(mtcars, aes(wt, mpg)) +
geom_point() +
labs(title = "Fuel economy declines as weight increases")

p1

# Plot ---------------------------------------------------------------------
p1 + theme(plot.title = element_text(size = rel(2)))
p1 + theme(plot.background = element_rect(fill = "green"))

# Panels --------------------------------------------------------------------

p1 + theme(panel.background = element_rect(fill = "white", colour = "grey50"))
p1 + theme(panel.border = element_rect(linetype = "dashed", fill = NA))
p1 + theme(panel.grid.major = element_line(colour = "black"))
p1 + theme(

panel.grid.major.y = element_blank(),
panel.grid.minor.y = element_blank()

)

https://ggplot2-book.org/themes#modifying-theme-components
https://ggplot2-book.org/themes#sec-theme-elements


340 theme

# Put gridlines on top of data
p1 + theme(

panel.background = element_rect(fill = NA),
panel.grid.major = element_line(colour = "grey50"),
panel.ontop = TRUE

)

# Axes ----------------------------------------------------------------------
# Change styles of axes texts and lines
p1 + theme(axis.line = element_line(linewidth = 3, colour = "grey80"))
p1 + theme(axis.text = element_text(colour = "blue"))
p1 + theme(axis.ticks = element_line(linewidth = 2))

# Change the appearance of the y-axis title
p1 + theme(axis.title.y = element_text(size = rel(1.5), angle = 90))

# Make ticks point outwards on y-axis and inwards on x-axis
p1 + theme(

axis.ticks.length.y = unit(.25, "cm"),
axis.ticks.length.x = unit(-.25, "cm"),
axis.text.x = element_text(margin = margin(t = .3, unit = "cm"))

)

# Legend --------------------------------------------------------------------
p2 <- ggplot(mtcars, aes(wt, mpg)) +

geom_point(aes(colour = factor(cyl), shape = factor(vs))) +
labs(
x = "Weight (1000 lbs)",
y = "Fuel economy (mpg)",
colour = "Cylinders",
shape = "Transmission"
)

p2

# Position
p2 + theme(legend.position = "none")
p2 + theme(legend.justification = "top")
p2 + theme(legend.position = "bottom")

# Or place legends inside the plot using relative coordinates between 0 and 1
# legend.justification sets the corner that the position refers to
p2 + theme(

legend.position = "inside",
legend.position.inside = c(.95, .95),
legend.justification = c("right", "top"),
legend.box.just = "right",
legend.margin = margin(6, 6, 6, 6)

)

# The legend.box properties work similarly for the space around
# all the legends



theme_get 341

p2 + theme(
legend.box.background = element_rect(),
legend.box.margin = margin(6, 6, 6, 6)

)

# You can also control the display of the keys
# and the justification related to the plot area can be set
p2 + theme(legend.key = element_rect(fill = "white", colour = "black"))
p2 + theme(legend.text = element_text(size = 8, colour = "red"))
p2 + theme(legend.title = element_text(face = "bold"))

# Strips --------------------------------------------------------------------

p3 <- ggplot(mtcars, aes(wt, mpg)) +
geom_point() +
facet_wrap(~ cyl)

p3

p3 + theme(strip.background = element_rect(colour = "black", fill = "white"))
p3 + theme(strip.text.x = element_text(colour = "white", face = "bold"))
# More direct strip.text.x here for top
# as in the facet_wrap the default strip.position is "top"
p3 + theme(strip.text.x.top = element_text(colour = "white", face = "bold"))
p3 + theme(panel.spacing = unit(1, "lines"))

theme_get Get, set, and modify the active theme

Description

The current/active theme (see theme()) is automatically applied to every plot you draw. Use
theme_get() to get the current theme, and theme_set() to completely override it. theme_update()
and theme_replace() are shorthands for changing individual elements.

Usage

theme_get()

theme_set(new)

theme_update(...)

theme_replace(...)

e1 %+replace% e2



342 theme_get

Arguments

new new theme (a list of theme elements)

... named list of theme settings

e1, e2 Theme and element to combine

Value

theme_set(), theme_update(), and theme_replace() invisibly return the previous theme so you
can easily save it, then later restore it.

Adding on to a theme

+ and %+replace% can be used to modify elements in themes.

+ updates the elements of e1 that differ from elements specified (not NULL) in e2. Thus this
operator can be used to incrementally add or modify attributes of a ggplot theme.

In contrast, %+replace% replaces the entire element; any element of a theme not specified in e2 will
not be present in the resulting theme (i.e. NULL). Thus this operator can be used to overwrite an
entire theme.

theme_update() uses the + operator, so that any unspecified values in the theme element will
default to the values they are set in the theme. theme_replace() uses %+replace% to completely
replace the element, so any unspecified values will overwrite the current value in the theme with
NULL.

In summary, the main differences between theme_set(), theme_update(), and theme_replace()
are:

• theme_set() completely overrides the current theme.

• theme_update() modifies a particular element of the current theme using the + operator.

• theme_replace() modifies a particular element of the current theme using the %+replace%
operator.

See Also

+.gg()

Examples

p <- ggplot(mtcars, aes(mpg, wt)) +
geom_point()

p

# Use theme_set() to completely override the current theme.
# theme_update() and theme_replace() are similar except they
# apply directly to the current/active theme.
# theme_update() modifies a particular element of the current theme.
# Here we have the old theme so we can later restore it.
# Note that the theme is applied when the plot is drawn, not
# when it is created.
old <- theme_set(theme_bw())



txhousing 343

p

theme_set(old)
theme_update(panel.grid.minor = element_line(colour = "red"))
p

theme_set(old)
theme_replace(panel.grid.minor = element_line(colour = "red"))
p

theme_set(old)
p

# Modifying theme objects -----------------------------------------
# You can use + and %+replace% to modify a theme object.
# They differ in how they deal with missing arguments in
# the theme elements.

add_el <- theme_grey() +
theme(text = element_text(family = "Times"))

add_el$text

rep_el <- theme_grey() %+replace%
theme(text = element_text(family = "Times"))

rep_el$text

txhousing Housing sales in TX

Description

Information about the housing market in Texas provided by the TAMU real estate center, https:
//trerc.tamu.edu/.

Usage

txhousing

Format

A data frame with 8602 observations and 9 variables:

city Name of multiple listing service (MLS) area

year,month,date Date

sales Number of sales

volume Total value of sales

median Median sale price

https://trerc.tamu.edu/
https://trerc.tamu.edu/


344 vars

listings Total active listings

inventory "Months inventory": amount of time it would take to sell all current listings at current
pace of sales.

vars Quote faceting variables

Description

Just like aes(), vars() is a quoting function that takes inputs to be evaluated in the context of a
dataset. These inputs can be:

• variable names

• complex expressions

In both cases, the results (the vectors that the variable represents or the results of the expressions)
are used to form faceting groups.

Usage

vars(...)

Arguments

... <data-masking> Variables or expressions automatically quoted. These are
evaluated in the context of the data to form faceting groups. Can be named
(the names are passed to a labeller).

See Also

aes(), facet_wrap(), facet_grid()

Examples

p <- ggplot(mtcars, aes(wt, disp)) + geom_point()
p + facet_wrap(vars(vs, am))

# vars() makes it easy to pass variables from wrapper functions:
wrap_by <- function(...) {

facet_wrap(vars(...), labeller = label_both)
}
p + wrap_by(vs)
p + wrap_by(vs, am)

# You can also supply expressions to vars(). In this case it's often a
# good idea to supply a name as well:
p + wrap_by(drat = cut_number(drat, 3))

# Let's create another function for cutting and wrapping a



vars 345

# variable. This time it will take a named argument instead of dots,
# so we'll have to use the "enquote and unquote" pattern:
wrap_cut <- function(var, n = 3) {

# Let's enquote the named argument `var` to make it auto-quoting:
var <- enquo(var)

# `as_label()` will create a nice default name:
nm <- as_label(var)

# Now let's unquote everything at the right place. Note that we also
# unquote `n` just in case the data frame has a column named
# `n`. The latter would have precedence over our local variable
# because the data is always masking the environment.
wrap_by(!!nm := cut_number(!!var, !!n))

}

# Thanks to tidy eval idioms we now have another useful wrapper:
p + wrap_cut(drat)



Index

∗ aesthetics documentation
aes, 7
aes_colour_fill_alpha, 9
aes_group_order, 14
aes_linetype_size_shape, 16
aes_position, 18

∗ alpha scales
scale_alpha, 252

∗ colour scales
scale_alpha, 252
scale_colour_brewer, 256
scale_colour_continuous, 259
scale_colour_gradient, 263
scale_colour_grey, 268
scale_colour_hue, 270
scale_colour_steps, 273
scale_colour_viridis_d, 277
scale_identity, 289
scale_manual, 295

∗ datasets
CoordSf, 32
diamonds, 53
economics, 55
faithfuld, 65
luv_colours, 235
midwest, 236
mpg, 237
msleep, 238
presidential, 247
seals, 307
stat_sf_coordinates, 317
txhousing, 343

∗ facet labeller
labeller, 220

∗ facet
labellers, 222

∗ guides
guide_bins, 207
guide_colourbar, 209

guide_coloursteps, 212
guide_legend, 216
guides, 198

∗ hplot
print.ggplot, 247

∗ layer documentation
layer_geoms, 226
layer_positions, 229
layer_stats, 231

∗ plotting automation topics
autolayer, 27
automatic_plotting, 28
autoplot, 30
fortify, 66

∗ position adjustments
position_dodge, 239
position_identity, 241
position_jitter, 241
position_jitterdodge, 242
position_nudge, 243
position_stack, 244

∗ position scales
scale_binned, 253
scale_continuous, 281
scale_date, 285
scale_x_discrete, 304

+.gg, 6
+.gg(), 339, 342
?geom_line, 227
?stat_bin, 232
?stat_density, 232
%+% (+.gg), 6
%+replace% (theme_get), 341
%+replace%, 339

aes, 7, 10, 15, 17, 19
aes(), 7, 31, 36, 67, 71, 75, 78, 81, 87, 91, 95,

99, 104, 109, 113, 117, 122, 126,
129, 132, 137, 141, 146, 149, 154,
157, 161, 165, 169, 172, 177, 181,

346



INDEX 347

184, 232, 311, 313, 316, 318, 321,
325, 330, 344

aes_colour_fill_alpha, 8, 9, 15, 17, 19
aes_eval, 11
aes_group_order, 8, 10, 14, 17, 19
aes_group_order(), 17
aes_linetype_size_shape, 8, 10, 15, 16, 19
aes_position, 8, 10, 15, 17, 18
aesthetics, 11
after_scale (aes_eval), 11
after_stat (aes_eval), 11
after_stat(), 232
akima::bilinear(), 85
alpha, 73, 83, 89, 93, 97, 101, 106, 111, 115,

124, 127, 130, 134, 139, 143, 147,
151, 159, 163, 167, 171, 174, 179,
183, 186

alt_text (get_alt_text), 188
annotate, 20
annotate(), 19, 134
annotation_custom, 22
annotation_logticks, 23
annotation_map, 25
annotation_map(), 44
annotation_raster, 26
as_labeller(), 220, 221, 223
autolayer, 27, 29, 30, 66
automatic_plotting, 28, 28, 30, 66
autoplot, 28, 29, 30, 66

base::cut(), 208, 214
base::cut.default, 52
base::strwrap(), 223
binned_scale, 274
binned_scale(), 252, 257, 279
borders, 30
borders(), 32, 37, 72, 76, 79, 82, 88, 92, 97,

100, 105, 110, 114, 118, 123, 127,
130, 134, 138, 143, 147, 151, 155,
159, 162, 166, 170, 174, 178, 183,
186, 312, 315, 317, 319, 323, 326,
331

boxplot(), 83
boxplot.stats(), 83
bquote(), 223

color (aes_colour_fill_alpha), 9
color steps, 263
colors(), 235

colour, 73, 83, 89, 93, 97, 101, 106, 111, 115,
124, 127, 130, 134, 139, 143, 148,
151, 159, 163, 167, 171, 174, 179,
183, 186

colour (aes_colour_fill_alpha), 9
colour aesthetics, 252, 258, 260, 266, 269,

272, 276, 280, 298
colours, fills, 227
complete themes, 331
computed aesthetics, 233
continuous_scale, 264, 303
continuous_scale(), 252, 257, 279, 290
coord_cartesian, 40
coord_cartesian(), 45, 47, 233, 254, 265,

275, 283, 288, 294, 302
coord_equal (coord_fixed), 41
coord_fixed, 41
coord_flip, 42
coord_map, 44
coord_polar, 47
coord_quickmap (coord_map), 44
coord_radial (coord_polar), 47
coord_sf (CoordSf), 32
coord_sf(), 25, 44, 137
coord_trans, 49
coord_trans(), 24
CoordSf, 32
cut_interval, 51
cut_number (cut_interval), 51
cut_width (cut_interval), 51

Delayed evaluation, 8
delayed evaluation, 73, 77, 83, 90, 93, 102,

106, 111, 119, 124, 128, 156, 159,
179, 187, 312, 320, 323

density(), 101, 186
derive (sec_axis), 308
diamonds, 53
differentiation related aesthetics,

293, 295, 298, 300, 304
discrete_scale, 268, 271, 292, 296, 299, 305
discrete_scale(), 252, 257, 279, 290
draw_key, 53
draw_key_abline (draw_key), 53
draw_key_blank (draw_key), 53
draw_key_boxplot (draw_key), 53
draw_key_crossbar (draw_key), 53
draw_key_dotplot (draw_key), 53
draw_key_label (draw_key), 53



348 INDEX

draw_key_linerange (draw_key), 53
draw_key_path (draw_key), 53
draw_key_point (draw_key), 53
draw_key_pointrange (draw_key), 53
draw_key_polygon (draw_key), 53
draw_key_rect (draw_key), 53
draw_key_smooth (draw_key), 53
draw_key_text (draw_key), 53
draw_key_timeseries (draw_key), 53
draw_key_vline (draw_key), 53
draw_key_vpath (draw_key), 53
dup_axis (sec_axis), 308

economics, 55
economics_long (economics), 55
element, 56, 202
element_blank (element), 56
element_blank(), 339
element_line (element), 56
element_line(), 335–337, 339
element_rect (element), 56
element_rect(), 335–339
element_text (element), 56
element_text(), 201, 203, 206, 335, 336,

338, 339
expand_limits, 58
expand_limits(), 78, 234
expand_scale (expansion), 59
expansion, 59
expansion(), 254, 283, 288, 306

facet_grid, 60
facet_grid(), 63, 220, 250, 344
facet_wrap, 63
facet_wrap(), 60, 220, 223, 250, 344
faithful, 65
faithfuld, 65
fill, 73, 77, 83, 89, 93, 101, 106, 111, 127,

130, 139, 148, 151, 163, 167, 179,
186

fill (aes_colour_fill_alpha), 9
format.ggproto (print.ggproto), 248
fortify, 28–30, 66
fortify(), 31, 36, 67, 71, 76, 78, 81, 87, 92,

95, 99, 105, 109, 113, 117, 126, 129,
132, 137, 138, 142, 146, 149, 154,
158, 161, 165, 169, 173, 177, 181,
184, 190, 311, 313, 316, 318, 321,
325, 330

fortify.lm(), 66

Geom, 229
geom, 72, 77, 82, 93, 101, 105, 118, 127, 159,

178, 186
geom_abline, 67
geom_abline(), 21
geom_area (geom_ribbon), 164
geom_area(), 227, 230, 232, 245
geom_bar, 69
geom_bar(), 15, 119, 167, 168, 230, 245, 253
geom_bin2d (geom_bin_2d), 75
geom_bin_2d, 75
geom_bin_2d(), 93, 107, 125, 145, 232
geom_blank, 78
geom_blank(), 58
geom_boxplot, 80
geom_boxplot(), 18, 131, 147, 157, 183, 228,

230, 232
geom_col (geom_bar), 69
geom_contour, 85, 105
geom_contour(), 107, 232
geom_contour_filled (geom_contour), 85
geom_contour_filled(), 107
geom_count, 91
geom_count(), 145, 147, 232
geom_crossbar, 94
geom_crossbar(), 19, 327
geom_curve (geom_segment), 172
geom_curve(), 19
geom_density, 98
geom_density(), 103, 183, 232
geom_density2d (geom_density_2d), 103
geom_density2d(), 147
geom_density2d_filled

(geom_density_2d), 103
geom_density_2d, 103
geom_density_2d(), 90, 147, 232
geom_density_2d_filled

(geom_density_2d), 103
geom_dotplot, 108
geom_errorbar (geom_crossbar), 94
geom_errorbar(), 19, 113, 230, 327
geom_errorbarh, 113
geom_errorbarh(), 97
geom_freqpoly, 115
geom_freqpoly(), 102
geom_function, 121
geom_function(), 232



INDEX 349

geom_hex, 125
geom_hex(), 147, 232
geom_histogram (geom_freqpoly), 115
geom_histogram(), 12, 15, 74, 102, 230, 232,

310
geom_hline (geom_abline), 67
geom_hline(), 21
geom_jitter, 128
geom_jitter(), 84, 145
geom_label, 131
geom_line (geom_path), 140
geom_line(), 9, 15, 17, 19, 69, 119, 175, 232
geom_linerange (geom_crossbar), 94
geom_linerange(), 19, 168, 230, 327
geom_map, 137
geom_map(), 25, 44
geom_path, 140
geom_path(), 19, 38, 149, 151, 175, 230
geom_point, 145
geom_point(), 9, 17, 19, 38, 75, 91, 131, 230
geom_pointrange (geom_crossbar), 94
geom_pointrange(), 17, 19, 327
geom_polygon, 31, 149
geom_polygon(), 9, 38, 144, 168, 227
geom_qq (geom_qq_line), 152
geom_qq_line, 152
geom_quantile, 157
geom_quantile(), 84, 147, 232
geom_raster, 160
geom_raster(), 26
geom_rect (geom_raster), 160
geom_rect(), 9, 19
geom_ribbon, 164
geom_ribbon(), 151, 227
geom_rug, 168
geom_segment, 172
geom_segment(), 19, 69, 143, 144, 181
geom_sf (CoordSf), 32
geom_sf(), 25, 137
geom_sf_label (CoordSf), 32
geom_sf_label(), 318
geom_sf_text (CoordSf), 32
geom_sf_text(), 318
geom_smooth, 176
geom_smooth(), 97, 147, 232
geom_spoke, 181
geom_spoke(), 175
geom_step (geom_path), 140

geom_text (geom_label), 131
geom_text(), 38, 230, 243
geom_tile (geom_raster), 160
geom_tile(), 45, 85
geom_violin, 183
geom_violin(), 84, 102, 187, 232
geom_vline (geom_abline), 67
geom_vline(), 21
geoms, 229
GeomSf (CoordSf), 32
get_alt_text, 188, 225
get_labs (labs), 225
ggplot, 189
ggplot(), 6, 7, 31, 36, 67, 71, 75, 78, 81, 87,

91, 95, 99, 105, 109, 113, 117, 126,
129, 132, 137, 141, 146, 149, 154,
157, 161, 165, 169, 173, 177, 181,
184, 249, 311, 313, 316, 318, 321,
325, 330

ggproto, 191, 229, 230, 233
ggproto_parent (ggproto), 191
ggsave, 193
ggsf (CoordSf), 32
ggtheme, 195
ggtitle (labs), 225
glm(), 180
gradient scale, 273
gray.colors(), 268
grDevices::colors(), 9
grid, 227
grid::arrow(), 57, 143, 174
grid::curveGrob(), 172
grid::pathGrob(), 31, 150
grid::unit(), 24, 170, 202, 215
group, 73, 77, 83, 89, 93, 97, 101, 106, 111,

115, 124, 127, 130, 134, 139, 143,
148, 151, 155, 159, 163, 167, 171,
174, 179, 183, 187, 327, 331

group (aes_group_order), 14
guide_axis, 200, 203
guide_axis(), 309
guide_axis_logticks, 202
guide_axis_logticks(), 23
guide_axis_stack, 204
guide_axis_theta, 205
guide_bins, 199, 207, 211, 214, 217
guide_colorbar (guide_colourbar), 209
guide_colorsteps (guide_coloursteps),



350 INDEX

212
guide_colourbar, 199, 208, 209, 214, 217
guide_colourbar(), 199, 212
guide_coloursteps, 199, 208, 211, 212, 217
guide_coloursteps(), 207
guide_custom, 214
guide_legend, 199, 208, 211, 214, 216
guide_legend(), 199, 207
guide_none, 218
guides, 198, 208, 211, 214, 217
guides(), 210, 217, 255, 269, 271, 280, 283,

288, 292, 295, 297, 300, 303, 306

hmisc, 219
Hmisc::capitalize(), 220
Hmisc::smean.cl.boot(), 219
Hmisc::smean.cl.normal(), 219
Hmisc::smean.sdl(), 219
Hmisc::smedian.hilow(), 219
hsv, 279

interp::interp(), 85
is_theme_element (element), 56

key glyphs, 21, 37, 68, 71, 76, 79, 81, 88, 92,
96, 100, 109, 114, 117, 123, 127,
130, 133, 138, 143, 147, 150, 155,
158, 162, 166, 170, 174, 177, 182,
185, 312, 314, 317, 319, 322, 326,
331

label_both (labellers), 222
label_bquote, 224
label_bquote(), 223
label_context (labellers), 222
label_parsed (labellers), 222
label_parsed(), 61, 64
label_value (labellers), 222
label_value(), 61, 64
label_wrap_gen (labellers), 222
labeller, 220, 344
labeller(), 61, 64, 223, 224
labellers, 221, 222, 224
labs, 225
labs(), 201, 203, 204, 206, 207, 210, 213,

216, 218, 284, 304
lambda, 254, 255, 265, 268, 269, 271, 275,

282, 283, 287, 288, 292, 294, 296,
297, 299, 300, 302, 303, 305, 306

layer, 229, 231, 233
layer geom, 38, 88, 123, 154, 167, 311, 314,

316, 318, 322, 325, 330
layer position, 31, 36, 71, 76, 79, 81, 87,

92, 96, 100, 105, 109, 114, 117, 122,
126, 129, 133, 142, 146, 150, 154,
158, 161, 166, 170, 173, 177, 182,
185, 311, 314, 317, 319, 322, 325,
330

layer stat, 31, 36, 78, 87, 96, 113, 122, 129,
133, 138, 142, 146, 150, 161, 165,
169, 173, 182

layer(), 20, 21, 37, 53, 68, 71, 76, 79, 81, 87,
88, 92, 96, 100, 109, 114, 117, 122,
123, 126, 127, 129, 130, 133, 138,
142, 143, 146, 147, 150, 154, 155,
158, 161, 162, 166, 170, 173, 174,
177, 182, 185, 227, 231, 311, 312,
314, 317, 319, 322, 325, 326, 330,
331

layer_geoms, 226, 231, 233
layer_positions, 229, 229, 233
layer_stats, 229, 231, 231
lims, 233
lims(), 284, 304
linetype, 73, 83, 89, 97, 101, 106, 111, 115,

124, 127, 139, 144, 151, 159, 163,
167, 171, 174, 179, 183, 187

linetype (aes_linetype_size_shape), 16
linewidth, 73, 83, 89, 97, 102, 106, 115, 124,

127, 139, 144, 151, 159, 163, 167,
171, 174, 179, 183, 187

linewidths and linetypes, 227
lm(), 180
loess(), 180
luv_colours, 235

mapproj::mapproject(), 44
maps::map(), 31
margin (element), 56
margin(), 57, 336, 337
MASS::bandwidth.nrd(), 106
MASS::eqscplot(), 41
MASS::kde2d(), 103
mean_cl_boot (hmisc), 219
mean_cl_normal (hmisc), 219
mean_sdl (hmisc), 219
mean_se, 235
mean_se(), 327



INDEX 351

median_hilow (hmisc), 219
mgcv::gam(), 178
midwest, 236
mpg, 237
msleep, 238

options(), 260

plot.ggplot (print.ggplot), 247
png, 194
png(), 194
Position, 230
position documentation, 255, 284, 289, 306
position_dodge, 239, 241–243, 245
position_dodge(), 72, 74, 230
position_dodge2 (position_dodge), 239
position_dodge2(), 72, 74, 230
position_fill (position_stack), 244
position_fill(), 72, 230
position_identity, 239, 241, 242, 243, 245
position_identity(), 229, 230
position_jitter, 239, 241, 241, 243, 245
position_jitter(), 230
position_jitterdodge, 239, 241, 242, 242,

243, 245
position_jitterdodge(), 230
position_nudge, 239, 241–243, 243, 245
position_nudge(), 230
position_stack, 239, 241–243, 244
position_stack(), 72, 167, 230
positions, 227
predict(), 179
presidential, 247
pretty(), 88, 105
print.ggplot, 247
print.ggproto, 248

qplot, 249
quantreg::rq(), 159
quantreg::rqss(), 159
quasiquotation, 8
quickplot (qplot), 249
quoting function, 8, 344

RColorBrewer::brewer.pal(), 257
rel (element), 56
rel(), 202
rescale(), 258, 266, 276, 280
resolution, 251

resolution(), 72
rlang::as_function(), 123, 124

scale_alpha, 252, 258, 261, 267, 269, 272,
276, 280, 290, 298

scale_alpha(), 10, 290, 298
scale_alpha_binned (scale_alpha), 252
scale_alpha_continuous (scale_alpha),

252
scale_alpha_date (scale_alpha), 252
scale_alpha_datetime (scale_alpha), 252
scale_alpha_discrete (scale_alpha), 252
scale_alpha_identity (scale_identity),

289
scale_alpha_identity(), 10, 252, 298
scale_alpha_manual (scale_manual), 295
scale_alpha_manual(), 10, 252, 290
scale_alpha_ordinal (scale_alpha), 252
scale_binned, 253
scale_binned(), 19
scale_color_binned

(scale_colour_continuous), 259
scale_color_brewer

(scale_colour_brewer), 256
scale_color_continuous

(scale_colour_continuous), 259
scale_color_date

(scale_colour_gradient), 263
scale_color_datetime

(scale_colour_gradient), 263
scale_color_discrete

(scale_colour_discrete), 261
scale_color_distiller

(scale_colour_brewer), 256
scale_color_fermenter

(scale_colour_brewer), 256
scale_color_gradient

(scale_colour_gradient), 263
scale_color_gradient2

(scale_colour_gradient), 263
scale_color_gradientn

(scale_colour_gradient), 263
scale_color_grey (scale_colour_grey),

268
scale_color_hue (scale_colour_hue), 270
scale_color_identity (scale_identity),

289
scale_color_manual (scale_manual), 295



352 INDEX

scale_color_ordinal
(scale_colour_viridis_d), 277

scale_color_steps (scale_colour_steps),
273

scale_color_steps2
(scale_colour_steps), 273

scale_color_stepsn
(scale_colour_steps), 273

scale_color_viridis_b
(scale_colour_viridis_d), 277

scale_color_viridis_c
(scale_colour_viridis_d), 277

scale_color_viridis_d
(scale_colour_viridis_d), 277

scale_colour_binned
(scale_colour_continuous), 259

scale_colour_brewer, 252, 256, 261, 267,
269, 272, 276, 280, 290, 298

scale_colour_brewer(), 10
scale_colour_continuous, 252, 258, 259,

267, 269, 272, 276, 280, 290, 298
scale_colour_date

(scale_colour_gradient), 263
scale_colour_datetime

(scale_colour_gradient), 263
scale_colour_discrete, 261
scale_colour_distiller

(scale_colour_brewer), 256
scale_colour_fermenter

(scale_colour_brewer), 256
scale_colour_gradient, 252, 258, 261, 263,

269, 272, 276, 280, 290, 298
scale_colour_gradient(), 10, 260, 268,

276
scale_colour_gradient2

(scale_colour_gradient), 263
scale_colour_gradient2(), 265
scale_colour_gradientn

(scale_colour_gradient), 263
scale_colour_gradientn(), 265
scale_colour_grey, 252, 258, 261, 267, 268,

272, 276, 280, 290, 298
scale_colour_grey(), 10
scale_colour_hue, 252, 258, 261, 267, 269,

270, 276, 280, 290, 298
scale_colour_hue(), 10, 262
scale_colour_identity, 252, 258, 261, 267,

269, 272, 276, 280, 298

scale_colour_identity (scale_identity),
289

scale_colour_identity(), 10
scale_colour_manual, 252, 258, 261, 267,

269, 272, 276, 280, 290
scale_colour_manual (scale_manual), 295
scale_colour_manual(), 10
scale_colour_ordinal

(scale_colour_viridis_d), 277
scale_colour_steps, 252, 258, 261, 267,

269, 272, 273, 280, 290, 298
scale_colour_steps(), 260, 266
scale_colour_steps2

(scale_colour_steps), 273
scale_colour_stepsn

(scale_colour_steps), 273
scale_colour_viridis_b

(scale_colour_viridis_d), 277
scale_colour_viridis_b(), 260
scale_colour_viridis_c

(scale_colour_viridis_d), 277
scale_colour_viridis_c(), 260
scale_colour_viridis_d, 252, 258, 261,

267, 269, 272, 276, 277, 290, 298
scale_colour_viridis_d(), 10
scale_continuous, 281
scale_continuous(), 19
scale_continuous_identity

(scale_identity), 289
scale_date, 285
scale_date(), 19
scale_discrete(), 19
scale_discrete_identity

(scale_identity), 289
scale_discrete_manual (scale_manual),

295
scale_fill_binned

(scale_colour_continuous), 259
scale_fill_brewer

(scale_colour_brewer), 256
scale_fill_brewer(), 10, 261, 262
scale_fill_continuous

(scale_colour_continuous), 259
scale_fill_date

(scale_colour_gradient), 263
scale_fill_datetime

(scale_colour_gradient), 263
scale_fill_discrete



INDEX 353

(scale_colour_discrete), 261
scale_fill_distiller

(scale_colour_brewer), 256
scale_fill_fermenter

(scale_colour_brewer), 256
scale_fill_gradient

(scale_colour_gradient), 263
scale_fill_gradient(), 10, 260
scale_fill_gradient2

(scale_colour_gradient), 263
scale_fill_gradientn

(scale_colour_gradient), 263
scale_fill_grey (scale_colour_grey), 268
scale_fill_grey(), 10
scale_fill_hue (scale_colour_hue), 270
scale_fill_hue(), 10, 261, 262
scale_fill_identity (scale_identity),

289
scale_fill_identity(), 10
scale_fill_manual (scale_manual), 295
scale_fill_manual(), 10
scale_fill_ordinal

(scale_colour_viridis_d), 277
scale_fill_steps (scale_colour_steps),

273
scale_fill_steps(), 260
scale_fill_steps2 (scale_colour_steps),

273
scale_fill_stepsn (scale_colour_steps),

273
scale_fill_viridis_b

(scale_colour_viridis_d), 277
scale_fill_viridis_b(), 260
scale_fill_viridis_c

(scale_colour_viridis_d), 277
scale_fill_viridis_c(), 260
scale_fill_viridis_d

(scale_colour_viridis_d), 277
scale_fill_viridis_d(), 10
scale_identity, 289
scale_linetype, 291
scale_linetype(), 17, 290, 298
scale_linetype_binned (scale_linetype),

291
scale_linetype_continuous

(scale_linetype), 291
scale_linetype_discrete

(scale_linetype), 291

scale_linetype_identity
(scale_identity), 289

scale_linetype_identity(), 293, 298
scale_linetype_manual (scale_manual),

295
scale_linetype_manual(), 290, 293
scale_linewidth, 293
scale_linewidth(), 17, 304
scale_linewidth_binned

(scale_linewidth), 293
scale_linewidth_continuous

(scale_linewidth), 293
scale_linewidth_date (scale_linewidth),

293
scale_linewidth_datetime

(scale_linewidth), 293
scale_linewidth_discrete

(scale_linewidth), 293
scale_linewidth_identity

(scale_identity), 289
scale_linewidth_manual (scale_manual),

295
scale_linewidth_ordinal

(scale_linewidth), 293
scale_manual, 295
scale_radius (scale_size), 301
scale_shape, 299
scale_shape(), 17, 290, 298
scale_shape_binned (scale_shape), 299
scale_shape_continuous (scale_shape),

299
scale_shape_discrete (scale_shape), 299
scale_shape_identity (scale_identity),

289
scale_shape_identity(), 298, 300
scale_shape_manual (scale_manual), 295
scale_shape_manual(), 290, 299, 300
scale_shape_ordinal (scale_shape), 299
scale_size, 301
scale_size(), 17, 290, 298
scale_size_area (scale_size), 301
scale_size_area(), 304
scale_size_binned (scale_size), 301
scale_size_binned_area (scale_size), 301
scale_size_continuous (scale_size), 301
scale_size_date (scale_size), 301
scale_size_datetime (scale_size), 301
scale_size_discrete (scale_size), 301



354 INDEX

scale_size_identity (scale_identity),
289

scale_size_identity(), 298
scale_size_manual (scale_manual), 295
scale_size_manual(), 290
scale_size_ordinal (scale_size), 301
scale_x_binned, 284, 289, 306
scale_x_binned (scale_binned), 253
scale_x_continuous, 255, 289, 306
scale_x_continuous (scale_continuous),

281
scale_x_continuous(), 234
scale_x_date, 255, 284, 306
scale_x_date (scale_date), 285
scale_x_date(), 234
scale_x_datetime (scale_date), 285
scale_x_discrete, 255, 284, 289, 304
scale_x_discrete(), 234
scale_x_log10 (scale_continuous), 281
scale_x_reverse (scale_continuous), 281
scale_x_sqrt (scale_continuous), 281
scale_x_time (scale_date), 285
scale_y_binned (scale_binned), 253
scale_y_continuous (scale_continuous),

281
scale_y_continuous(), 24
scale_y_date (scale_date), 285
scale_y_datetime (scale_date), 285
scale_y_discrete (scale_x_discrete), 304
scale_y_log10 (scale_continuous), 281
scale_y_log10(), 24
scale_y_reverse (scale_continuous), 281
scale_y_sqrt (scale_continuous), 281
scale_y_time (scale_date), 285
scales::censor, 255, 275
scales::censor(), 266, 283, 288, 303
scales::extended_breaks(), 254, 265, 275,

282, 294, 302
scales::new_transform(), 50, 255, 266,

276, 283, 295, 303
scales::pal_area(), 264
scales::pal_hue(), 268, 271, 292, 299, 305
scales::pal_seq_gradient(), 266, 276
scales::rescale(), 265
scales::squish(), 255, 266, 275, 283, 288,

303
scales::squish_infinite(), 255, 266, 275,

283, 288, 303

seals, 307
sec_axis, 308
sec_axis(), 283, 288, 289
shape, 83, 93, 130, 148
shape (aes_linetype_size_shape), 16
size, 83, 93, 130, 134, 148
size (aes_linetype_size_shape), 16
Splicing, 335
stage (aes_eval), 11
Stat, 233
stat, 72, 77, 82, 93, 101, 105, 118, 127, 159,

178, 186
stat (aes_eval), 11
stat_align (geom_ribbon), 164
stat_bin (geom_freqpoly), 115
stat_bin(), 12, 74, 102, 232, 324
stat_bin2d (geom_bin_2d), 75
stat_bin_2d (geom_bin_2d), 75
stat_bin_2d(), 128, 232, 323
stat_bin_hex (geom_hex), 125
stat_bin_hex(), 77
stat_binhex (geom_hex), 125
stat_binhex(), 232
stat_boxplot (geom_boxplot), 80
stat_boxplot(), 232
stat_contour (geom_contour), 85
stat_contour(), 107, 232
stat_contour_filled (geom_contour), 85
stat_contour_filled(), 107, 208, 213
stat_count (geom_bar), 69
stat_count(), 118, 119
stat_density (geom_density), 98
stat_density(), 187, 231, 232
stat_density2d (geom_density_2d), 103
stat_density2d_filled

(geom_density_2d), 103
stat_density_2d (geom_density_2d), 103
stat_density_2d(), 232
stat_density_2d_filled

(geom_density_2d), 103
stat_ecdf, 310
stat_ellipse, 313
stat_function (geom_function), 121
stat_function(), 232
stat_identity, 316
stat_identity(), 231
stat_qq (geom_qq_line), 152
stat_qq_line (geom_qq_line), 152



INDEX 355

stat_quantile (geom_quantile), 157
stat_quantile(), 232
stat_sf (CoordSf), 32
stat_sf_coordinates, 317
stat_sf_coordinates(), 39
stat_smooth (geom_smooth), 176
stat_smooth(), 232
stat_spoke (geom_spoke), 181
stat_sum (geom_count), 91
stat_sum(), 232
stat_summary (stat_summary_bin), 324
stat_summary(), 97, 219, 235, 320
stat_summary2d (stat_summary_2d), 320
stat_summary_2d, 320
stat_summary_2d(), 320
stat_summary_bin, 324
stat_summary_hex (stat_summary_2d), 320
stat_summary_hex(), 323
stat_unique, 329
stat_ydensity (geom_violin), 183
stat_ydensity(), 232
stats, 229
stats::bw.nrd(), 101, 186
stats::loess(), 178
StatSf (CoordSf), 32
StatSfCoordinates

(stat_sf_coordinates), 317
strftime(), 288

theme, 56, 201, 203, 205–207, 210, 213, 215,
216, 331

theme(), 6, 7, 195, 201, 203, 206, 341
theme_bw (ggtheme), 195
theme_classic (ggtheme), 195
theme_dark (ggtheme), 195
theme_get, 341
theme_gray (ggtheme), 195
theme_grey (ggtheme), 195
theme_grey(), 339
theme_light (ggtheme), 195
theme_linedraw (ggtheme), 195
theme_minimal (ggtheme), 195
theme_replace (theme_get), 341
theme_set (theme_get), 341
theme_test (ggtheme), 195
theme_update (theme_get), 341
theme_update(), 331
theme_void (ggtheme), 195

transformation object, 254, 265, 275, 282,
294, 302

txhousing, 343

unit(), 205

vars, 344
vars(), 8, 60, 63

waiver(), 201, 203, 204, 206, 207, 209, 213,
216, 218

x, 73, 77, 83, 89, 93, 97, 101, 106, 110, 124,
127, 130, 134, 143, 147, 151, 155,
156, 159, 162, 167, 171, 174, 179,
183, 186, 327

x (aes_position), 18
xend, 174
xend (aes_position), 18
xlab (labs), 225
xlim (lims), 233
xmax, 83, 97, 115, 167
xmax (aes_position), 18
xmin, 83, 97, 114, 167
xmin (aes_position), 18

y, 73, 77, 83, 89, 93, 97, 101, 106, 111, 115,
124, 127, 130, 134, 143, 147, 151,
155, 156, 159, 162, 167, 171, 174,
179, 183, 186, 327

y (aes_position), 18
yend, 174
yend (aes_position), 18
ylab (labs), 225
ylim (lims), 233
ymax, 83, 97, 167, 179
ymax (aes_position), 18
ymin, 83, 97, 167, 179
ymin (aes_position), 18


	+.gg
	aes
	aes_colour_fill_alpha
	aes_eval
	aes_group_order
	aes_linetype_size_shape
	aes_position
	annotate
	annotation_custom
	annotation_logticks
	annotation_map
	annotation_raster
	autolayer
	automatic_plotting
	autoplot
	borders
	CoordSf
	coord_cartesian
	coord_fixed
	coord_flip
	coord_map
	coord_polar
	coord_trans
	cut_interval
	diamonds
	draw_key
	economics
	element
	expand_limits
	expansion
	facet_grid
	facet_wrap
	faithfuld
	fortify
	geom_abline
	geom_bar
	geom_bin_2d
	geom_blank
	geom_boxplot
	geom_contour
	geom_count
	geom_crossbar
	geom_density
	geom_density_2d
	geom_dotplot
	geom_errorbarh
	geom_freqpoly
	geom_function
	geom_hex
	geom_jitter
	geom_label
	geom_map
	geom_path
	geom_point
	geom_polygon
	geom_qq_line
	geom_quantile
	geom_raster
	geom_ribbon
	geom_rug
	geom_segment
	geom_smooth
	geom_spoke
	geom_violin
	get_alt_text
	ggplot
	ggproto
	ggsave
	ggtheme
	guides
	guide_axis
	guide_axis_logticks
	guide_axis_stack
	guide_axis_theta
	guide_bins
	guide_colourbar
	guide_coloursteps
	guide_custom
	guide_legend
	guide_none
	hmisc
	labeller
	labellers
	label_bquote
	labs
	layer_geoms
	layer_positions
	layer_stats
	lims
	luv_colours
	mean_se
	midwest
	mpg
	msleep
	position_dodge
	position_identity
	position_jitter
	position_jitterdodge
	position_nudge
	position_stack
	presidential
	print.ggplot
	print.ggproto
	qplot
	resolution
	scale_alpha
	scale_binned
	scale_colour_brewer
	scale_colour_continuous
	scale_colour_discrete
	scale_colour_gradient
	scale_colour_grey
	scale_colour_hue
	scale_colour_steps
	scale_colour_viridis_d
	scale_continuous
	scale_date
	scale_identity
	scale_linetype
	scale_linewidth
	scale_manual
	scale_shape
	scale_size
	scale_x_discrete
	seals
	sec_axis
	stat_ecdf
	stat_ellipse
	stat_identity
	stat_sf_coordinates
	stat_summary_2d
	stat_summary_bin
	stat_unique
	theme
	theme_get
	txhousing
	vars
	Index

