The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
This vignette demonstrates the use of the ggpca
package
for creating dimensionality reduction plots, including PCA, t-SNE, and
UMAP. It showcases how to customize labels, titles, and density plots,
providing publication-ready plots.
The following examples use the well-known Iris dataset to illustrate
various plot configurations with the ggpca
function.
# Example using the iris dataset
iris_data <- tibble::as_tibble(iris)
# PCA example with custom labels and titles
p_pca <- ggpca(iris_data, metadata_cols = "Species", mode = "pca", color_var = "Species", ellipse = TRUE,
title = "PCA Plot of Iris Dataset", subtitle = "Colored by Species",
caption = "Data source: iris dataset")
print(p_pca)
# t-SNE example with custom labels and titles
p_tsne <- ggpca(iris_data, metadata_cols = "Species", mode = "tsne", color_var = "Species", ellipse = FALSE,
tsne_perplexity = 30, title = "t-SNE Plot of Iris Dataset",
subtitle = "Colored by Species", caption = "Data source: iris dataset")
print(p_tsne)
# UMAP example with custom labels and titles
p_umap <- ggpca(iris_data, metadata_cols = "Species", mode = "umap", color_var = "Species", ellipse = FALSE,
umap_n_neighbors = 15, title = "UMAP Plot of Iris Dataset",
subtitle = "Colored by Species", caption = "Data source: iris dataset")
print(p_umap)
# PCA example with x-axis density plot only
p_pca_x <- ggpca(iris_data, metadata_cols = "Species", mode = "pca", color_var = "Species", ellipse = TRUE,
density_plot = "x", title = "PCA with X-axis Density Plot",
subtitle = "Iris dataset, colored by Species", caption = "Data source: iris dataset")
print(p_pca_x)
# PCA example with y-axis density plot only
p_pca_y <- ggpca(iris_data, metadata_cols = "Species", mode = "pca", color_var = "Species", ellipse = TRUE,
density_plot = "y", title = "PCA with Y-axis Density Plot",
subtitle = "Iris dataset, colored by Species", caption = "Data source: iris dataset")
print(p_pca_y)
# PCA example with both density plots
p_pca_both <- ggpca(iris_data, metadata_cols = "Species", mode = "pca", color_var = "Species", ellipse = TRUE,
density_plot = "both", title = "PCA with Both Density Plots",
subtitle = "Iris dataset, colored by Species", caption = "Data source: iris dataset")
print(p_pca_both)
# Generate a categorical variable based on Petal.Width
iris_data <- iris_data |>
mutate(Category = cut(Petal.Width, breaks = c(-Inf, 0.5, 1.5, Inf), labels = c("low", "medium", "high")))
# PCA example with faceting by Category and Species using a formula
p_pca_faceting_x <- ggpca(iris_data, metadata_cols = c("Species", "Category"), mode = "pca", color_var = "Species", ellipse = FALSE,
facet_var = . ~ Species, density_plot = "none", title = "PCA Faceted by Petal Width Category",
subtitle = "Facet along X-axis", caption = "Data source: iris dataset")
print(p_pca_faceting_x)
p_pca_faceting_y <- ggpca(iris_data, metadata_cols = c("Species", "Category"), mode = "pca", color_var = "Species", ellipse = FALSE,
facet_var = Category ~ ., density_plot = "none", title = "PCA Faceted by Species",
subtitle = "Facet along Y-axis", caption = "Data source: iris dataset")
print(p_pca_faceting_y)
p_pca_faceting_both <- ggpca(iris_data, metadata_cols = c("Species", "Category"), mode = "pca", color_var = "Species", ellipse = FALSE,
facet_var = Category ~ Species, density_plot = "none", title = "PCA Faceted by Petal Width Category and Species",
subtitle = "Facet along both axes", caption = "Data source: iris dataset")
print(p_pca_faceting_both)
# Load the example dataset
pca_data <- read.csv(system.file("extdata", "example.csv", package = "ggpca"))
# t-SNE example with custom labels and titles
p_tsne_time <- ggpca(
pca_data,
metadata_cols = c(1:6),
mode = "tsne",
color_var = "time",
ellipse = FALSE,
tsne_perplexity = 30,
title = "t-SNE Plot of Example Dataset",
subtitle = "Colored by time",
caption = "Data source: Example dataset"
)
print(p_tsne_time)
# UMAP example with custom labels and titles
p_umap_group <- ggpca(
pca_data,
metadata_cols = c(1:6),
mode = "umap",
color_var = "group",
ellipse = FALSE,
umap_n_neighbors = 15,
title = "UMAP Plot of Example Dataset",
subtitle = "Colored by group",
caption = "Data source: Example dataset"
)
print(p_umap_group)
# PCA example with x-axis density plot only
p_pca_x_time <- ggpca(
pca_data,
metadata_cols = c(1:6),
mode = "pca",
color_var = "time",
ellipse = TRUE,
density_plot = "x",
title = "PCA with X-axis Density Plot",
subtitle = "Example dataset, colored by time",
caption = "Data source: Example dataset"
)
print(p_pca_x_time)
# PCA example with y-axis density plot only
p_pca_y_group <- ggpca(
pca_data,
metadata_cols = c(1:6),
mode = "pca",
color_var = "group",
ellipse = TRUE,
density_plot = "y",
title = "PCA with Y-axis Density Plot",
subtitle = "Example dataset, colored by group",
caption = "Data source: Example dataset"
)
print(p_pca_y_group)
# PCA example with both density plots
p_pca_both_time <- ggpca(
pca_data,
metadata_cols = c(1:6),
mode = "pca",
color_var = "time",
ellipse = TRUE,
density_plot = "both",
title = "PCA with Both Density Plots",
subtitle = "Example dataset, colored by time",
caption = "Data source: Example dataset"
)
print(p_pca_both_time)
# PCA example with faceting by time_category and group
p_pca_faceting_x <- ggpca(
pca_data,
metadata_cols = c(1:6),
mode = "pca",
color_var = "time",
ellipse = FALSE,
facet_var = . ~ group,
density_plot = "none",
title = "PCA Faceted by Group",
subtitle = "Facet along X-axis, colored by time",
caption = "Data source: Example dataset"
)
print(p_pca_faceting_x)
p_pca_faceting_y <- ggpca(
pca_data,
metadata_cols = c(1:6),
mode = "pca",
color_var = "time",
ellipse = FALSE,
facet_var = time ~ .,
density_plot = "none",
title = "PCA Faceted by Time Category",
subtitle = "Facet along Y-axis, colored by time",
caption = "Data source: Example dataset"
)
print(p_pca_faceting_y)
p_pca_faceting_both <- ggpca(
pca_data,
metadata_cols = c(1:6),
mode = "pca",
color_var = "type",
ellipse = FALSE,
facet_var = time ~ group,
density_plot = "none",
title = "PCA Faceted by Time Category and Group",
subtitle = "Facet along both axes",
caption = "Data source: Example dataset"
)
print(p_pca_faceting_both)
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.