The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
If you think I’m into this for the money you’re dead wrong because I’m not doing this for the money. I’m doing it because it lives inside of me. – GG Allin
A grab bag of ggplot2 extensions and hacks.
– Steven E. Pav, shabbychef@gmail.com
This package can be installed from CRAN (not yet), via drat, or from github:
# via CRAN: (not yet)
# install.packages("ggallin")
# via drat:
if (require(drat)) {
:::add("shabbychef")
dratinstall.packages("ggallin")
}# get snapshot from github (may be buggy)
if (require(devtools)) {
install_github('shabbychef/ggallin')
}
geom_cloud
This geom
acts nearly as a drop-in replacement for
geom_errorbar
, converting ymin
and
ymax
into ‘clouds’ of uncertainty with alpha proportional
to normal density.
library(ggplot2)
library(ggallin)
library(dplyr)
<- 1000
nobs
set.seed(2134)
<- data.frame(grp=sample(c(0,1),nobs,replace=TRUE),
mydat colfac=sample(letters[1:2],nobs,replace=TRUE),
rowfac=sample(letters[10 + (1:3)],nobs,replace=TRUE)) %>%
mutate(x=seq(0,1,length.out=nobs) + 0.33 * grp) %>%
mutate(y=0.25*rnorm(nobs) + 2*grp) %>%
mutate(grp=factor(grp)) %>%
mutate(se=sqrt(x)) %>%
mutate(ymin=y-se,ymax=y+se)
<- 2
offs <- mydat %>%
ph mutate(y=y+offs,ymin=ymin+offs,ymax=ymax+offs) %>%
ggplot(aes(x=x,y=y,ymin=ymin,ymax=ymax,color=grp,fill=grp)) +
facet_grid(rowfac ~ colfac) +
scale_y_sqrt() + geom_line() +
geom_cloud(aes(fill=grp),steps=15,max_alpha=0.85,color=NA) +
labs(title='geom cloud')
print(ph)
The square root transform is a good compromise between raw and logarithmic scales, showing detail across different scales without over-emphasizing very small variation. However, it does not work for negative numbers. Thus a signed square root transform is useful. Along similar lines, the pseudo-log transform accepts negative numbers while providing a good view across magnitudes. Some illustrations:
library(ggplot2)
library(ggallin)
library(dplyr)
<- 100
nobs
# this is a silly example, don't blame me
set.seed(1234)
<- data.frame(x=rnorm(nobs),z=rnorm(nobs)) %>%
mydat mutate(y=sign(z) * exp(x+z-2))
<- mydat %>%
ph ggplot(aes(x=x,y=y)) +
geom_line() +
scale_y_continuous(trans=ssqrt_trans)
print(ph)
<- mydat %>%
ph ggplot(aes(x=x,y=y)) +
geom_line() +
scale_y_continuous(trans=pseudolog10_trans)
print(ph)
Scale transforms are useful for ‘straightening out’ crooked data graphically. Sometimes these transforms can not be expressed functionally but instead rely on data. In this case we can imagine that we have some paired data that provide the transformation x -> y. We provide a scale transformation that supports linear interpolation. We also provide another scale transformation that accepts x and positive ‘weights’ w, and computes y by taking the cumulative sum of weights, called a ‘warp’ transformation.
Here we illustrate the warp transformation by plotting the cumulative return of the ‘UMD’ factor against a time scale that is uniform in cumulative daily VIX (whatever that means):
library(ggplot2)
library(ggallin)
library(dplyr)
library(aqfb.data)
library(scales)
data(dvix)
data(dff4)
<- function(x) {
rr_to_nav exp(cumsum(log(1 + x)))
}
<- dff4 %>%
rets as.data.frame() %>%
::rownames_to_column(var='date') %>%
tibbleinner_join(dvix %>%
as.data.frame() %>%
setNames(c('VIX')) %>%
::rownames_to_column(var='date'),by='date') %>%
tibblemutate(date=as.Date(date,format='%Y-%m-%d')) %>%
mutate(UMD_nav=rr_to_nav(0.01*UMD),
SMB_nav=rr_to_nav(0.01*SMB),
HML_nav=rr_to_nav(0.01*HML))
<- rets %>%
ph ggplot(aes(x=date,y=UMD_nav)) +
geom_line() +
labs(y='UMD cumulative return') +
labs(x='regular date scale')
print(ph)
# select breaks automagically
<- rets %>%
ph ggplot(aes(x=date,y=UMD_nav)) +
geom_line() +
scale_x_continuous(trans=warp_trans(x=rets$date,w=rets$VIX)) +
labs(y='UMD cumulative return') +
labs(x='warped date scale')
print(ph)
# force decade breaks:
<- rets %>%
ph ggplot(aes(x=date,y=UMD_nav)) +
geom_line() +
scale_x_continuous(trans=warp_trans(x=rets$date,w=rets$VIX,
breaks=scales::date_breaks('10 years'),
format=scales::date_format('%Y'))) +
labs(y='UMD cumulative return') +
labs(x='warped date scale')
print(ph)
# reverse scale as well (see composition of transforms)
<- rets %>%
ph ggplot(aes(x=date,y=UMD_nav)) +
geom_line() +
scale_x_continuous(trans=scales::reverse_trans() %of% warp_trans(x=rets$date,w=rets$VIX)) +
labs(y='UMD cumulative return') +
labs(x='reversed, warped date scale')
print(ph)
The %of%
binary operator supports composition of scale
transformations. This is most useful for composing reverse scales with
other transforms:
library(ggplot2)
library(ggallin)
# reverse and log scale
set.seed(1234)
<- ggplot(data.frame(x=rnorm(100),y=exp(rnorm(100,mean=-2,sd=4))),aes(x=x,y=y)) +
ph geom_point() +
scale_y_continuous(trans=scales::reverse_trans() %of% scales::log10_trans()) +
labs(title='reversed and log scaled y')
print(ph)
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.