The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

functionals: Functional mapping with parallelism and progress bars

Overview

functionals is a lightweight toolkit for functional programming in R with built-in support for parallelism and progress bars. It extends base R’s functional tools with a consistent, minimal API for mapping, walking, reducing, cross-validating, and repeating computations across lists, data frames, and grouped data.

Function Reference Table

Function Main arguments Output type Description
fmap() .x, .f, ncores, pb list Map .f over elements of .x
fmapn() .l, .f, ncores, pb list Map .f over multiple aligned lists
fmapr() .df, .f, ncores, pb list Map .f over each row of a data frame (as named list)
fmapc() .df, .f, ncores, pb list Map .f(column, name) over each column
fmapg() .df, .f, by, ncores, pb list Map .f(group_df) over groups defined by a column
floop() .x, .f, ..., ncores, pb list General-purpose functional loop with side-effects
fwalk() .x, .f, ncores, pb NULL Map .f over .x for side-effects only (invisible return)
frepeat() times, expr, .x, ncores, pb list/vector Repeat a call/expression multiple times
fcv() .splits, .f, ncores, pb list Map .f over resampling splits from rsample::vfold_cv()
freduce() .x, .f, ... scalar/list Reduce .x using a binary function .f
fcompose() any number of functions f1, f2, ... function Compose multiple functions: f1(f2(...(x)))
fapply() .x, .f, ncores, pb, ... list Core internal utility for applying a function over .x

Syntax Equivalence

Task functionals Example purrr Example Base R
Map square fmap(1:5, function(x) x^2) map(1:5, function(x) x^2) lapply(1:5, function(x) x^2)
Map over N arguments fmapn(list(1:3, 4:6, 7:9), function(x, y, z) x + y + z) pmap(list(1:3, 4:6, 7:9), function(x, y, z) ...) Map(function(x, y, z) ..., 1:3, 4:6, 7:9)
Map over data frame rows fmapr(df, function(row) row$a + row$b) pmap(df[c("a", "b")], function(x, y) x + y) apply(df, 1, function(row) ...)
Map over data frame cols fmapc(df, function(x, name) mean(x)) imap(df, function(x, name) mean(x)) lapply(df, mean)
Grouped map fmapg(df, f, by = "group") map(split(df, df$group), f) lapply(split(df, df$group), f)
General-purpose loop floop(1:3, function(x) cat(x)) (manual recursion) for (x in 1:3) cat(x)
Parallel + progress fmap(x, f, ncores = 4, pb = TRUE) (future_map(x, f)) with progressr parLapply(cl, x, f) or mclapply()
Repeat simulation frepeat(100, function() rnorm(1)) (manual loop) replicate(100, rnorm(1))
Walk with side effects fwalk(letters, function(x) cat(x)) walk(letters, function(x) cat(x)) lapply(letters, cat)
Reduce freduce(1:5, `+`) reduce(1:5, `+`) Reduce(`+`, 1:5)
Compose functions fcompose(sqrt, abs)(-4) compose(sqrt, abs)(-4) (function(x) sqrt(abs(x)))(-4)

Why no formula interface like ~ .x + .y?

While functionals draws inspiration from purrr, it intentionally avoids supporting the formula-based anonymous function syntax (e.g., ~ .x + 1) for now.

This decision is based on:

We may consider adding tidy evaluation support (e.g., with quosures or rlang::as_function) in a future release. However, the current philosophy favors clarity and simplicity.

Installation

# install.packages("functionals") # when available
#remotes::install_github("ielbadisy/functionals")

Examples

library(functionals)
library(purrr)
library(furrr)
#> Loading required package: future
library(pbapply)
library(dplyr)
#> 
#> Attaching package: 'dplyr'
#> The following objects are masked from 'package:stats':
#> 
#>     filter, lag
#> The following objects are masked from 'package:base':
#> 
#>     intersect, setdiff, setequal, union
library(rsample)
library(bench)


plan(multisession)

# utility to compare results
compare_outputs <- function(label, x, y) {
  cat("\n", label, "->", if (identical(x, y)) "dentical\n" else if (isTRUE(all.equal(x, y))) "nearly equal\n" else "different\n")
}

# strip names and convert to plain numeric vector
as_vec <- function(x) as.numeric(unlist(x, use.names = FALSE))

Element-wise map

x1 <- fmap(1:5, function(x) x^2)
x2 <- lapply(1:5, function(x) x^2)
x3 <- map(1:5, ~ .x^2)
x4 <- future_map(1:5, ~ .x^2)
x5 <- pblapply(1:5, function(x) x^2)
compare_outputs("Element-wise: base", x1, x2)
#> 
#>  Element-wise: base -> dentical
compare_outputs("Element-wise: purrr", x1, x3)
#> 
#>  Element-wise: purrr -> dentical
compare_outputs("Element-wise: furrr", x1, x4)
#> 
#>  Element-wise: furrr -> dentical
compare_outputs("Element-wise: pbapply", x1, x5)
#> 
#>  Element-wise: pbapply -> dentical

Multi-input map

x1 <- fmapn(list(1:3, 4:6), function(x, y) x + y)
x2 <- Map(`+`, 1:3, 4:6)
x3 <- pmap(list(1:3, 4:6), ~ ..1 + ..2)
x4 <- future_pmap(list(1:3, 4:6), ~ ..1 + ..2)
compare_outputs("Multi-input: base", x1, x2)
#> 
#>  Multi-input: base -> dentical
compare_outputs("Multi-input: purrr", x1, x3)
#> 
#>  Multi-input: purrr -> dentical
compare_outputs("Multi-input: furrr", x1, x4)
#> 
#>  Multi-input: furrr -> dentical

Row-wise map

x1 <- fmapr(mtcars, function(row) row$mpg + row$cyl)
rowlist <- lapply(seq_len(nrow(mtcars)), function(i) as.list(mtcars[i, ]))
x2 <- lapply(rowlist, function(row) row$mpg + row$cyl)
x3 <- map(rowlist, function(row) row$mpg + row$cyl)
compare_outputs("Row-wise: base", as_vec(x1), as_vec(x2))
#> 
#>  Row-wise: base -> dentical
compare_outputs("Row-wise: purrr", as_vec(x1), as_vec(x3))
#> 
#>  Row-wise: purrr -> dentical

Column-wise map

x1 <- fmapc(mtcars, function(col, name) mean(col))
x2 <- sapply(mtcars, mean)
x3 <- imap(mtcars, ~ mean(.x))
x4 <- future_imap(mtcars, ~ mean(.x))
compare_outputs("Column-wise: base", x1, as.list(x2))
#> 
#>  Column-wise: base -> dentical
compare_outputs("Column-wise: purrr", x1, x3)
#> 
#>  Column-wise: purrr -> dentical
compare_outputs("Column-wise: furrr", x1, x4)
#> 
#>  Column-wise: furrr -> dentical

Group-wise map

x1 <- fmapg(iris, function(df) colMeans(df[1:4]), by = "Species")
x2 <- lapply(split(iris, iris$Species), function(df) colMeans(df[1:4]))
x3 <- map(split(iris, iris$Species), ~ colMeans(.x[1:4]))
x4 <- future_map(split(iris, iris$Species), ~ colMeans(.x[1:4]))
compare_outputs("Group-wise: base", x1, x2)
#> 
#>  Group-wise: base -> dentical
compare_outputs("Group-wise: purrr", x1, x3)
#> 
#>  Group-wise: purrr -> dentical
compare_outputs("Group-wise: furrr", x1, x4)
#> 
#>  Group-wise: furrr -> dentical

Side-effect map

cat("\nSide-effects:\n")
#> 
#> Side-effects:
fwalk(1:3, print)
#> [1] 1
#> [1] 2
#> [1] 3

General-purpose loop with return values

x1 <- floop(1:5, function(x) x^2, .capture = TRUE)
x2 <- lapply(1:5, function(x) x^2)
x3 <- {
  out <- list()
  for (i in 1:5) out[[i]] <- i^2
  out
}
compare_outputs("floop() vs lapply()", x1, x2)
#> 
#>  floop() vs lapply() -> dentical
compare_outputs("floop() vs for()", x1, x3)
#> 
#>  floop() vs for() -> dentical

General-purpose loop (side-effect only)

cat("\nGeneral-purpose loop (side-effects):\n")
#> 
#> General-purpose loop (side-effects):
floop(1:3, function(x) cat("floop says:", x, "\n"), pb = TRUE, .capture = FALSE)
#>  |                                                  |   0% elapsed=00h 00m 00s, remaining~...floop says: 1 
#>  |================                                  |  33% elapsed=00h 00m 00s, remaining~00h 00m 00sfloop says: 2 
#>  |=================================                 |  67% elapsed=00h 00m 00s, remaining~00h 00m 00sfloop says: 3 
#>  |==================================================| 100% elapsed=00h 00m 00s, remaining~00h 00m 00s
cat("for-loop equivalent:\n")
#> for-loop equivalent:
for (x in 1:3) cat("for says:", x, "\n")
#> for says: 1 
#> for says: 2 
#> for says: 3

Cross-validation

splits <- vfold_cv(iris, v = 3)$splits
fit_model <- function(split) mean(analysis(split)$Sepal.Length)
x1 <- fcv(splits, fit_model)
x2 <- lapply(splits, fit_model)
compare_outputs("CV map: base", x1, x2)
#> 
#>  CV map: base -> dentical

Repeat simulation

x1 <- frepeat(times = 10, expr = rnorm(1))
x2 <- as.list(replicate(10, rnorm(1)))
x3 <- as.list(pbreplicate(10, rnorm(1)))
cat("\nRepeat: Results not comparable (randomized output)\n")
#> 
#> Repeat: Results not comparable (randomized output)

Reduce

x1 <- freduce(1:5, `+`)
x2 <- Reduce(`+`, 1:5)
x3 <- reduce(1:5, `+`)
compare_outputs("Reduce: base", x1, x2)
#> 
#>  Reduce: base -> dentical
compare_outputs("Reduce: purrr", x1, x3)
#> 
#>  Reduce: purrr -> dentical

Compose

x1 <- fcompose(sqrt, abs)(-4)
x2 <- (function(x) sqrt(abs(x)))(-4)
x3 <- compose(sqrt, abs)(-4)
compare_outputs("Compose: base", x1, x2)
#> 
#>  Compose: base -> dentical
compare_outputs("Compose: purrr", x1, x3)
#> 
#>  Compose: purrr -> dentical

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.