The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
library(gglasso)
# load bardet data set
data(bardet)
group1 <- rep(1:20, each = 5)
fit_ls <- gglasso(x = bardet$x, y = bardet$y, group = group1, loss = "ls")
plot(fit_ls)
## s89 s90 s91 s92 s93
## (Intercept) 8.099354325 8.098922472 8.098531366 8.098175719 8.097849146
## V1 -0.119580203 -0.120877799 -0.122079683 -0.123223779 -0.124310183
## V2 -0.113742329 -0.114834411 -0.115853997 -0.116837630 -0.117782854
## V3 -0.002584792 -0.003487571 -0.004328519 -0.005134215 -0.005904892
## V4 -0.084771705 -0.088304073 -0.091674509 -0.094978960 -0.098212775
## s94 s95 s96 s97 s98
## (Intercept) 8.097574095 8.097295166 8.097058895 8.096833259 8.096637676
## V1 -0.125274109 -0.126284595 -0.127173301 -0.128011016 -0.128738414
## V2 -0.118630121 -0.119526679 -0.120326451 -0.121086672 -0.121754134
## V3 -0.006593702 -0.007323107 -0.007970047 -0.008583011 -0.009116809
## V4 -0.101161988 -0.104349829 -0.107241330 -0.110045942 -0.112543755
## s99
## (Intercept) 8.096455264
## V1 -0.129453437
## V2 -0.122415680
## V3 -0.009645386
## V4 -0.115058449
## 1
## (Intercept) 8.197773e+00
## V1 -2.672925e-02
## V2 -6.183860e-02
## V3 3.687290e-02
## V4 8.694734e-03
## V5 -8.829105e-02
## V6 -8.456807e-05
## V7 6.822711e-04
## V8 6.317361e-04
## V9 6.848111e-05
## V10 -1.123480e-03
## V11 2.820666e-02
## V12 -3.695297e-02
## V13 -4.326627e-03
## V14 6.422049e-03
## V15 -5.692340e-02
## V16 -2.198106e-04
## V17 4.512853e-02
## V18 -2.560941e-02
## V19 -5.128320e-03
## V20 -6.528665e-02
## V21 4.313356e-02
## V22 8.934235e-02
## V23 -4.545772e-02
## V24 -2.241544e-02
## V25 -1.662608e-01
## V26 1.207781e-01
## V27 2.789045e-02
## V28 -3.449442e-02
## V29 1.260556e-02
## V30 -1.873208e-01
## V31 -1.844027e-02
## V32 8.501327e-03
## V33 3.583815e-03
## V34 1.191608e-02
## V35 1.866050e-02
## V36 3.895912e-02
## V37 -1.437030e-02
## V38 6.427634e-03
## V39 1.168648e-02
## V40 -5.657613e-02
## V41 -2.330551e-03
## V42 -3.064803e-03
## V43 1.191571e-03
## V44 7.216732e-03
## V45 3.345442e-03
## V46 -9.474428e-02
## V47 7.760270e-02
## V48 9.471451e-02
## V49 1.466030e-02
## V50 2.249739e-02
## V51 -1.008583e-02
## V52 1.112999e-02
## V53 9.524593e-02
## V54 1.597186e-01
## V55 3.856741e-02
## V56 5.048018e-05
## V57 -1.063163e-05
## V58 -1.613658e-04
## V59 2.666697e-04
## V60 8.414123e-05
## V61 -5.692919e-02
## V62 3.423488e-02
## V63 1.331030e-03
## V64 8.528575e-02
## V65 2.249628e-01
## V66 -3.302048e-02
## V67 1.017548e-02
## V68 2.540641e-02
## V69 4.124517e-02
## V70 3.031728e-03
## V71 -8.444857e-03
## V72 -1.748408e-03
## V73 2.958499e-02
## V74 -4.612260e-03
## V75 8.148859e-03
## V76 -1.818270e-02
## V77 2.363876e-02
## V78 5.281023e-02
## V79 -8.057897e-03
## V80 1.797602e-02
## V81 5.307318e-03
## V82 -1.623854e-02
## V83 8.314143e-03
## V84 8.236939e-03
## V85 -2.402224e-02
## V86 5.402119e-03
## V87 -6.397635e-02
## V88 9.012578e-04
## V89 4.500677e-02
## V90 -7.815789e-02
## V91 1.665534e-02
## V92 -5.759135e-03
## V93 -6.432123e-03
## V94 1.552064e-02
## V95 -2.118880e-02
## V96 -2.735230e-03
## V97 2.547208e-03
## V98 -5.347579e-04
## V99 5.831298e-04
## V100 4.605191e-03
We can also perform weighted least-squares regression by specifying
loss='wls'
, and providing a \(n
\times n\) weight matrix in the weights
argument,
where \(n\) is the number of
observations. Note that cross-validation is NOT
IMPLEMENTED for loss='wls'
.
# generate weight matrix
times <- seq_along(bardet$y)
rho <- 0.5
sigma <- 1
H <- abs(outer(times, times, "-"))
V <- sigma * rho^H
p <- nrow(V)
V[cbind(1:p, 1:p)] <- V[cbind(1:p, 1:p)] * sigma
# reduce eps to speed up convergence for vignette build
fit_wls <- gglasso(x = bardet$x, y = bardet$y, group = group1, loss = "wls",
weight = V, eps = 1e-4)
plot(fit_wls)
## s89 s90 s91 s92 s93
## (Intercept) 8.09429262 8.09340481 8.09254573 8.09170743 8.09089247
## V1 -0.13922372 -0.14077803 -0.14222609 -0.14359110 -0.14487482
## V2 -0.15966042 -0.16117772 -0.16261019 -0.16397683 -0.16527730
## V3 0.03917529 0.03880296 0.03847035 0.03816594 0.03788642
## V4 -0.16548208 -0.17057112 -0.17546237 -0.18021267 -0.18481370
## s94 s95 s96 s97 s98
## (Intercept) 8.09011527 8.08935394 8.08862146 8.08793054 8.08727098
## V1 -0.14606257 -0.14719352 -0.14824987 -0.14921624 -0.15011520
## V2 -0.16649386 -0.16766459 -0.16877053 -0.16979410 -0.17075592
## V3 0.03763241 0.03739356 0.03717453 0.03697953 0.03680099
## V4 -0.18919074 -0.19347289 -0.19758499 -0.20145156 -0.20513769
## s99
## (Intercept) 8.08664325
## V1 -0.15094837
## V2 -0.17165664
## V3 0.03663899
## V4 -0.20863833
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.