The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
## Welcome to fluxtools V0.5.0
##
## To start the app: run_fluxtools()
## To apply Physical Range Module (PRM) filters: use apply_prm()
##
## For additional help: see ?run_fluxtools, ?apply_prm, browseVignettes('fluxtools')
## To view citation: citation('fluxtools')
fluxtools is an R package that provides an interactive Shiny‐based QA/QC environment for data in the AmeriFlux BASE format. In just a few clicks, you can:
NA
and an R script for
reproducibilityThis vignette shows you how to install, launch, and use the main
Shiny app—run_flux_qaqc()
—and walks through a typical
workflow.
You can install fluxtools from CRAN, or directly from GitHub:
Load fluxtools and launch the QA/QC application:
Example workflow
Upload: Select your AmeriFlux-style CSV (e.g.,
US_VT1_HH_202401010000_202501010000.csv
). Files can be up
to 500MB (larger file sizes might be harder on the Shiny
interface)
Choose Year(s): By default “all” is selected, but you can subset to specific years
Choose variables: TIMESTAMP_START
is on the x-axis by default. Change the y-axis to your variable of
interest (e.g., FC_1_1_1
). The generated R code focuses on
removing the y-axis variable
Select data: Use the box or lasso to select points. This populates the “Current” code box with something like:
Flag data and Accumulate code: With points still selected, click “Flag data.” Selected points turn orange, and code is appended to the “Accumulated” box, allowing multiple selections per session.
Unflag data: Use the box or lasso to de-select points and remove from the Accumulated code box.
Clear Selection: To reset all selections from the current y-variable, click “Clear Selection” to reset the current view.
Switch variables: Change y to any other variable
(e.g., SWC_1_1_1
) and select more points. Click “Flag data”
Code for both variables to appear:
df <- df %>%
mutate(
FC_1_1_1 = case_when(
TIMESTAMP_START == '202401261830' ~ NA_real_,
TIMESTAMP_START == '202401270530' ~ NA_real_,
…
TRUE ~ FC_1_1_1
)
)
df <- df %>%
mutate(
SWC_1_1_1 = case_when(
TIMESTAMP_START == '202403261130' ~ NA_real_,
TIMESTAMP_START == '202403270800' ~ NA_real_,
…
TRUE ~ SWC_1_1_1
)
)
Compare variables: Change to variables you would
like to compare (e.g., change y to TA_1_1_1
and x to
T_SONIC_1_1_1
). The app computes an R² via simple linear
regression. The top R² is based on points before removals, and once data
is selected, a second R² will pop up - calculating the linear regression
assuming the selected points have been removed
Highlight outliers: Use the slider to select ±σ residuals. Click “Select all ±σ outliers” to append them to the Accumulated code. Click “Clear ±σ outliers” to deselect and remove from the code box
Copy all: Click the Copy Icon to the right of the current or accumulated code box and paste into your own R script for documentation
Apply Removals: Click “Apply Removals” to remove
each selected data points, from the current y-variable, to replace
points with NA
in a new .csv (raw data is unaffected),
available using ‘export cleaned data’ and remove these values from
view
Reload original data: Make a mistake or want a fresh start? Click Reload original data to reload the .csv from above to start over
Export cleaned data: Download the cleaned .csv reflecting your confirmed removals. This button will download a zip file containing your .csv, reflecting changes from using the “apply removals” button, and includes a compiled R script with the R code for those removals.
The Physical Range Module (PRM) removes out-of-range
values to NA
based on similar variables
using patterns like ^SWC($|_)
or
^P($|_)
.
Columns containing "QC"
are skipped by default. No columns
are removed.
Source of ranges: AmeriFlux Technical Documents, Table A1 (Physical Range Module).
# tiny demo dataset with a few out-of-range values
set.seed(1)
df <- tibble::tibble(
TIMESTAMP_START = seq.POSIXt(as.POSIXct("2024-01-01", tz = "UTC"),
length.out = 10, by = "30 min"),
SWC_1_1_1 = c(10, 20, 150, NA, 0.5, 99, 101, 50, 80, -3), # bad: 150, 101, -3; 0.5 triggers SWC unit note
P = c(0, 10, 60, NA, 51, 3, 0, 5, 100, -1), # bad: 60, 51, 100, -1
RH_1_1_1 = c(10, 110, 50, NA, 0, 100, -5, 101, 75, 30), # bad: 110, -5, 101
SWC_QC = sample(0:2, 10, replace = TRUE) # QC col should be ignored
)
# To see the Physical Boundary Module (PRM) rules:
get_prm_rules()
## # A tibble: 113 × 6
## family variable min max description units
## <chr> <chr> <dbl> <dbl> <chr> <chr>
## 1 ^COND_WATER($|_) COND_WATER 0 10000 Conductivity of water uS c…
## 2 ^DO($|_) DO 0 NA Dissolved oxygen in water umol…
## 3 ^PCH4($|_) PCH4 0 NA Dissolved methane (CH4) in wat… nmol…
## 4 ^PCO2($|_) PCO2 0 10000 Dissolved carbon dioxide (CO2)… umol…
## 5 ^PN2O($|_) PN2O 0 NA Dissolved nitrous oxide (N2O) … nmol…
## 6 ^PPFD_UW_IN($|_) PPFD_UW_IN 0 2400 Photosynthetic photon flux den… umol…
## 7 ^TW($|_) TW -20 50 Water temperature deg C
## 8 ^DBH($|_) DBH 0 500 Tree diameter at breast height cm
## 9 ^LEAF_WET($|_) LEAF_WET 0 100 Leaf wetness (0-100) %
## 10 ^SAP_DT($|_) SAP_DT -10 10 Sapflow probe temperature diff… deg C
## # ℹ 103 more rows
## PRM summary:
## * P
## expected units: mm, PRM range: 0 to 50
## 4 values set to NA (44.4% of data)
## * RH_1_1_1
## expected units: %, PRM range: 0 to 100
## 3 values set to NA (33.3% of data)
## * SWC_1_1_1
## expected units: %, PRM range: 0 to 100
## 3 values set to NA (33.3% of data)
## # A tibble: 3 × 7
## column family min max n_non_na_before n_replaced pct_replaced
## <chr> <chr> <dbl> <dbl> <int> <int> <dbl>
## 1 P P 0 50 9 4 44.4
## 2 RH_1_1_1 RH 0 100 9 3 33.3
## 3 SWC_1_1_1 SWC 0 100 9 3 33.3
## PRM summary:
## * SWC_1_1_1
## expected units: %, PRM range: 0 to 100
## 3 values set to NA (33.3% of data)
## PRM summary:
## * P
## expected units: mm, PRM range: 0 to 50
## 4 values set to NA (44.4% of data)
## * SWC_1_1_1
## expected units: %, PRM range: 0 to 100
## 3 values set to NA (33.3% of data)
family | variable | min | max | description | units |
---|---|---|---|---|---|
^COND_WATER(\(|_) </td> <td style="text-align:left;"> COND_WATER </td> <td style="text-align:right;"> 0 </td> <td style="text-align:right;"> 10000 </td> <td style="text-align:left;"> Conductivity of water </td> <td style="text-align:left;"> uS cm^-1 </td> </tr> <tr> <td style="text-align:left;"> ^DO(\)|_) | DO | 0 | NA | Dissolved oxygen in water | umol L^-1 |
^PCH4(\(|_) </td> <td style="text-align:left;"> PCH4 </td> <td style="text-align:right;"> 0 </td> <td style="text-align:right;"> NA </td> <td style="text-align:left;"> Dissolved methane (CH4) in water </td> <td style="text-align:left;"> nmolCH4 mol^-1 </td> </tr> <tr> <td style="text-align:left;"> ^PCO2(\)|_) | PCO2 | 0 | 10000 | Dissolved carbon dioxide (CO2) in water | umolCO2 mol^-1 |
^PN2O(\(|_) </td> <td style="text-align:left;"> PN2O </td> <td style="text-align:right;"> 0 </td> <td style="text-align:right;"> NA </td> <td style="text-align:left;"> Dissolved nitrous oxide (N2O) in water </td> <td style="text-align:left;"> nmolN2O mol^-1 </td> </tr> <tr> <td style="text-align:left;"> ^PPFD_UW_IN(\)|_) | PPFD_UW_IN | 0 | 2400 | Photosynthetic photon flux density, underwater, incoming | umolPhotons m^-2 s^-1 |
^TW(\(|_) </td> <td style="text-align:left;"> TW </td> <td style="text-align:right;"> -20 </td> <td style="text-align:right;"> 50 </td> <td style="text-align:left;"> Water temperature </td> <td style="text-align:left;"> deg C </td> </tr> <tr> <td style="text-align:left;"> ^DBH(\)|_) | DBH | 0 | 500 | Tree diameter at breast height | cm |
^LEAF_WET(\(|_) </td> <td style="text-align:left;"> LEAF_WET </td> <td style="text-align:right;"> 0 </td> <td style="text-align:right;"> 100 </td> <td style="text-align:left;"> Leaf wetness (0-100) </td> <td style="text-align:left;"> % </td> </tr> <tr> <td style="text-align:left;"> ^SAP_DT(\)|_) | SAP_DT | -10 | 10 | Sapflow probe temperature difference | deg C |
^T_BOLE(\(|_) </td> <td style="text-align:left;"> T_BOLE </td> <td style="text-align:right;"> -50 </td> <td style="text-align:right;"> 70 </td> <td style="text-align:left;"> Bole temperature </td> <td style="text-align:left;"> deg C </td> </tr> <tr> <td style="text-align:left;"> ^T_CANOPY(\)|_) | T_CANOPY | -50 | 70 | Canopy/surface temperature | deg C |
^CH4(\(|_) </td> <td style="text-align:left;"> CH4 </td> <td style="text-align:right;"> 0 </td> <td style="text-align:right;"> 15000 </td> <td style="text-align:left;"> Methane (CH4) mole fraction (wet air) </td> <td style="text-align:left;"> nmolCH4 mol^-1 </td> </tr> <tr> <td style="text-align:left;"> ^CH4_MIXING_RATIO(\)|_) | CH4_MIXING_RATIO | 0 | 15000 | Methane (CH4) mole fraction (dry air) | nmolCH4 mol^-1 |
^CO(\(|_) </td> <td style="text-align:left;"> CO </td> <td style="text-align:right;"> 0 </td> <td style="text-align:right;"> NA </td> <td style="text-align:left;"> Carbon monoxide (CO) mole fraction (wet air) </td> <td style="text-align:left;"> nmolCO mol^-1 </td> </tr> <tr> <td style="text-align:left;"> ^CO2(\)|_) | CO2 | 150 | 1200 | Carbon dioxide (CO2) mole fraction (wet air) | umolCO2 mol^-1 |
^CO2_SIGMA(\(|_) </td> <td style="text-align:left;"> CO2_SIGMA </td> <td style="text-align:right;"> 0 </td> <td style="text-align:right;"> 150 </td> <td style="text-align:left;"> Std. dev. of CO2 mole fraction (wet air) </td> <td style="text-align:left;"> umolCO2 mol^-1 </td> </tr> <tr> <td style="text-align:left;"> ^CO2C13(\)|_) | CO2C13 | NA | -6 | Stable isotope delta13C of CO2 (permil) | permil |
^FC(\(|_) </td> <td style="text-align:left;"> FC </td> <td style="text-align:right;"> -100 </td> <td style="text-align:right;"> 100 </td> <td style="text-align:left;"> CO2 turbulent flux (no storage correction) </td> <td style="text-align:left;"> umolCO2 m^-2 s^-1 </td> </tr> <tr> <td style="text-align:left;"> ^FCH4(\)|_) | FCH4 | -500 | 4000 | CH4 turbulent flux (no storage correction) | nmolCH4 m^-2 s^-1 |
^H2O(\(|_) </td> <td style="text-align:left;"> H2O </td> <td style="text-align:right;"> 0 </td> <td style="text-align:right;"> 100 </td> <td style="text-align:left;"> Water vapor in mole fraction (wet air) </td> <td style="text-align:left;"> mmolH2O mol^-1 </td> </tr> <tr> <td style="text-align:left;"> ^H2O_MIXING_RATIO(\)|_) | H2O_MIXING_RATIO | 0 | 100 | Water vapor in mole fraction (dry air) | mmolH2O mol^-1 |
^H2O_SIGMA(\(|_) </td> <td style="text-align:left;"> H2O_SIGMA </td> <td style="text-align:right;"> 0 </td> <td style="text-align:right;"> 15 </td> <td style="text-align:left;"> Std. dev. of water vapor mole fraction </td> <td style="text-align:left;"> mmolH2O mol^-1 </td> </tr> <tr> <td style="text-align:left;"> ^N2O(\)|_) | N2O | 0 | NA | N2O mole fraction (wet air) | nmolN2O mol^-1 |
^N2O_MIXING_RATIO(\(|_) </td> <td style="text-align:left;"> N2O_MIXING_RATIO </td> <td style="text-align:right;"> 0 </td> <td style="text-align:right;"> NA </td> <td style="text-align:left;"> N2O mole fraction (dry air) </td> <td style="text-align:left;"> nmolN2O mol^-1 </td> </tr> <tr> <td style="text-align:left;"> ^NO(\)|_) | NO | 0 | NA | NO mole fraction (wet air) | nmolNO mol^-1 |
^NO2(\(|_) </td> <td style="text-align:left;"> NO2 </td> <td style="text-align:right;"> 0 </td> <td style="text-align:right;"> NA </td> <td style="text-align:left;"> NO2 mole fraction (wet air) </td> <td style="text-align:left;"> nmolNO2 mol^-1 </td> </tr> <tr> <td style="text-align:left;"> ^O3(\)|_) | O3 | 0 | NA | O3 mole fraction (wet air) | nmolO3 mol^-1 |
^SC(\(|_) </td> <td style="text-align:left;"> SC </td> <td style="text-align:right;"> -100 </td> <td style="text-align:right;"> 100 </td> <td style="text-align:left;"> CO2 storage flux </td> <td style="text-align:left;"> umolCO2 m^-2 s^-1 </td> </tr> <tr> <td style="text-align:left;"> ^SO2(\)|_) | SO2 | 0 | NA | SO2 mole fraction (wet air) | nmolSO2 mol^-1 |
^FH2O(\(|_) </td> <td style="text-align:left;"> FH2O </td> <td style="text-align:right;"> -10 </td> <td style="text-align:right;"> 20 </td> <td style="text-align:left;"> Water vapor (H2O) turbulent flux (no storage correction) </td> <td style="text-align:left;"> mmolH2O m^-2 s^-1 </td> </tr> <tr> <td style="text-align:left;"> ^G(\)|_) | G | -250 | 400 | Soil heat flux | W m^-2 |
^H(\(|_) </td> <td style="text-align:left;"> H </td> <td style="text-align:right;"> -450 </td> <td style="text-align:right;"> 900 </td> <td style="text-align:left;"> Sensible heat flux (no storage correction) </td> <td style="text-align:left;"> W m^-2 </td> </tr> <tr> <td style="text-align:left;"> ^LE(\)|_) | LE | -450 | 900 | Latent heat flux (no storage correction) | W m^-2 |
^SG(\(|_) </td> <td style="text-align:left;"> SG </td> <td style="text-align:right;"> -100 </td> <td style="text-align:right;"> 250 </td> <td style="text-align:left;"> Soil heat storage flux above plates </td> <td style="text-align:left;"> W m^-2 </td> </tr> <tr> <td style="text-align:left;"> ^SH(\)|_) | SH | -150 | 150 | Sensible heat storage flux | W m^-2 |
^SLE(\(|_) </td> <td style="text-align:left;"> SLE </td> <td style="text-align:right;"> -150 </td> <td style="text-align:right;"> 150 </td> <td style="text-align:left;"> Latent heat storage flux </td> <td style="text-align:left;"> W m^-2 </td> </tr> <tr> <td style="text-align:left;"> ^PA(\)|_) | PA | 60 | 105 | Atmospheric pressure | kPa |
^PBLH(\(|_) </td> <td style="text-align:left;"> PBLH </td> <td style="text-align:right;"> 0 </td> <td style="text-align:right;"> 3000 </td> <td style="text-align:left;"> Planetary boundary layer height </td> <td style="text-align:left;"> m </td> </tr> <tr> <td style="text-align:left;"> ^RH(\)|_) | RH | 0 | 100 | Relative humidity (0-100) | % |
^T_SONIC(\(|_) </td> <td style="text-align:left;"> T_SONIC </td> <td style="text-align:right;"> -50 </td> <td style="text-align:right;"> 50 </td> <td style="text-align:left;"> Sonic temperature </td> <td style="text-align:left;"> deg C </td> </tr> <tr> <td style="text-align:left;"> ^T_SONIC_SIGMA(\)|_) | T_SONIC_SIGMA | 0 | 5 | Std. dev. of sonic temperature | deg C |
^TA(\(|_) </td> <td style="text-align:left;"> TA </td> <td style="text-align:right;"> -50 </td> <td style="text-align:right;"> 50 </td> <td style="text-align:left;"> Air temperature </td> <td style="text-align:left;"> deg C </td> </tr> <tr> <td style="text-align:left;"> ^VPD(\)|_) | VPD | 0 | 80 | Vapor pressure deficit | hPa |
^D_SNOW(\(|_) </td> <td style="text-align:left;"> D_SNOW </td> <td style="text-align:right;"> 0 </td> <td style="text-align:right;"> 500 </td> <td style="text-align:left;"> Snow depth </td> <td style="text-align:left;"> cm </td> </tr> <tr> <td style="text-align:left;"> ^P(\)|_) | P | 0 | 50 | Precipitation | mm |
^P_RAIN(\(|_) </td> <td style="text-align:left;"> P_RAIN </td> <td style="text-align:right;"> 0 </td> <td style="text-align:right;"> 50 </td> <td style="text-align:left;"> Rainfall </td> <td style="text-align:left;"> mm </td> </tr> <tr> <td style="text-align:left;"> ^P_SNOW(\)|_) | P_SNOW | 0 | 50 | Snowfall | mm |
^RUNOFF(\(|_) </td> <td style="text-align:left;"> RUNOFF </td> <td style="text-align:right;"> 0 </td> <td style="text-align:right;"> 200 </td> <td style="text-align:left;"> Runoff </td> <td style="text-align:left;"> mm </td> </tr> <tr> <td style="text-align:left;"> ^STEMFLOW(\)|_) | STEMFLOW | 0 | 200 | Stemflow | mm |
^THROUGHFALL(\(|_) </td> <td style="text-align:left;"> THROUGHFALL </td> <td style="text-align:right;"> 0 </td> <td style="text-align:right;"> 20 </td> <td style="text-align:left;"> Throughfall </td> <td style="text-align:left;"> mm </td> </tr> <tr> <td style="text-align:left;"> ^ALB(\)|_) | ALB | 0 | 100 | Albedo (0-100) | % |
^APAR(\(|_) </td> <td style="text-align:left;"> APAR </td> <td style="text-align:right;"> 0 </td> <td style="text-align:right;"> 2300 </td> <td style="text-align:left;"> Absorbed PAR </td> <td style="text-align:left;"> umolPhoton m^-2 s^-1 </td> </tr> <tr> <td style="text-align:left;"> ^EVI(\)|_) | EVI | -1 | 1 | Enhanced Vegetation Index | nondimensional |
^FAPAR(\(|_) </td> <td style="text-align:left;"> FAPAR </td> <td style="text-align:right;"> 0 </td> <td style="text-align:right;"> 100 </td> <td style="text-align:left;"> Fraction of absorbed PAR (0-100) </td> <td style="text-align:left;"> % </td> </tr> <tr> <td style="text-align:left;"> ^FIPAR(\)|_) | FIPAR | 0 | 100 | Fraction of intercepted PAR (0-100) | % |
^LW_BC_IN(\(|_) </td> <td style="text-align:left;"> LW_BC_IN </td> <td style="text-align:right;"> 50 </td> <td style="text-align:right;"> 600 </td> <td style="text-align:left;"> Longwave radiation, below canopy incoming </td> <td style="text-align:left;"> W m^-2 </td> </tr> <tr> <td style="text-align:left;"> ^LW_BC_OUT(\)|_) | LW_BC_OUT | 100 | 750 | Longwave radiation, below canopy outgoing | W m^-2 |
^LW_IN(\(|_) </td> <td style="text-align:left;"> LW_IN </td> <td style="text-align:right;"> 50 </td> <td style="text-align:right;"> 600 </td> <td style="text-align:left;"> Longwave radiation, incoming </td> <td style="text-align:left;"> W m^-2 </td> </tr> <tr> <td style="text-align:left;"> ^LW_OUT(\)|_) | LW_OUT | 100 | 750 | Longwave radiation, outgoing | W m^-2 |
^MCRI(\(|_) </td> <td style="text-align:left;"> MCRI </td> <td style="text-align:right;"> 0 </td> <td style="text-align:right;"> 10 </td> <td style="text-align:left;"> Carotenoid Reflectance Index </td> <td style="text-align:left;"> nondimensional </td> </tr> <tr> <td style="text-align:left;"> ^MTCI(\)|_) | MTCI | 0 | 10 | MERIS Terrestrial Chlorophyll Index | nondimensional |
^NDVI(\(|_) </td> <td style="text-align:left;"> NDVI </td> <td style="text-align:right;"> -1 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:left;"> Normalized Difference Vegetation Index </td> <td style="text-align:left;"> nondimensional </td> </tr> <tr> <td style="text-align:left;"> ^NETRAD(\)|_) | NETRAD | -200 | 1100 | Net radiation | W m^-2 |
^NIRV(\(|_) </td> <td style="text-align:left;"> NIRV </td> <td style="text-align:right;"> 0 </td> <td style="text-align:right;"> 2 </td> <td style="text-align:left;"> Near Infrared Vegetation Index </td> <td style="text-align:left;"> W m^-2 sr^-1 nm^-1 </td> </tr> <tr> <td style="text-align:left;"> ^PPFD_BC_IN(\)|_) | PPFD_BC_IN | 0 | 2400 | PPFD, below canopy incoming | umolPhoton m^-2 s^-1 |
^PPFD_BC_OUT(\(|_) </td> <td style="text-align:left;"> PPFD_BC_OUT </td> <td style="text-align:right;"> 0 </td> <td style="text-align:right;"> 2000 </td> <td style="text-align:left;"> PPFD, below canopy outgoing </td> <td style="text-align:left;"> umolPhoton m^-2 s^-1 </td> </tr> <tr> <td style="text-align:left;"> ^PPFD_DIF(\)|_) | PPFD_DIF | 0 | 1400 | PPFD, diffuse incoming | umolPhoton m^-2 s^-1 |
^PPFD_DIR(\(|_) </td> <td style="text-align:left;"> PPFD_DIR </td> <td style="text-align:right;"> 0 </td> <td style="text-align:right;"> 2400 </td> <td style="text-align:left;"> PPFD, direct incoming </td> <td style="text-align:left;"> umolPhoton m^-2 s^-1 </td> </tr> <tr> <td style="text-align:left;"> ^PPFD_IN(\)|_) | PPFD_IN | 0 | 2400 | PPFD, incoming | umolPhoton m^-2 s^-1 |
^PPFD_OUT(\(|_) </td> <td style="text-align:left;"> PPFD_OUT </td> <td style="text-align:right;"> 0 </td> <td style="text-align:right;"> 2000 </td> <td style="text-align:left;"> PPFD, outgoing </td> <td style="text-align:left;"> umolPhoton m^-2 s^-1 </td> </tr> <tr> <td style="text-align:left;"> ^PRI(\)|_) | PRI | -1 | 1 | Photochemical Reflectance Index | nondimensional |
^R_UVA(\(|_) </td> <td style="text-align:left;"> R_UVA </td> <td style="text-align:right;"> 0 </td> <td style="text-align:right;"> 85 </td> <td style="text-align:left;"> UVA radiation, incoming </td> <td style="text-align:left;"> W m^-2 </td> </tr> <tr> <td style="text-align:left;"> ^R_UVB(\)|_) | R_UVB | 0 | 20 | UVB radiation, incoming | W m^-2 |
^REDCI(\(|_) </td> <td style="text-align:left;"> REDCI </td> <td style="text-align:right;"> 0 </td> <td style="text-align:right;"> 10 </td> <td style="text-align:left;"> Red-Edge Chlorophyll Index </td> <td style="text-align:left;"> nondimensional </td> </tr> <tr> <td style="text-align:left;"> ^REP(\)|_) | REP | 400 | 800 | Red-Edge Position | nm |
^SPEC_NIR_IN(\(|_) </td> <td style="text-align:left;"> SPEC_NIR_IN </td> <td style="text-align:right;"> 0 </td> <td style="text-align:right;"> 2 </td> <td style="text-align:left;"> NIR band radiation, incoming (hemispherical) </td> <td style="text-align:left;"> W m^-2 nm^-1 </td> </tr> <tr> <td style="text-align:left;"> ^SPEC_NIR_OUT(\)|_) | SPEC_NIR_OUT | 0 | 2 | NIR band radiation, outgoing | W m^-2 sr^-1 nm^-1 |
^SPEC_NIR_REFL(\(|_) </td> <td style="text-align:left;"> SPEC_NIR_REFL </td> <td style="text-align:right;"> 0 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:left;"> NIR band reflectance </td> <td style="text-align:left;"> nondimensional </td> </tr> <tr> <td style="text-align:left;"> ^SPEC_PRI_REF_IN(\)|_) | SPEC_PRI_REF_IN | 0 | 2 | PRI reference band radiation, incoming | W m^-2 nm^-1 |
^SPEC_PRI_REF_OUT(\(|_) </td> <td style="text-align:left;"> SPEC_PRI_REF_OUT </td> <td style="text-align:right;"> 0 </td> <td style="text-align:right;"> 2 </td> <td style="text-align:left;"> PRI reference band radiation, outgoing </td> <td style="text-align:left;"> W m^-2 sr^-1 nm^-1 </td> </tr> <tr> <td style="text-align:left;"> ^SPEC_PRI_REF_REFL(\)|_) | SPEC_PRI_REF_REFL | 0 | 1 | PRI reference band reflectance | nondimensional |
^SPEC_PRI_TGT_IN(\(|_) </td> <td style="text-align:left;"> SPEC_PRI_TGT_IN </td> <td style="text-align:right;"> 0 </td> <td style="text-align:right;"> 2 </td> <td style="text-align:left;"> PRI target band radiation, incoming </td> <td style="text-align:left;"> W m^-2 nm^-1 </td> </tr> <tr> <td style="text-align:left;"> ^SPEC_PRI_TGT_OUT(\)|_) | SPEC_PRI_TGT_OUT | 0 | 2 | PRI target band radiation, outgoing | W m^-2 sr^-1 nm^-1 |
^SPEC_PRI_TGT_REFL(\(|_) </td> <td style="text-align:left;"> SPEC_PRI_TGT_REFL </td> <td style="text-align:right;"> 0 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:left;"> PRI target band reflectance </td> <td style="text-align:left;"> nondimensional </td> </tr> <tr> <td style="text-align:left;"> ^SPEC_RED_IN(\)|_) | SPEC_RED_IN | 0 | 2 | Red band radiation, incoming (hemispherical) | W m^-2 nm^-1 |
^SPEC_RED_OUT(\(|_) </td> <td style="text-align:left;"> SPEC_RED_OUT </td> <td style="text-align:right;"> 0 </td> <td style="text-align:right;"> 2 </td> <td style="text-align:left;"> Red band radiation, outgoing </td> <td style="text-align:left;"> W m^-2 sr^-1 nm^-1 </td> </tr> <tr> <td style="text-align:left;"> ^SPEC_RED_REFL(\)|_) | SPEC_RED_REFL | 0 | 1 | Red band reflectance | nondimensional |
^SR(\(|_) </td> <td style="text-align:left;"> SR </td> <td style="text-align:right;"> 0 </td> <td style="text-align:right;"> 10 </td> <td style="text-align:left;"> Simple Ratio </td> <td style="text-align:left;"> nondimensional </td> </tr> <tr> <td style="text-align:left;"> ^SW_BC_IN(\)|_) | SW_BC_IN | 0 | 1300 | Shortwave radiation, below canopy incoming | W m^-2 |
^SW_BC_OUT(\(|_) </td> <td style="text-align:left;"> SW_BC_OUT </td> <td style="text-align:right;"> 0 </td> <td style="text-align:right;"> 800 </td> <td style="text-align:left;"> Shortwave radiation, below canopy outgoing </td> <td style="text-align:left;"> W m^-2 </td> </tr> <tr> <td style="text-align:left;"> ^SW_DIF(\)|_) | SW_DIF | 0 | 750 | Shortwave radiation, diffuse incoming | W m^-2 |
^SW_DIR(\(|_) </td> <td style="text-align:left;"> SW_DIR </td> <td style="text-align:right;"> 0 </td> <td style="text-align:right;"> 1300 </td> <td style="text-align:left;"> Shortwave radiation, direct incoming </td> <td style="text-align:left;"> W m^-2 </td> </tr> <tr> <td style="text-align:left;"> ^SW_IN(\)|_) | SW_IN | 0 | 1300 | Shortwave radiation, incoming | W m^-2 |
^SW_OUT(\(|_) </td> <td style="text-align:left;"> SW_OUT </td> <td style="text-align:right;"> 0 </td> <td style="text-align:right;"> 800 </td> <td style="text-align:left;"> Shortwave radiation, outgoing </td> <td style="text-align:left;"> W m^-2 </td> </tr> <tr> <td style="text-align:left;"> ^TCARI(\)|_) | TCARI | 0 | 10 | Transformed Chlorophyll Absorption in Reflectance Index | nondimensional |
^SWC(\(|_) </td> <td style="text-align:left;"> SWC </td> <td style="text-align:right;"> 0 </td> <td style="text-align:right;"> 100 </td> <td style="text-align:left;"> Soil water content (volumetric, 0-100) </td> <td style="text-align:left;"> % </td> </tr> <tr> <td style="text-align:left;"> ^SWP(\)|_) | SWP | -750 | 0 | Soil water potential | kPa |
^TS(\(|_) </td> <td style="text-align:left;"> TS </td> <td style="text-align:right;"> -40 </td> <td style="text-align:right;"> 65 </td> <td style="text-align:left;"> Soil temperature </td> <td style="text-align:left;"> deg C </td> </tr> <tr> <td style="text-align:left;"> ^TSN(\)|_) | TSN | -40 | 4 | Snow temperature | deg C |
^WTD(\(|_) </td> <td style="text-align:left;"> WTD </td> <td style="text-align:right;"> -10 </td> <td style="text-align:right;"> 10 </td> <td style="text-align:left;"> Water table depth </td> <td style="text-align:left;"> m </td> </tr> <tr> <td style="text-align:left;"> ^TAU(\)|_) | TAU | -10 | 2 | Momentum flux | kg m^-1 s^-2 |
^U_SIGMA(\(|_) </td> <td style="text-align:left;"> U_SIGMA </td> <td style="text-align:right;"> 0 </td> <td style="text-align:right;"> 12 </td> <td style="text-align:left;"> Std. dev. of along-wind velocity </td> <td style="text-align:left;"> m s^-1 </td> </tr> <tr> <td style="text-align:left;"> ^USTAR(\)|_) | USTAR | 0 | 8 | Friction velocity | m s^-1 |
^V_SIGMA(\(|_) </td> <td style="text-align:left;"> V_SIGMA </td> <td style="text-align:right;"> 0 </td> <td style="text-align:right;"> 10 </td> <td style="text-align:left;"> Std. dev. of cross-wind velocity </td> <td style="text-align:left;"> m s^-1 </td> </tr> <tr> <td style="text-align:left;"> ^W_SIGMA(\)|_) | W_SIGMA | 0 | 5 | Std. dev. of vertical velocity | m s^-1 |
^WD(\(|_) </td> <td style="text-align:left;"> WD </td> <td style="text-align:right;"> 0 </td> <td style="text-align:right;"> 360 </td> <td style="text-align:left;"> Wind direction </td> <td style="text-align:left;"> degree </td> </tr> <tr> <td style="text-align:left;"> ^WD_SIGMA(\)|_) | WD_SIGMA | 0 | 180 | Std. dev. of wind direction | degree |
^WS(\(|_) </td> <td style="text-align:left;"> WS </td> <td style="text-align:right;"> 0 </td> <td style="text-align:right;"> 40 </td> <td style="text-align:left;"> Wind speed </td> <td style="text-align:left;"> m s^-1 </td> </tr> <tr> <td style="text-align:left;"> ^WS_MAX(\)|_) | WS_MAX | 0 | 50 | Max wind speed in averaging period | m s^-1 |
^GPP(\(|_) </td> <td style="text-align:left;"> GPP </td> <td style="text-align:right;"> -30 </td> <td style="text-align:right;"> 100 </td> <td style="text-align:left;"> Gross primary productivity </td> <td style="text-align:left;"> umolCO2 m^-2 s^-1 </td> </tr> <tr> <td style="text-align:left;"> ^NEE(\)|_) | NEE | -100 | 100 | Net ecosystem exchange | umolCO2 m^-2 s^-1 |
^RECO($|_) | RECO | -20 | 50 | Ecosystem respiration | umolCO2 m^-2 s^-1 |
Fluxtools is an independent project and is not affiliated with or endorsed by the AmeriFlux Network. “AmeriFlux” is a registered trademark of Lawrence Berkeley National Laboratory and is used here for identification purposes only.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.