The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
This package extends ggplot2 by providing advanced tools for aligning and organizing multiple plots, particularly those that automatically reorder observations, such as dendrogram. It offers fine control over layout adjustment and plot annotations, enabling you to create complex, publication-quality visualizations while still using the familiar grammar of ggplot2.
ggalign
?ggalign
focuses on aligning observations across multiple
plots. It leverages the "number of observations"
in the vctrs package
or NROW()
function to maintain consistency in plot
organization.
If you’ve ever struggled with aligning plots with self-contained
ordering (like dendrogram), or applying consistent grouping or ordering
across multiple plots (e.g., with k-means clustering),
ggalign
is designed to make this easier. The package
integrates seamlessly with ggplot2, providing the flexibility to use its
geoms, scales, and other components for complex visualizations.
You can install ggalign
from CRAN
using:
install.packages("ggalign")
Alternatively, install the development version from r-universe with:
install.packages("ggalign",
repos = c("https://yunuuuu.r-universe.dev", "https://cloud.r-project.org")
)
or from GitHub with:
# install.packages("remotes")
::install_github("Yunuuuu/ggalign") remotes
The usage of ggalign
is simple if you’re familiar with
ggplot2
syntax, the typical workflow includes:
quad_layout()
(ggheatmap()
/ggside()
) or
stack_layout()
(ggstack()
).align_group()
: Group observations into panel with a
group variable.align_kmeans()
: Group observations into panel by
kmeans.align_order()
: Reorder layout observations based on
statistical weights or by manually specifying the observation
index.align_dendro()
: Reorder or Group layout based on
hierarchical clustering.ggalign()
or ggfree()
,
and then layer additional ggplot2 elements such as geoms, stats, or
scales.For documents of the release version, please see https://yunuuuu.github.io/ggalign/, for documents of the development version, please see https://yunuuuu.github.io/ggalign/dev/.
Below, we’ll walk through a basic example of using
ggalign
to create a heatmap with a
dendrogram
.
library(ggalign)
#> Loading required package: ggplot2
set.seed(123)
<- matrix(rnorm(72), nrow = 9)
small_mat rownames(small_mat) <- paste0("row", seq_len(nrow(small_mat)))
colnames(small_mat) <- paste0("column", seq_len(ncol(small_mat)))
# initialize the heatmap layout, we can regard it as a normal ggplot object
<- ggheatmap(small_mat) +
my_heatplot # we can directly modify geoms, scales and other ggplot2 components
scale_fill_viridis_c() +
# add annotation in the top
anno_top() +
# in the top annotation, we add a dendrogram, and split observations into 3 groups
align_dendro(aes(color = branch), k = 3) +
# in the dendrogram we add a point geom
geom_point(aes(color = branch, y = y)) +
# change color mapping for the dendrogram
scale_color_brewer(palette = "Dark2")
my_heatplot#> → heatmap built with `geom_tile()`
Marginal plots can also be created with similar syntax:
<- ggside(mpg, aes(displ, hwy, colour = class)) -
my_sideplot # set default theme for all plots in the layout
plot_theme(theme_bw()) +
geom_point(size = 2) +
# add top annotation
anno_top(size = 0.3) -
# set default theme for the top annotation
plot_theme(theme_no_axes("tb")) +
# add a plot in the top annotation
ggfree() +
geom_density(aes(displ, y = after_stat(density), colour = class), position = "stack") +
anno_right(size = 0.3) -
# set default theme for the right annotation
plot_theme(theme_no_axes("lr")) +
# add a plot in the right annotation
ggfree() +
geom_density(aes(x = after_stat(density), hwy, colour = class),
position = "stack"
+
) theme(axis.text.x = element_text(angle = 90, vjust = .5)) &
scale_color_brewer(palette = "Dark2")
my_sideplot
Multiple heatmaps can be stacked together:
stack_alignv() +
+
my_heatplot
my_heatplot#> → heatmap built with `geom_tile()`
#> → heatmap built with `geom_tile()`
Similarly, multiple marginal plots can be stacked together:
stack_freev(sizes = c(1, 1, 0.3)) +
+
my_sideplot my_sideplot
ggalign
offers advantages over extensions like ggheatmap by
providing full compatibility with ggplot2
. With
ggalign
, you can:
geoms
, stats
,
scales
et al. into your layouts.ggplot2
ecosystem.ggplot2
plots by panel
area.Fewer Built-In Annotations: May require additional coding for specific annotations or customization compared to the extensive built-in annotation function in ComplexHeatmap.
Here are some more advanced visualizations using
ggalign
:
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.