The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

Plotting bi-objective models with three variables - Example 1

With gMOIP you can make plots of the criterion space for bi-objective models (linear programming (LP), integer linear programming (ILP), or mixed integer linear programming (MILP)). This vignette gives examples on how to make plots of both the solution and criterion space.

First we load the package:

library(gMOIP)

We define functions for plotting the solution and criterion space:

plotSol <- function(A, b, type = rep("c", ncol(A)),
                        faces = rep("c", ncol(A)),
                        plotFaces = TRUE, labels = "numb")
{
   #loadView(v = view, close = F, zoom = 0.75)
   plotPolytope(A, b, type = type, faces = faces, labels = labels, plotFaces = plotFaces, 
                argsTitle3d = list(main = "Solution space"))
}

plotCrit <- function(A, b, obj, crit = "min", type = rep("c", ncol(A)), addTriangles = TRUE, 
                     labels = "numb") 
{
    plotCriterion2D(A, b, obj, type = type, crit = crit, addTriangles = addTriangles, 
                   labels = labels) + 
      ggplot2::ggtitle("Criterion space")
}

We define the model \(\max \{cx | Ax \leq b\}\) (could also be minimized) with three variables:

Ab <- matrix( c(
   1, 1, 2, 5,
   2, -1, 0, 3,
   -1, 2, 1, 3,
   0, -3, 5, 2
), nc = 4, byrow = TRUE)
A <- Ab[,1:3]
b <- Ab[,4]
obj <- matrix(c(1, -6, 3, -4, 1, 6), nrow = 2)

We load the preferred view angle for the RGL window:

view <- matrix( c(-0.452365815639496, -0.446501553058624, 0.77201122045517, 0, 0.886364221572876,
                  -0.320795893669128, 0.333835482597351, 0, 0.0986008867621422, 0.835299551486969,
                  0.540881276130676, 0, 0, 0, 0, 1), nc = 4)
loadView(v = view)

LP model (solution space):

plotSol(A, b)

LP model (criterion space):

plotCrit(A, b, obj, addTriangles = FALSE) 

ILP model (solution space):

plotSol(A, b, type = c("i","i","i"))

ILP model (criterion space):

plotCrit(A, b, obj, type = c("i","i","i"))

MILP model with variable 2 and 3 integer (solution space):

plotSol(A, b, type = c("c","i","i"))

MILP model with variable 2 and 3 integer (criterion space):

plotCrit(A, b, obj, type = c("c","i","i"))

MILP model with variable 1 and 3 integer (solution space):

plotSol(A, b, type = c("i","c","i"))

MILP model with variable 1 and 3 integer (criterion space):

plotCrit(A, b, obj, type = c("i","c","i"))

MILP model with variable 1 and 2 integer (solution space):

plotSol(A, b, type = c("i","i","c"))

MILP model with variable 1 and 2 integer (criterion space):

plotCrit(A, b, obj, type = c("i","i","c"))

MILP model with variable 1 integer (solution space):

plotSol(A, b, type = c("i","c","c"), plotFaces = F)

MILP model with variable 1 integer (criterion space):

plotCrit(A, b, obj, type = c("i","c","c"))

MILP model with variable 2 integer (solution space):

plotSol(A, b, type = c("c","i","c"), plotFaces = F)

MILP model with variable 2 integer (criterion space):

plotCrit(A, b, obj, type = c("c","i","c"))

MILP model with variable 3 integer (solution space):

plotSol(A, b, type = c("c","c","i"), plotFaces = F)

MILP model with variable 3 integer (criterion space):

plotCrit(A, b, obj, type = c("c","c","i"))

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.