Package ‘futurize’

January 22, 2026
Version 0.1.0

Title Parallelize Common Functions via One Magic Function

Description The futurize() function transpiles calls to sequential map-reduce func-
tions such as base::lapply(), purrr::map(), 'foreach::foreach() %do% { ... }' into concurrent alterna-
tives, providing you with a simple, straightforward path to scalable parallel computing via the 'fu-
ture' ecosystem <doi:10.32614/RJ-2021-048>. By combining this function with R's na-
tive pipe operator, you have an convenient way for speeding up iterative computations with mini-
mal refactoring, e.g. 'lapply(xs, fcn) I> futurize()', 'purrr::map(xs, fcn) I> futurize()', and 'fore-
ach::foreach(x = xs) %do% { fcn(x) } I> futurize()'. Other map-reduce packages that be ™ * futur-
ized" are 'BiocParallel', 'plyr', 'crossmap' packages. There is also support for growing set of do-
main-specific packages, including 'boot’, 'glmnet’, 'mgcv’, lme4’, and 'tm'.

License GPL (>= 3)

URL https://www.futureverse.org, https://github.com/futureverse/
Depends R (>=4.1.0), future (> 1.58.0)

Suggests future.apply, foreach, doFuture, purrr, furrr, crossmap,
plyr, BiocParallel, glmnet, boot, Ime4, mgcv, tm, tools,
commonmark, base64enc

VignetteBuilder futurize

Language en-US

Encoding UTF-8

RoxygenNote 7.3.3

NeedsCompilation no

Author Henrik Bengtsson [aut, cre, cph]

Maintainer Henrik Bengtsson <henrikb@braju.com>
Repository CRAN

Date/Publication 2026-01-22 21:10:02 UTC

Contents

futurize e 2

https://doi.org/10.32614/RJ-2021-048
https://www.futureverse.org
https://github.com/futureverse/

2 futurize

futurize_options e e e e e 5
futurize_supported_packages oL 7
zzz-futurize.Options e e 7
Index 9
futurize Turn common R function calls into concurrent calls for parallel eval-
uation
Description
Usage
futurize(
expr,

substitute = TRUE,
options = futurize_options(...),

L

when = TRUE,
eval = TRUE,
envir = parent.frame()
)
Arguments
expr An R expression, typically a function call to futurize. If FALSE, then futuriza-
tion is disabled, and if TRUE, it is re-enabled.
substitute If TRUE, argument expr is substitute():d, otherwise not.
options, ... Named options, passed to futurize_options(), controlling how futures are
resolved.
when If TRUE (default), the expression is futurized, otherwise not.
eval If TRUE (default), the futurized expression is evaluated, otherwise it is returned.
envir The environment from where global objects should be identified.
Value

Returns the value of the evaluated expression expr.

If expr is TRUE or FALSE, then a logical is returned indicating whether futurization was previously
enabled or disabled.

futurize 3

Expression unwrapping

The transpilation mechanism includes logic to "unwrap" expressions enclosed in constructs such as
{3}, (),local(),I(),identity(), invisible(), suppressMessages(), and suppressWarnings().
The transpiler descends through wrapping constructs until it finds a transpilable expression, avoid-

ing the need to place futurize() inside such constructs. This allows for patterns like:

y <= {
lapply(xs, fcn)
} |> suppressMessages() |> futurize()

avoiding having to write:

y <= {
lapply(xs, fcn) [> futurize()
} |> suppressMessages()

Conditional futurization

It is possible to control whether futurization should take place at run-time. For example,

y <- lapply(xs, fun) [|> futurize(when = { length(xs) >= 10 })

will be futurized, unless length(xs) is less than ten, in which case it is evaluated as:

y <- lapply(xs, fun)

Disable and re-enable all futurization

It is possible to globally disable the effect of all futurize() calls by calling futurize (FALSE).
The effect is as if futurize() was never applied. For example,

futurize(FALSE)
y <- lapply(xs, fun) [> futurize()

evaluates as:

y <- lapply(xs, fun)

To re-enable futurization, call futurize(TRUE). Please note that it is only the end-user that may
control whether futurization should be disabled and enabled. A package must never disable or
enable futurization.

4 futurize

Examples

xs <- list(1, 1:2, 1:2, 1:5)

Sequential lapply()
y <= lapply(X = xs, FUN = function(x) {
sum(x)

b

Parallel version

y <- lapply(X = xs, FUN = function(x) {
sum(x)

1) |> futurize()

str(y)

if (require("purrr”) && requireNamespace("furrr”, quietly = TRUE)) {

Sequential map()
y <= xs |> map(sum)

Parallel version
y <= xs |> map(sum) |> futurize()
stry)

Y} ## if (require ...)

if (require("foreach”) && requireNamespace("doFuture”, quietly = TRUE)) {

Sequential foreach()
y <- foreach(x = xs) %do% {
sum(x)

Parallel version

y <- foreach(x = xs) %do% {
sum(x)

} |> futurize()

str(y)

Sequential times()
y <- times(3) %do% rnorm(1)

futurize_options

str(y)

Parallel version
y <- times(3) %do% rnorm(1) |> futurize()

str(y)

Y} ## if (require ..

>

if (require("plyr") && requireNamespace("”doFuture”, quietly = TRUE)) {

Sequential 1lply()
y <- 1llply(xs, sum)

Parallel version
y <= 1llply(xs, sum) [|> futurize()

str(y)

Y} ## if (require ..

>

futurize_options

Options for how futures are partitioned and resolved

Description

Options for how futures are partitioned and resolved

Usage

futurize_options(

seed = FALSE,
TRUE,
NULL,

globals

packages

stdout = TRUE,

conditions =
scheduling
chunk_size

Arguments

seed

"condition”,
1,
NULL,

(optional) If TRUE, the random seed, that is, the state of the random number
generator (RNG) will be set such that statistically sound random numbers are
produced (also during parallelization). If FALSE (default), it is assumed that the
future expression neither needs nor uses random number generation. To use a

6 futurize_options

fixed random seed, specify a L’Ecuyer-CMRG seed (seven integers) or a regular
RNG seed (a single integer). If the latter, then a L’Ecuyer-CMRG seed will be
automatically created based on the given seed. Furthermore, if FALSE, then the
future will be monitored to make sure it does not use random numbers. If it does
and depending on the value of option future.rng.onMisuse, the check is ignored,
an informative warning, or error will be produced. If seed is NULL, then the
effect is as with seed = FALSE but without the RNG check being performed.

globals (optional) a logical, a character vector, or a named list to control how globals
are handled. For details, see section *Globals used by future expressions’ in the
help for future().

packages (optional) a character vector specifying packages to be attached in the R envi-

ronment evaluating the future.

stdout If TRUE (default), then the standard output is captured, and re-outputted when
value() is called. If FALSE, any output is silenced (by sinking it to the null de-
vice as it is outputted). Using stdout = structure(TRUE, drop = TRUE) causes
the captured standard output to be dropped from the future object as soon as it
has been relayed. This can help decrease the overall memory consumed by cap-
tured output across futures. Using stdout = NA fully avoids intercepting the
standard output; behavior of such unhandled standard output depends on the
future backend.

conditions A character string of condition classes to be captured and relayed. The default
is to relay all conditions, including messages and warnings. To drop all con-
ditions, use conditions = character (). Errors are always relayed. Attribute
exclude can be used to ignore specific classes, e.g. conditions = structure(”condition”,
exclude = "message”) will capture all condition classes except those that in-
herit from the message class. Using conditions = structure(..., drop =
TRUE) causes any captured conditions to be dropped from the future object as
soon as they have been relayed, e.g. by value(f). This can help decrease
the overall memory consumed by captured conditions across futures. Using
conditions = NULL (not recommended) avoids intercepting conditions, except
from errors; behavior of such unhandled conditions depends on the future back-
end and the environment from which R runs.

scheduling Average number of futures ("chunks") per worker. If 0.9, then a single future
is used to process all elements of X. If 1.0 or TRUE, then one future per worker
is used. If 2.0, then each worker will process two futures (if there are enough
elements in X). If Inf or FALSE, then one future per element of X is used. Only
used if chunk_size is NULL.

chunk_size The average number of elements per future ("chunk"). If Inf, then all elements
are processed in a single future. If NULL, then argument scheduling is used.

Additional named options.

Value

A named list of future options. Attribute specified is a character vector of future options that were
explicitly specified.

futurize_supported_packages 7

Examples

Default futurize options
str(futurize_options())

futurize_supported_packages
List packages and functions supporting futurization

Description

List packages and functions supporting futurization

Usage

futurize_supported_packages()

futurize_supported_functions(package)

Arguments

package A package name.

Value

A character vector of package or function names.

Examples

pkgs <- futurize_supported_packages()
pkgs

fcns <- futurize_supported_functions(”base”)
fcns

zzz-futurize.options Options used by futurize

Description
Below are the R options and environment variables that are used by the futurize package and pack-

ages enhancing it.

WARNING: Note that the names and the default values of these options may change in future ver-
sions of the package. Please use with care until further notice.

8 zzz-futurize.options

Packages must not change future options

Just like for other R options, as a package developer you must not change any of the below
futurize.* options. Only the end-user should set these. If you find yourself having to tweak
one of the options, make sure to undo your changes immediately afterward.

Options for debugging
‘futurize.debug’: (logical) If TRUE, extensive debug messages are generated. (Default: FALSE)

Environment variables that set R options

All of the above R ‘futurize.*’ options can be set by corresponding environment variable R_FUTURIZE _*
when the futurize package is loaded. This means that those environment variables must be set be-

fore the futurize package is loaded in order to have an effect. For example, if R_FUTURIZE_DEBUG=true,
then option ‘futurize.debug’ is set to TRUE (logical).

See Also

To set R options or environment variables when R starts (even before the future package is loaded),
see the Startup help page. The startup package provides a friendly mechanism for configuring R’s
startup process.

https://cran.r-project.org/package=startup

Index

environment, 2

future(), 6

future.rng.onMisuse, 6

futurize, 2

futurize.debug (zzz-futurize.options), 7

futurize.options
(zzz-futurize.options), 7

futurize_options, 5

futurize_options(), 2

futurize_supported_functions
(futurize_supported_packages),
7

futurize_supported_packages, 7

fz (futurize), 2

R_FUTURIZE_DEBUG
(zzz-futurize.options), 7

Startup, 8
substitute, 2

zzz-futurize.options, 7

	futurize
	futurize_options
	futurize_supported_packages
	zzz-futurize.options
	Index

