The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

Spatial Heterogeneity Explanation(GOZH & LESH)

The GOZH(geographically optimal zones-based heterogeneity) model generates the optimal spatial zone based on the binary classification of the decision tree and then calculates the power of determinants. The LESH(locally explained stratified heterogeneity model) based on GOZH model and combined with additive shapely theory to reasonably allocate variable interaction’s power of determinants. In this vignette, we use ndvi data in gdverse package to demonstrate the spatial heterogeneity explanation based on GOZH and LESH model.

Load data and package

library(tidyverse)
library(gdverse)

data("ndvi")
head(ndvi)
## # A tibble: 6 × 7
##   NDVIchange Climatezone Mining Tempchange Precipitation   GDP Popdensity
##        <dbl> <chr>       <fct>       <dbl>         <dbl> <dbl>      <dbl>
## 1    0.116   Bwk         low         0.256          237. 12.6      1.45  
## 2    0.0178  Bwk         low         0.273          214.  2.69     0.801 
## 3    0.138   Bsk         low         0.302          449. 20.1     11.5   
## 4    0.00439 Bwk         low         0.383          213.  0        0.0462
## 5    0.00316 Bwk         low         0.357          205.  0        0.0748
## 6    0.00838 Bwk         low         0.338          201.  0        0.549

Univariate power of determinants detection

gozh.uvi = gozh(NDVIchange ~ ., data = ndvi)
gozh.uvi
## ***   Geographically Optimal Zones-based Heterogeneity Model       
##                 Factor Detector            
## 
## |   variable    | Q-statistic | P-value  |
## |:-------------:|:-----------:|:--------:|
## | Precipitation | 0.87255056  | 4.52e-10 |
## |  Climatezone  | 0.82129550  | 2.50e-10 |
## |  Tempchange   | 0.33324945  | 1.12e-10 |
## |  Popdensity   | 0.22321863  | 3.00e-10 |
## |    Mining     | 0.13982859  | 6.00e-11 |
## |      GDP      | 0.09170153  | 3.96e-10 |
plot(gozh.uvi)

Variable interaction detection

gozh.bi = gozh(NDVIchange ~ ., data = ndvi, type = 'interaction')
gozh.bi
## ***   Geographically Optimal Zones-based Heterogeneity Model       
##                 Interaction Detector         
## 
## |    Interactive variable     |    Interaction     |
## |:---------------------------:|:------------------:|
## |    Climatezone ∩ Mining     |    Weaken, uni-    |
## |  Climatezone ∩ Tempchange   |    Weaken, uni-    |
## | Climatezone ∩ Precipitation |    Enhance, bi-    |
## |      Climatezone ∩ GDP      |    Enhance, bi-    |
## |  Climatezone ∩ Popdensity   |    Enhance, bi-    |
## |     Mining ∩ Tempchange     |    Enhance, bi-    |
## |   Mining ∩ Precipitation    |    Weaken, uni-    |
## |        Mining ∩ GDP         |    Enhance, bi-    |
## |     Mining ∩ Popdensity     |    Enhance, bi-    |
## | Tempchange ∩ Precipitation  |    Enhance, bi-    |
## |      Tempchange ∩ GDP       | Enhance, nonlinear |
## |   Tempchange ∩ Popdensity   |    Enhance, bi-    |
## |     Precipitation ∩ GDP     |    Enhance, bi-    |
## | Precipitation ∩ Popdensity  |    Enhance, bi-    |
## |      GDP ∩ Popdensity       |    Weaken, uni-    |
plot(gozh.bi)

Variable interaction contribution

lesh.m = lesh(NDVIchange ~ ., data = ndvi, cores = 6)
lesh.m
## ***       Locally Explained Stratified Heterogeneity Model         
## 
## |    Interactive variable     |    Interaction     | Variable1 SPD | Variable2 SPD |
## |:---------------------------:|:------------------:|:-------------:|:-------------:|
## |    Climatezone ∩ Mining     |    Weaken, uni-    |  0.75353265   |  0.06776285   |
## |  Climatezone ∩ Tempchange   |    Weaken, uni-    |  0.64437728   |  0.17691822   |
## | Climatezone ∩ Precipitation |    Enhance, bi-    |  0.39405554   |  0.48986045   |
## |      Climatezone ∩ GDP      |    Enhance, bi-    |  0.79843017   |  0.05246998   |
## |  Climatezone ∩ Popdensity   |    Enhance, bi-    |  0.74240657   |  0.11069841   |
## |     Mining ∩ Tempchange     |    Enhance, bi-    |  0.10161351   |  0.31023743   |
## |   Mining ∩ Precipitation    |    Weaken, uni-    |  0.05886173   |  0.81368883   |
## |        Mining ∩ GDP         |    Enhance, bi-    |  0.12735177   |  0.09306564   |
## |     Mining ∩ Popdensity     |    Enhance, bi-    |  0.13123771   |  0.21760488   |
## | Tempchange ∩ Precipitation  |    Enhance, bi-    |  0.16187198   |  0.73291613   |
## |      Tempchange ∩ GDP       | Enhance, nonlinear |  0.35277116   |  0.08443737   |
## |   Tempchange ∩ Popdensity   |    Enhance, bi-    |  0.28786726   |  0.15633619   |
## |     Precipitation ∩ GDP     |    Enhance, bi-    |  0.84089496   |  0.04445297   |
## | Precipitation ∩ Popdensity  |    Enhance, bi-    |  0.79267181   |  0.09507756   |
## |      GDP ∩ Popdensity       |    Weaken, uni-    |  0.06828443   |  0.15493420   |
plot(lesh.m, pie = TRUE, scatter = TRUE)

Compared to GOZH Interaction Detector, LESH only has a decomposition of the interactive contribution of variables, and the rest remains consistent.

gdverse supports modifications to the default ploting results, such as adding subfigure annotations and adjusting the size of the text on the x-y axis:

plot(lesh.m, pie = TRUE, scatter = TRUE,
     pielegend_x = 0.98, pielegend_y = 0.15) +
  patchwork::plot_annotation(tag_levels = 'a',
                             tag_prefix = '(',
                             tag_suffix = ')',
                             tag_sep = '',
                             theme = theme(plot.tag = element_text(family = "serif"))) &
  ggplot2::theme(axis.text.y = element_text(family = 'serif',size = 15),
                 axis.text.x = element_text(family = 'serif',size = 15,
                                            angle = 30,vjust = 0.85,hjust = 0.75),
                 axis.title = element_text(family = 'serif',size = 15))

And you can only look at the contribution part of the variable interaction:

plot(lesh.m, pie = TRUE, scatter = FALSE)

By accessing the concrete result through lesh.m$interaction, which returns a tibble.

lesh.m$interaction
## # A tibble: 15 × 8
##    variable1     variable2     Interaction        `Variable1 Q-statistics` `Variable2 Q-statistics`
##    <chr>         <chr>         <chr>                                 <dbl>                    <dbl>
##  1 Climatezone   Mining        Weaken, uni-                         0.821                    0.140 
##  2 Climatezone   Tempchange    Weaken, uni-                         0.821                    0.333 
##  3 Climatezone   Precipitation Enhance, bi-                         0.821                    0.873 
##  4 Climatezone   GDP           Enhance, bi-                         0.821                    0.0917
##  5 Climatezone   Popdensity    Enhance, bi-                         0.821                    0.223 
##  6 Mining        Tempchange    Enhance, bi-                         0.140                    0.333 
##  7 Mining        Precipitation Weaken, uni-                         0.140                    0.873 
##  8 Mining        GDP           Enhance, bi-                         0.140                    0.0917
##  9 Mining        Popdensity    Enhance, bi-                         0.140                    0.223 
## 10 Tempchange    Precipitation Enhance, bi-                         0.333                    0.873 
## 11 Tempchange    GDP           Enhance, nonlinear                   0.333                    0.0917
## 12 Tempchange    Popdensity    Enhance, bi-                         0.333                    0.223 
## 13 Precipitation GDP           Enhance, bi-                         0.873                    0.0917
## 14 Precipitation Popdensity    Enhance, bi-                         0.873                    0.223 
## 15 GDP           Popdensity    Weaken, uni-                         0.0917                   0.223 
## # ℹ 3 more variables: `Variable1 and Variable2 interact Q-statistics` <dbl>,
## #   `Variable1 SPD` <dbl>, `Variable2 SPD` <dbl>

Use lesh.m$spd_lesh to access the SHAP power of determinants:

lesh.m$spd_lesh
## # A tibble: 6 × 2
##   variable      spd_theta
##   <chr>             <dbl>
## 1 Precipitation    0.218 
## 2 Climatezone      0.176 
## 3 Tempchange       0.0482
## 4 Popdensity       0.0262
## 5 Mining           0.0158
## 6 GDP              0.0115

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.