The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
functionals
is a lightweight toolkit for functional
programming in R with built-in support for parallelism and progress
bars. It extends base R’s functional tools with a consistent, minimal
API for mapping, walking, reducing, cross-validating, and repeating
computations across lists, data frames, and grouped data.
Function | Main arguments | Output type | Description |
---|---|---|---|
fmap() |
.x , .f , ncores ,
pb |
list | Map .f over elements of .x |
fmapn() |
.l , .f , ncores ,
pb |
list | Map .f over multiple aligned lists |
fmapr() |
.df , .f , ncores ,
pb |
list | Map .f over each row of a data frame (as named
list) |
fmapc() |
.df , .f , ncores ,
pb |
list | Map .f(column, name) over each column |
fmapg() |
.df , .f , by ,
ncores , pb |
list | Map .f(group_df) over groups defined by a column |
floop() |
.x , .f , ... ,
ncores , pb |
list | General-purpose functional loop with side-effects |
fwalk() |
.x , .f , ncores ,
pb |
NULL | Map .f over .x for side-effects only
(invisible return) |
frepeat() |
times , expr , .x ,
ncores , pb |
list/vector | Repeat a call/expression multiple times |
fcv() |
.splits , .f , ncores ,
pb |
list | Map .f over resampling splits from
rsample::vfold_cv() |
freduce() |
.x , .f , ... |
scalar/list | Reduce .x using a binary function .f |
fcompose() |
any number of functions f1, f2, ... |
function | Compose multiple functions: f1(f2(...(x))) |
fapply() |
.x , .f , ncores ,
pb , ... |
list | Core internal utility for applying a function over
.x |
Task | functionals Example |
purrr Example |
Base R |
---|---|---|---|
Map square | fmap(1:5, function(x) x^2) |
map(1:5, function(x) x^2) |
lapply(1:5, function(x) x^2) |
Map over N arguments | fmapn(list(1:3, 4:6, 7:9), function(x, y, z) x + y + z) |
pmap(list(1:3, 4:6, 7:9), function(x, y, z) ...) |
Map(function(x, y, z) ..., 1:3, 4:6, 7:9) |
Map over data frame rows | fmapr(df, function(row) row$a + row$b) |
pmap(df[c("a", "b")], function(x, y) x + y) |
apply(df, 1, function(row) ...) |
Map over data frame cols | fmapc(df, function(x, name) mean(x)) |
imap(df, function(x, name) mean(x)) |
lapply(df, mean) |
Grouped map | fmapg(df, f, by = "group") |
map(split(df, df$group), f) |
lapply(split(df, df$group), f) |
General-purpose loop | floop(1:3, function(x) cat(x)) |
(manual recursion) | for (x in 1:3) cat(x) |
Parallel + progress | fmap(x, f, ncores = 4, pb = TRUE) |
(future_map(x, f)) with progressr |
parLapply(cl, x, f) or mclapply() |
Repeat simulation | frepeat(100, function() rnorm(1)) |
(manual loop) | replicate(100, rnorm(1)) |
Walk with side effects | fwalk(letters, function(x) cat(x)) |
walk(letters, function(x) cat(x)) |
lapply(letters, cat) |
Reduce | freduce(1:5, `+`) |
reduce(1:5, `+`) |
Reduce(`+`, 1:5) |
Compose functions | fcompose(sqrt, abs)(-4) |
compose(sqrt, abs)(-4) |
(function(x) sqrt(abs(x)))(-4) |
~ .x + .y
?While functionals
draws inspiration from
purrr
, it intentionally avoids supporting the formula-based
anonymous function syntax (e.g., ~ .x + 1
) for now.
This decision is based on:
rlang
)function(x) { ... }
styleWe may consider adding tidy evaluation support (e.g., with quosures
or rlang::as_function
) in a future release. However, the
current philosophy favors clarity and simplicity.
# install.packages("functionals") # when available
#remotes::install_github("ielbadisy/functionals")
library(functionals)
library(purrr)
library(furrr)
#> Loading required package: future
library(pbapply)
library(dplyr)
#>
#> Attaching package: 'dplyr'
#> The following objects are masked from 'package:stats':
#>
#> filter, lag
#> The following objects are masked from 'package:base':
#>
#> intersect, setdiff, setequal, union
library(rsample)
library(bench)
plan(multisession)
# utility to compare results
<- function(label, x, y) {
compare_outputs cat("\n", label, "->", if (identical(x, y)) "dentical\n" else if (isTRUE(all.equal(x, y))) "nearly equal\n" else "different\n")
}
# strip names and convert to plain numeric vector
<- function(x) as.numeric(unlist(x, use.names = FALSE)) as_vec
<- fmap(1:5, function(x) x^2)
x1 <- lapply(1:5, function(x) x^2)
x2 <- map(1:5, ~ .x^2)
x3 <- future_map(1:5, ~ .x^2)
x4 <- pblapply(1:5, function(x) x^2)
x5 compare_outputs("Element-wise: base", x1, x2)
#>
#> Element-wise: base -> dentical
compare_outputs("Element-wise: purrr", x1, x3)
#>
#> Element-wise: purrr -> dentical
compare_outputs("Element-wise: furrr", x1, x4)
#>
#> Element-wise: furrr -> dentical
compare_outputs("Element-wise: pbapply", x1, x5)
#>
#> Element-wise: pbapply -> dentical
<- fmapn(list(1:3, 4:6), function(x, y) x + y)
x1 <- Map(`+`, 1:3, 4:6)
x2 <- pmap(list(1:3, 4:6), ~ ..1 + ..2)
x3 <- future_pmap(list(1:3, 4:6), ~ ..1 + ..2)
x4 compare_outputs("Multi-input: base", x1, x2)
#>
#> Multi-input: base -> dentical
compare_outputs("Multi-input: purrr", x1, x3)
#>
#> Multi-input: purrr -> dentical
compare_outputs("Multi-input: furrr", x1, x4)
#>
#> Multi-input: furrr -> dentical
<- fmapr(mtcars, function(row) row$mpg + row$cyl)
x1 <- lapply(seq_len(nrow(mtcars)), function(i) as.list(mtcars[i, ]))
rowlist <- lapply(rowlist, function(row) row$mpg + row$cyl)
x2 <- map(rowlist, function(row) row$mpg + row$cyl)
x3 compare_outputs("Row-wise: base", as_vec(x1), as_vec(x2))
#>
#> Row-wise: base -> dentical
compare_outputs("Row-wise: purrr", as_vec(x1), as_vec(x3))
#>
#> Row-wise: purrr -> dentical
<- fmapc(mtcars, function(col, name) mean(col))
x1 <- sapply(mtcars, mean)
x2 <- imap(mtcars, ~ mean(.x))
x3 <- future_imap(mtcars, ~ mean(.x))
x4 compare_outputs("Column-wise: base", x1, as.list(x2))
#>
#> Column-wise: base -> dentical
compare_outputs("Column-wise: purrr", x1, x3)
#>
#> Column-wise: purrr -> dentical
compare_outputs("Column-wise: furrr", x1, x4)
#>
#> Column-wise: furrr -> dentical
<- fmapg(iris, function(df) colMeans(df[1:4]), by = "Species")
x1 <- lapply(split(iris, iris$Species), function(df) colMeans(df[1:4]))
x2 <- map(split(iris, iris$Species), ~ colMeans(.x[1:4]))
x3 <- future_map(split(iris, iris$Species), ~ colMeans(.x[1:4]))
x4 compare_outputs("Group-wise: base", x1, x2)
#>
#> Group-wise: base -> dentical
compare_outputs("Group-wise: purrr", x1, x3)
#>
#> Group-wise: purrr -> dentical
compare_outputs("Group-wise: furrr", x1, x4)
#>
#> Group-wise: furrr -> dentical
cat("\nSide-effects:\n")
#>
#> Side-effects:
fwalk(1:3, print)
#> [1] 1
#> [1] 2
#> [1] 3
<- floop(1:5, function(x) x^2, .capture = TRUE)
x1 <- lapply(1:5, function(x) x^2)
x2 <- {
x3 <- list()
out for (i in 1:5) out[[i]] <- i^2
out
}compare_outputs("floop() vs lapply()", x1, x2)
#>
#> floop() vs lapply() -> dentical
compare_outputs("floop() vs for()", x1, x3)
#>
#> floop() vs for() -> dentical
cat("\nGeneral-purpose loop (side-effects):\n")
#>
#> General-purpose loop (side-effects):
floop(1:3, function(x) cat("floop says:", x, "\n"), pb = TRUE, .capture = FALSE)
#> | | 0% elapsed=00h 00m 00s, remaining~...floop says: 1
#> |================ | 33% elapsed=00h 00m 00s, remaining~00h 00m 00sfloop says: 2
#> |================================= | 67% elapsed=00h 00m 00s, remaining~00h 00m 00sfloop says: 3
#> |==================================================| 100% elapsed=00h 00m 00s, remaining~00h 00m 00s
cat("for-loop equivalent:\n")
#> for-loop equivalent:
for (x in 1:3) cat("for says:", x, "\n")
#> for says: 1
#> for says: 2
#> for says: 3
<- vfold_cv(iris, v = 3)$splits
splits <- function(split) mean(analysis(split)$Sepal.Length)
fit_model <- fcv(splits, fit_model)
x1 <- lapply(splits, fit_model)
x2 compare_outputs("CV map: base", x1, x2)
#>
#> CV map: base -> dentical
<- frepeat(times = 10, expr = rnorm(1))
x1 <- as.list(replicate(10, rnorm(1)))
x2 <- as.list(pbreplicate(10, rnorm(1)))
x3 cat("\nRepeat: Results not comparable (randomized output)\n")
#>
#> Repeat: Results not comparable (randomized output)
<- freduce(1:5, `+`)
x1 <- Reduce(`+`, 1:5)
x2 <- reduce(1:5, `+`)
x3 compare_outputs("Reduce: base", x1, x2)
#>
#> Reduce: base -> dentical
compare_outputs("Reduce: purrr", x1, x3)
#>
#> Reduce: purrr -> dentical
<- fcompose(sqrt, abs)(-4)
x1 <- (function(x) sqrt(abs(x)))(-4)
x2 <- compose(sqrt, abs)(-4)
x3 compare_outputs("Compose: base", x1, x2)
#>
#> Compose: base -> dentical
compare_outputs("Compose: purrr", x1, x3)
#>
#> Compose: purrr -> dentical
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.