The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
geex
This vignette implements examples from and is meant to read with
Stefanski and Boos (2002) (SB). Examples
4-9 use the geexex
data set. For information on how the
data are generated, run help('geexex')
.
library(geex)
Example 4 calculates an instumental variable estimator. The variables (\(Y_3, W_1, Z_1\)) are observed according to:
\[ Y_{3i} = \alpha + \beta X_{1i} + \sigma_{\epsilon}\epsilon_{1, i} \]
\[ W_{1i} =\beta X_{1i} + \sigma_{U}\epsilon_{2, i} \]
and
\[ Z_{1i} = \gamma + \delta X_{1i} + \sigma_{\tau}\epsilon_{3, i}. \]
\(Y_3\) is a linear function of a latent variable \(X_1\), whose coefficient \(\beta\) is of interest. \(W_1\) is a measurement of the unobserved \(X_1\), and \(Z_1\) is an instrumental variable for \(X_1\). The instrumental variable estimator is \(\hat{\beta}_{IV}\) is the ratio of least squares regression slopes of \(Y_3\) on \(Z_1\) and \(Y_3\) and \(W_1\). The \(\psi\) function below includes this estimator as \(\hat{\theta}_4 = \hat{\beta}_{IV}\). In the example data, 100 observations are generated where \(X_1 \sim \Gamma(\text{shape} = 5, \text{rate} = 1)\), \(\alpha = 2\), \(\beta = 3\), \(\gamma = 2\), \(\delta = 1.5\), \(\sigma_{\epsilon} = \sigma_{\tau} = 1\), \(\sigma_U = .25\), and \(\epsilon_{\cdot, i} \sim N(0,1)\).
\[ \psi(Y_{3i}, Z_{1i}, W_{1i}, \mathbf{\theta}) = \begin{pmatrix} \theta_1 - Z_{1i} \\ \theta_2 - W_{1i} \\ (Y_{3i} - \theta_3 W_{1i})(\theta_2 - W_{1i}) \\ (Y_{3i} - \theta_4 W_{1i})(\theta_1 - Z_{1i}) \\ \end{pmatrix} \]
<- function(data){
SB4_estFUN <- data$Z1; W1 <- data$W1; Y3 <- data$Y3
Z1 function(theta){
c(theta[1] - Z1,
2] - W1,
theta[- (theta[3] * W1)) * (theta[2] - W1),
(Y3 - (theta[4] * W1)) * (theta[1] - Z1)
(Y3
)
} }
<- m_estimate(
estimates estFUN = SB4_estFUN,
data = geexex,
root_control = setup_root_control(start = c(1, 1, 1, 1)))
The R packages AER
and
ivpack
can compute the IV estimator and sandwich variance estimators
respectively, which is done below for comparison.
<- AER::ivreg(Y3 ~ W1 | Z1, data = geexex)
ivfit <- ivpack::cluster.robust.se(ivfit, clusterid = 1:nrow(geexex)) iv_se
coef(ivfit)[2]
coef(estimates)[4]
2, 'Std. Error']
iv_se[sqrt(vcov(estimates)[4, 4])
This example shows the link between the influence curves and the Hodges-Lehman estimator.
\[ \psi(Y_{2i}, \theta) = \begin{pmatrix} IC_{\hat{\theta}_{HL}}(Y_2; \theta_0) - (\theta_1 - \theta_0) \\ \end{pmatrix} \]
The functions used in SB5_estFUN
are defined below:
<- function(y, theta0, distrFUN = pnorm){
F0 distrFUN(y - theta0, mean = 0)
}
<- function(y, densFUN){
f0 densFUN(y, mean = 0)
}
<- function(y, densFUN = dnorm){
integrand f0(y, densFUN = densFUN)^2
}
<- integrate(integrand, lower = -Inf, upper = Inf)$value IC_denom
<- function(data){
SB5_estFUN <- data[['Y2']]
Yi function(theta){
1/IC_denom) * (F0(Yi, theta[1]) - 0.5)
(
} }
<- m_estimate(
estimates estFUN = SB5_estFUN,
data = geexex,
root_control = setup_root_control(start = 2))
The hc.loc
of the ICSNP
package computes the Hodges-Lehman estimator and SB gave closed form
estimators for the variance.
<- ICSNP::hl.loc(geexex$Y2)
theta_cls <- 1/(12 * IC_denom^2) / nrow(geexex) Sigma_cls
## $geex
## $geex$parameters
## [1] 2.026376
##
## $geex$vcov
## [,1]
## [1,] 0.01040586
##
##
## $cls
## $cls$parameters
## [1] 2.024129
##
## $cls$vcov
## [1] 0.01047198
This example illustrates estimation with nonsmooth \(\psi\) function for computing the Huber (1964) estimator of the center of symmetric distributions.
\[ \psi_k(Y_{1i}, \theta) = \begin{cases} (Y_{1i} - \theta) & \text{when } |(Y_{1i} - \theta)| \leq k \\ k * sgn(Y_{1i} - \theta) & \text{when } |(Y_{1i} - \theta)| > k\\ \end{cases} \]
<- function(data, k = 1.5){
SB6_estFUN <- data$Y1
Y1 function(theta){
<- Y1 - theta[1]
x if(abs(x) <= k) x else sign(x) * k
} }
<- m_estimate(
estimates estFUN = SB6_estFUN,
data = geexex,
root_control = setup_root_control(start = 3))
The point estimate from geex
is compared to the estimate
obtained from the huber
function in the MASS
package. The variance estimate is compared to an estimator suggested by
SB: \(A_m = \sum_i [-\psi'(Y_i -
\hat{\theta})]/m\) and \(B_m = \sum_i
\psi_k^2(Y_i - \hat{\theta})/m\), where \(\psi_k'\) is the derivative of \(\psi\) where is exists.
<- MASS::huber(geexex$Y1, k = 1.5, tol = 1e-10)$mu
theta_cls
<- function(x, k = 1.5){
psi_k if(abs(x) <= k) x else sign(x) * k
}
<- mean(unlist(lapply(geexex$Y1, function(y){
A <- y - theta_cls
x -numDeriv::grad(psi_k, x = x)
})))
<- mean(unlist(lapply(geexex$Y1, function(y){
B <- y - theta_cls
x psi_k(x = x)^2
})))
## closed form covariance
<- matrix(1/A * B * 1/A / nrow(geexex)) Sigma_cls
<- list(geex = list(parameters = coef(estimates), vcov = vcov(estimates)),
results cls = list(parameters = theta_cls, vcov = Sigma_cls))
results
## $geex
## $geex$parameters
## [1] 4.82061
##
## $geex$vcov
## [,1]
## [1,] 0.08356179
##
##
## $cls
## $cls$parameters
## [1] 4.999386
##
## $cls$vcov
## [,1]
## [1,] 0.0928935
Approximation of \(\psi\) with geex is EXPERIMENTAL.
Example 7 illustrates calculation of sample quantiles using M-estimation and approximation of the \(\psi\) function.
\[ \psi(Y_{1i}, \theta) = \begin{pmatrix} 0.5 - I(Y_{1i} \leq \theta_1) \\ \end{pmatrix} \]
<- function(data){
SB7_estFUN <- data$Y1
Y1 function(theta){
0.5 - (Y1 <= theta[1])
} }
Note that \(\psi\) is not
differentiable; however, geex
includes the ability to
approximate the \(\psi\) function via
an approx_control
object. The FUN
in an
approx_control
must be a function that takes in the \(\psi\) function, modifies it, and returns a
function of theta
. For this example, I approximate \(\psi\) with a spline function. The
eval_theta
argument is used to modify the basis of the
spline.
<- function(psi, eval_theta){
spline_approx <- Vectorize(psi)(eval_theta)
y <- splinefun(x = eval_theta, y = y)
f function(theta) f(theta)
}
<- m_estimate(
estimates estFUN = SB7_estFUN,
data = geexex,
root_control = setup_root_control(start = 4.7),
approx_control = setup_approx_control(FUN = spline_approx,
eval_theta = seq(3, 6, by = .05)))
A comparison of the variance is not obvious, so no comparison is made.
## $geex
## $geex$parameters
## [1] 4.7
##
## $geex$vcov
## [,1]
## [1,] 0.1773569
##
##
## $cls
## $cls$parameters
## [1] 4.708489
##
## $cls$vcov
## [1] NA
Example 8 demonstrates robust regression for estimating \(\beta\) from 100 observations generated from \(Y_4 = 0.1 + 0.1 X_{1i} + 0.5 X_{2i} + \epsilon_i\), where \(\epsilon_i \sim N(0, 1)\), \(X_1\) is defined as above, and the first half of the observation have \(X_{2i} = 1\) and the others have \(X_{2i} = 0\).
\[ \psi_k(Y_{4i}, \theta) = \begin{pmatrix} \psi_k(Y_{4i} - \mathbf{x}_i^T \beta) \mathbf{x}_i \end{pmatrix} \]
<- function(x, k = 1.345){
psi_k if(abs(x) <= k) x else sign(x) * k
}
<- function(data){
SB8_estFUN <- data$Y4
Yi <- model.matrix(Y4 ~ X1 + X2, data = data)
xi function(theta){
<- Yi - xi %*% theta
r c(psi_k(r) %*% xi)
} }
<- m_estimate(
estimates estFUN = SB8_estFUN,
data = geexex,
root_control = setup_root_control(start = c(0, 0, 0)))
<- MASS::rlm(Y4 ~ X1 + X2, data = geexex, method = 'M')
m <- coef(m)
theta_cls <- vcov(m) Sigma_cls
<- list(geex = list(parameters = coef(estimates), vcov = vcov(estimates)),
results cls = list(parameters = theta_cls, vcov = Sigma_cls))
results
## $geex
## $geex$parameters
## [1] -0.04050369 0.14530196 0.30181589
##
## $geex$vcov
## [,1] [,2] [,3]
## [1,] 0.05871932 -0.0101399730 -0.0133230841
## [2,] -0.01013997 0.0021854268 0.0003386202
## [3,] -0.01332308 0.0003386202 0.0447117633
##
##
## $cls
## $cls$parameters
## (Intercept) X1 X2
## -0.0377206 0.1441181 0.2988842
##
## $cls$vcov
## (Intercept) X1 X2
## (Intercept) 0.07309914 -0.0103060747 -0.0241724792
## X1 -0.01030607 0.0020579145 0.0005364106
## X2 -0.02417248 0.0005364106 0.0431120686
Example 9 illustrates estimation of a generalized linear model.
\[ \psi(Y_i, \theta) = \begin{pmatrix} D_i(\beta)\frac{Y_i - \mu_i(\beta)}{V_i(\beta) \tau} \end{pmatrix} \]
<- function(data){
SB9_estFUN <- data$Y5
Y <- model.matrix(Y5 ~ X1 + X2, data = data, drop = FALSE)
X function(theta){
<- X %*% theta
lp <- plogis(lp)
mu <- t(X) %*% dlogis(lp)
D <- mu * (1 - mu)
V %*% solve(V) %*% (Y - mu)
D
} }
<- m_estimate(
estimates estFUN = SB9_estFUN,
data = geexex,
root_control = setup_root_control(start = c(.1, .1, .5)))
Compare point estimates to glm
coefficients and
covariance matrix to sandwich
.
<- glm(Y5 ~ X1 + X2, data = geexex, family = binomial(link = 'logit'))
m9 <- coef(m9)
theta_cls <- sandwich::sandwich(m9) Sigma_cls
<- list(geex = list(parameters = coef(estimates), vcov = vcov(estimates)),
results cls = list(parameters = theta_cls, vcov = Sigma_cls))
results
## $geex
## $geex$parameters
## [1] -1.1256071 0.3410619 -0.1148368
##
## $geex$vcov
## [,1] [,2] [,3]
## [1,] 0.35202094 -0.058906883 -0.101528787
## [2,] -0.05890688 0.012842435 0.004357355
## [3,] -0.10152879 0.004357355 0.185455144
##
##
## $cls
## $cls$parameters
## (Intercept) X1 X2
## -1.1256070 0.3410619 -0.1148368
##
## $cls$vcov
## (Intercept) X1 X2
## (Intercept) 0.35201039 -0.058903546 -0.101534539
## X1 -0.05890355 0.012841392 0.004358926
## X2 -0.10153454 0.004358926 0.185456314
Example 10 illustrates testing equality of success probablities.
\[ \psi(Y_i, n_i, \theta) = \begin{pmatrix} \frac{(Y_i - n_i \theta_2)^2}{n_i \theta_2( 1 - \theta_2 )} - \theta_1 \\ Y_i - n_i \theta_2 \end{pmatrix} \]
<- function(data){
SB10_estFUN <- data$ft_made
Y <- data$ft_attp
n function(theta){
<- theta[2]
p c(((Y - (n * p))^2)/(n * p * (1 - p)) - theta[1],
- n * p)
Y
} }
<- m_estimate(
estimates estFUN = SB10_estFUN,
data = shaq,
units = 'game',
root_control = setup_root_control(start = c(.5, .5)))
<- function(p) {
V11 <- nrow(shaq)
k <- sum(shaq$ft_attp)
sumn <- sum(1/shaq$ft_attp)
sumn_inv <- 1 - (6 * p) + (6 * p^2)
term2_n <- p * (1 - p)
term2_d <- term2_n/term2_d
term2 <- ((1 - (2 * p))^2) / ((sumn/k) * p * (1 - p))
term3 2 + (term2 * (1/k) * sumn_inv) - term3
}
<- sum(shaq$ft_made)/sum(shaq$ft_attp)
p_tilde <- V11(p_tilde)/23
V11_hat
# Compare variance estimates
V11_hat
## [1] 0.0783097
vcov(estimates)[1, 1]
## [1] 0.1929791
# Note the differences in the p-values
pnorm(35.51/23, mean = 1, sd = sqrt(V11_hat), lower.tail = FALSE)
## [1] 0.02596785
pnorm(coef(estimates)[1],
mean = 1,
sd = sqrt(vcov(estimates)[1, 1]),
lower.tail = FALSE)
## [1] 0.1078138
This example shows that the empircal sandwich variance estimator may be different from other sandwich variance estimators that make assumptions about the structure of the \(A\) and \(B\) matrices.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.