The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
domain <- cbind(rnorm(4, sd = 3), rnorm(4))
(mesh2 <- fm_mesh_2d(
boundary = fm_extensions(domain, c(2.5, 5)),
max.edge = c(0.5, 2)
))
#> fm_mesh_2d object:
#> Manifold: R2
#> V / E / T: 880 / 2598 / 1719
#> Euler char.: 1
#> Constraints: Boundary: 39 boundary edges (1 group: 1), Interior: 111 interior edges (1 group: 1)
#> Bounding box: (-11.963110, 8.246925) x (-5.522181, 5.499657)
#> Basis d.o.f.: 880
pts <- cbind(rnorm(400, sd = 3), rnorm(400))
# Find what triangle each point is in, and its triangular Barycentric
# coordinates
bary <- fm_bary(mesh2, loc = pts)
head(bary)
#> # A tibble: 6 × 2
#> index where[,1] [,2] [,3]
#> <int> <dbl> <dbl> <dbl>
#> 1 817 0.0472 0.581 0.371
#> 2 1403 0.139 0.722 0.139
#> 3 982 0.432 0.138 0.430
#> 4 1096 0.201 0.372 0.427
#> 5 966 0.213 0.369 0.419
#> 6 155 0.444 0.174 0.382
# How many points are outside the mesh?
sum(is.na(bary$index))
#> [1] 2
bary$where[is.na(bary$index), ]
#> [,1] [,2] [,3]
#> [1,] NA NA NA
#> [2,] NA NA NA
# Evaluate basis functions
basis <- fm_basis(mesh2, loc = pts) # Raw SparseMatrix
basis_object <- fm_basis(mesh2, loc = pts, full = TRUE) # fm_basis object
sum(!basis_object$ok)
#> [1] 2
# Construct an evaluator object
evaluator <- fm_evaluator(mesh2, loc = pts)
sum(!fm_basis(evaluator, full = TRUE)$ok)
#> [1] 2
# Values for the basis function weights; for ordinary 2d meshes this coincides
# with the resulting values at the vertices, but this is not true for e.g.
# 2nd order B-splines on 1d meshes.
field <- mesh2$loc[, 1]
value <- fm_evaluate(evaluator, field = field)
sum(abs(pts[, 1] - value), na.rm = TRUE)
#> [1] 5.438358e-14
pts1 <- seq(-2, 12, length.out = 1000)
# Find what segment, and its interval Barycentric coordinates
bary1 <- fm_bary(mesh1, loc = pts1)
# Points outside the interval are treated differently depending on the
# boundary conditions:
sum(is.na(bary1$index))
#> [1] 0
head(bary1)
#> # A tibble: 6 × 2
#> index where[,1] [,2]
#> <int> <dbl> <dbl>
#> 1 1 2 -1
#> 2 1 1.99 -0.993
#> 3 1 1.99 -0.986
#> 4 1 1.98 -0.979
#> 5 1 1.97 -0.972
#> 6 1 1.96 -0.965
# Evaluate basis functions
basis1 <- fm_basis(mesh1, loc = pts1) # Raw SparseMatrix
basis1_object <- fm_basis(mesh1, loc = pts1, full = TRUE) # fm_basis object
sum(!basis1_object$ok)
#> [1] 0
# Construct an evaluator object.
evaluator1 <- fm_evaluator(mesh1, loc = pts1)
# mesh_1d basis functions are defined everywhere
sum(!fm_basis(evaluator1, full = TRUE)$ok)
#> [1] 0
# Values for the basis function weights; for ordinary 2d meshes this coincides
# with the resulting values at the vertices, but this is not true for e.g.
# 2nd order B-splines on 1d meshes.
field1 <- rnorm(fm_dof(mesh1))
value1 <- fm_evaluate(evaluator1, field = field1)
plot(pts1, value1, type = "l")
samp <- fm_matern_sample(mesh2, alpha = 2, rho = 4, sigma = 1)[, 1]
evaluator <- fm_evaluator(
mesh2,
lattice = fm_evaluator_lattice(mesh2, dims = c(150, 50))
)
image(evaluator$x, evaluator$y, fm_evaluate(evaluator, field = samp), asp = 1)
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.