The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

genSurv

Generating Multi-State Survival Data.

Description

The genSurv software permits to generate data with one binary time-dependent covariate and data stemming from a progressive illness-death model.

Installation

If you want to use the release version of the genSurv package, you can install the package from CRAN as follows:

install.packages(pkgs="genSurv");

If you want to use the development version of the genSurv package, you can install the package from GitHub via the remotes package:

remotes::install_github(
  repo="arturstat/genSurv",
  build=TRUE,
  build_manual=TRUE
);

Authors

Artur Araújo, Luís Meira-Machado lmachado@math.uminho.pt
and Susana Faria sfaria@math.uminho.pt
Maintainer: Artur Araújo artur.stat@gmail.com

Funding

This research was financed by FEDER Funds through Programa Operacional Factores de CompetitividadeCOMPETE and by Portuguese Funds through FCTFundação para a Ciência e a Tecnologia, in the form of grants PTDC/MAT/104879/2008 and Est-C/MAT/UI0013/2011.

References

Anderson, P.K., Gill, R.D. (1982). Cox’s regression model for counting processes: a large sample study. Annals of Statistics, 10(4), 1100-1120. doi:10.1214/aos/1176345976

Cox, D.R. (1972). Regression models and life tables. Journal of the Royal Statistical Society: Series B, 34(2), 187-202. doi:10.1111/j.2517-6161.1972.tb00899.x

Jackson, C. (2011). Multi-State Models for Panel Data: The msm Package for R. Journal of Statistical Software, 38(8), 1–28. doi:10.18637/jss.v038.i08

Johnson, M. E. (1987). Multivariate Statistical Simulation, John Wiley and Sons.

Johnson, N., Kotz, S. (1972). Distribution in statistics: continuous multivariate distributions, John Wiley and Sons.

Lu J., Bhattacharya G. (1990). Some new constructions of bivariate weibull models. Annals of Institute of Statistical Mathematics, 42(3), 543-559. doi:10.1007/BF00049307

Meira-Machado, L., Cadarso-Suárez, C., De Uña- Álvarez, J., Andersen, P.K. (2009). Multi-state models for the analysis of time to event data. Statistical Methods in Medical Research, 18(2), 195-222. doi:10.1177/0962280208092301

Meira-Machado L., Faria S. (2014). A simulation study comparing modeling approaches in an illness-death multi-state model. Communications in Statistics - Simulation and Computation, 43(5), 929-946. doi:10.1080/03610918.2012.718841

Meira-Machado, L., Roca-Pardiñas, J. (2011). p3state.msm: Analyzing Survival Data from an Illness-Death Model. Journal of Statistical Software, 38(3), 1-18. doi:10.18637/jss.v038.i03

Meira-Machado, L., Sestelo M. (2019). Estimation in the progressive illness-death model: a nonexhaustive review. Biometrical Journal, 61(2), 245–263. doi:10.1002/bimj.201700200

Therneau, T.M., Grambsch, P.M. (2000). Modelling survival data: Extending the Cox Model, New York: Springer.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.