The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
With gMOIP
you can make 2D plots of the the
polytope/feasible region/solution space of a linear programming (LP),
integer linear programming (ILP) model, or mixed integer linear
programming (MILP) model. This vignette gives examples on how to make
plots given a model with two variables.
First we load the package:
We define the model \(\max \{cx | Ax \leq b\}\) (could also be minimized) with 2 variables:
A <- matrix(c(-3,2,2,4,9,10), ncol = 2, byrow = TRUE)
b <- c(3,27,90)
obj <- c(7.75, 10) # coefficients c
Plots are created using function plotPolytope
which
outputs a ggplot2
object.
Let us consider different plots of the polytope of the LP model with non-negative variables (\(x \in \mathbb{R}_0, x \geq 0\)):
# The polytope with the corner points
p1 <- plotPolytope(
A,
b,
obj,
type = rep("c", ncol(A)),
crit = "max",
faces = rep("c", ncol(A)),
plotFaces = TRUE,
plotFeasible = TRUE,
plotOptimum = FALSE,
labels = NULL
) + ggplot2::ggtitle("Feasible region only")
p2 <- plotPolytope(
A,
b,
obj,
type = rep("c", ncol(A)),
crit = "max",
faces = rep("c", ncol(A)),
plotFaces = TRUE,
plotFeasible = TRUE,
plotOptimum = TRUE,
labels = "coord"
) + ggplot2::ggtitle("Solution LP max")
p3 <- plotPolytope(
A,
b,
obj,
type = rep("c", ncol(A)),
crit = "min",
faces = rep("c", ncol(A)),
plotFaces = TRUE,
plotFeasible = TRUE,
plotOptimum = TRUE,
labels = "n"
) + ggplot2::ggtitle("Solution LP min")
p4 <- plotPolytope(
A,
b,
obj,
type = rep("c", ncol(A)),
crit = "max",
faces = rep("c", ncol(A)),
plotFaces = TRUE,
plotFeasible = TRUE,
plotOptimum = TRUE,
labels = "coord"
) + ggplot2::xlab("x") + ggplot2::ylab("y") + ggplot2::ggtitle("Solution (max) with other axis labels")
gridExtra::grid.arrange(p1, p2, p3, p4, nrow = 2)
You may also consider a LP model with no non-negativity constraints:
A <- matrix(c(-3, 2, 2, 4, 9, 10, 1, -2), ncol = 2, byrow = TRUE)
b <- c(3, 27, 90, 2)
obj <- c(7.75, 10)
plotPolytope(
A,
b,
obj,
type = rep("c", ncol(A)),
nonneg = rep(FALSE, ncol(A)),
crit = "max",
faces = rep("c", ncol(A)),
plotFaces = TRUE,
plotFeasible = TRUE,
plotOptimum = FALSE,
labels = NULL
)
Note The package don’t plot feasible regions that are unbounded e.g if we drop the second and third constraint we get the wrong plot:
A <- matrix(c(-3,2), ncol = 2, byrow = TRUE)
b <- c(3)
obj <- c(7.75, 10)
# Wrong plot
plotPolytope(
A,
b,
obj,
type = rep("c", ncol(A)),
crit = "max",
faces = rep("c", ncol(A)),
plotFaces = TRUE,
plotFeasible = TRUE,
plotOptimum = FALSE,
labels = NULL
)
One solution is to add a bounding box and check if the bounding box is binding
A <- rbind(A, c(1,0), c(0,1))
b <- c(b, 10, 10)
plotPolytope(
A,
b,
obj,
type = rep("c", ncol(A)),
crit = "max",
faces = rep("c", ncol(A)),
plotFaces = TRUE,
plotFeasible = TRUE,
plotOptimum = FALSE,
labels = NULL
)
You may also use e.g lpsolve
to check if the solution is
unbounded.
If we add integer constraints to the model (\(x\in\mathbb{Z}\)) you may view the feasible region different ways:
A <- matrix(c(-3,2,2,4,9,10), ncol = 2, byrow = TRUE)
b <- c(3,27,90)
obj <- c(7.75, 10)
p1 <- plotPolytope(
A,
b,
obj,
type = rep("i", ncol(A)),
crit = "max",
faces = rep("c", ncol(A)),
plotFaces = TRUE,
plotFeasible = TRUE,
plotOptimum = FALSE,
labels = "n"
) + ggplot2::ggtitle("Relaxed region with LP faces")
p2 <- plotPolytope(
A,
b,
obj,
type = rep("i", ncol(A)),
crit = "max",
faces = rep("i", ncol(A)),
plotFaces = TRUE,
plotFeasible = TRUE,
plotOptimum = FALSE,
labels = "n"
) + ggplot2::ggtitle("Relaxed region with IP faces")
p3 <- plotPolytope(
A,
b,
obj,
type = rep("i", ncol(A)),
crit = "max",
faces = rep("c", ncol(A)),
plotFaces = TRUE,
plotFeasible = TRUE,
plotOptimum = TRUE,
labels = "n"
) + ggplot2::ggtitle("Optimal solution (max)")
p4 <- plotPolytope(
A,
b,
obj = c(-3, 3),
type = rep("i", ncol(A)),
crit = "max",
faces = rep("i", ncol(A)),
plotFaces = TRUE,
plotFeasible = TRUE,
plotOptimum = TRUE,
labels = "n"
) + ggplot2::ggtitle("Other objective (min)")
gridExtra::grid.arrange(p1, p2, p3, p4, nrow = 2)
Finally, let us have a look at a MILP model:
A <- matrix(c(-3,2,2,4,9,10), ncol = 2, byrow = TRUE)
b <- c(3,27,90)
obj <- c(7.75, 10)
p1 <- plotPolytope(
A,
b,
obj,
type = c("c", "i"),
crit = "max",
faces = c("c", "c"),
plotFaces = TRUE,
plotFeasible = TRUE,
plotOptimum = TRUE,
labels = "n"
) + ggplot2::ggtitle("Second coordinate integer (LP faces)")
p2 <- plotPolytope(
A,
b,
obj,
type = c("c", "i"),
crit = "max",
faces = c("c", "i"),
plotFaces = TRUE,
plotFeasible = TRUE,
plotOptimum = TRUE,
labels = "coord"
) + ggplot2::ggtitle("Second coordinate integer (MILP faces)")
p3 <- plotPolytope(
A,
b,
obj,
type = c("i", "c"),
crit = "max",
faces = c("c", "c"),
plotFaces = TRUE,
plotFeasible = TRUE,
plotOptimum = TRUE,
labels = "n"
) + ggplot2::ggtitle("First coordinate integer (LP faces)")
p4 <- plotPolytope(
A,
b,
obj,
type = c("i", "c"),
crit = "max",
faces = c("i", "c"),
plotFaces = TRUE,
plotFeasible = TRUE,
plotOptimum = TRUE,
labels = "coord"
) + ggplot2::ggtitle("First coordinate integer (MILP faces)")
gridExtra::grid.arrange(p1, p2, p3, p4, nrow = 2)
If you write a paper using LaTeX, you may create a TikZ file of the plot for LaTeX using
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.