The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

gageRR

Analyzing measurement system error is a critical component of the manufacturing process in numerous industries. While a number of methods exist to analyze measurement error they can all be broadly described as repeatability and reproducibilty studies (or often referred to as Gage R&R studies). Industries can then provide guidelines or limitations on the amount of error that is acceptable for a given product feature based on the outcome of a Gage R&R study.

The gageRR package provides two methods to analyze repeatability and reproducibility: Analysis of Variance (ANOVA) method and Average and Range method. These methods require a balanced study, that is the same number of repetitions for each operator and part combination.

Installation

You can install the development version of gageRR from GitHub with:

# install.packages("devtools")
devtools::install_github("warrenjonahb/gageRR")

After installation you can run the Shiny App with:

shiny::runApp(system.file("app", package = "gageRR"))

Example

This is a basic example which takes the appropriately formatted data (one row per operator and part measurement) and calculates summary gage evaluation statistics. For more information please see the gageRR_vignette.

Here, a sample dataset is created to demonstrate the gageRR functions:

library(gageRR)
data = data.frame(
SN = c(
'SerialNumber_01',
'SerialNumber_01',
'SerialNumber_02',
'SerialNumber_02',
'SerialNumber_01',
'SerialNumber_01',
'SerialNumber_02',
'SerialNumber_02'),

Operator = c(
'Operator_01',
'Operator_01',
'Operator_01',
'Operator_01',
'Operator_02',
'Operator_02',
'Operator_02',
'Operator_02'),

Measure = c(
0.0172,
0.0177,
0.0155,
0.0159,
0.0174,
0.0181,
0.0152,
0.0176))

Next we can calculate the sum of squares and ANOVA variance components:

ss_calcs(data, part = 'SN', operator = 'Operator', meas = 'Measure')
#> $reps
#> [1] 2
#> 
#> $num_parts
#> [1] 2
#> 
#> $num_opers
#> [1] 2
#> 
#> $SS_oper_error
#> [1] 5e-07
#> 
#> $SS_part_error
#> [1] 4.805e-06
#> 
#> $SS_equip_error
#> [1] 3.33e-06
#> 
#> $SS_op_part_error
#> [1] 8e-08
#> 
#> $SS_total_error
#> [1] 8.715e-06
anova_var_calcs(data, part = 'SN', operator = 'Operator', meas = 'Measure')
#> $total_grr
#> [1] 9.375e-07
#> 
#> $repeatability
#> [1] 8.325e-07
#> 
#> $reproducibility
#> [1] 1.05e-07
#> 
#> $part_to_part
#> [1] 1.18125e-06
#> 
#> $total_var
#> [1] 2.11875e-06

With these variance components we can then calculate the final gage evaluation statistics:

grr_calc(data, part = 'SN', operator = 'Operator', meas = 'Measure', LSL = 0, USL = .040, method = 'anova')
#> $VarianceComponents
#>                     VarComp PercentContribution
#> total_grr       9.37500e-07          0.44247788
#> repeatability   8.32500e-07          0.39292035
#> reproducibility 1.05000e-07          0.04955752
#> part_to_part    1.18125e-06          0.55752212
#> total_var       2.11875e-06          1.00000000
#> 
#> $GageEval
#>                       StdDev    StudyVar PercentStudyVar PercentTolerance
#> total_grr       0.0009682458 0.005809475       0.6651901       0.14523688
#> repeatability   0.0009124144 0.005474486       0.6268336       0.13686216
#> reproducibility 0.0003240370 0.001944222       0.2226152       0.04860556
#> part_to_part    0.0010868533 0.006521120       0.7466740       0.16302799
#> total_var       0.0014555927 0.008733556       1.0000000       0.21833890
#> 
#> $AnovaTable
#>             Df    Sum Sq   Mean Sq F value Pr(>F)  
#> Operator     1 5.000e-07 5.000e-07   0.601 0.4816  
#> SN           1 4.805e-06 4.805e-06   5.772 0.0742 .
#> Operator:SN  1 8.000e-08 8.000e-08   0.096 0.7720  
#> Residuals    4 3.330e-06 8.330e-07                 
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.