The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

flexCountReg

codecov

The goal of flexCountReg is to provide functions that allow the analyst to estimate count regression models that can handle multiple analysis issues including excess zeros, overdispersion as a function of variables (i.e., generalized count models), random parameters, etc.

Installation

You can install the development version of flexCountReg like using:

# install.packages("devtools")
devtools::install_github("jwood-iastate/flexCountReg")

Functions and Data

The following functions are included in the flexCountReg package, grouped by continuous and count distributions.

Distribution Functions

Continuous Distributions

Count Distributions

Model Estimation Functions

Model Evaluation, Comparison, and Convenience Functions

Data A dataset, washington_roads, is included. It is based on a sample of Washington primary 2-lane roads from the years 2016-2018. Data for the roads, traffic volumes (AADT) and associated crashes were obtained from the Highway Safety Information System (HSIS).

Probability Distributions

As noted in the list of functions, the probability distributions below are included in the flexCountReg package. Details of the distributions are provided in the documentation (help files).

Continuous Distributions

Count Distributions Distributions that Handle Equidispersion

Distributions that handle Underdispersion

Distributions that Handle Overdispersion

Distributions that Handle Excess Zeros

Example

The following is an example of using flexCountReg to estimate a negative binomial (NB-2) regression model with the overdispersion parameter as a function of predictor variables:

library(gt) # used to format summary tables here
library(flexCountReg)
library(knitr)

data("washington_roads")
washington_roads$AADT10kplus <- ifelse(washington_roads$AADT > 10000, 1, 0)
gen.nb2 <- countreg(Total_crashes ~ lnaadt + lnlength + speed50 + AADT10kplus,
               data = washington_roads, family = "NB2",
               dis_param_formula_1 = ~ speed50,  method='BFGS')
kable(summary(gen.nb2), caption = "NB-2 Model Summary")
#> Call:
#>  Total_crashes ~ lnaadt + lnlength + speed50 + AADT10kplus 
#> 
#>  Method:  countreg 
#> Iterations:  44 
#> Convergence:  successful convergence  
#> Log-likelihood:  -1064.876 
#> 
#> Parameter Estimates:
#> (Using bootstrapped standard errors)
#> # A tibble: 7 × 7
#>   parameter           coeff `Std. Err.` `t-stat` `p-value` `lower CI` `upper CI`
#>   <chr>               <dbl>       <dbl>    <dbl>     <dbl>      <dbl>      <dbl>
#> 1 (Intercept)        -7.40        0.043  -172.       0         -7.49      -7.32 
#> 2 lnaadt              0.912       0.005   182.       0          0.902      0.921
#> 3 lnlength            0.843       0.037    22.9      0          0.771      0.915
#> 4 speed50            -0.47        0.102    -4.62     0         -0.669     -0.27 
#> 5 AADT10kplus         0.77        0.089     8.61     0          0.594      0.945
#> 6 ln(alpha):(Interc… -1.62        0.291    -5.57     0         -2.19      -1.05 
#> 7 ln(alpha):speed50   1.31        0.458     2.85     0.004      0.409      2.20
parameter coeff Std. Err. t-stat p-value lower CI upper CI
(Intercept) -7.401 0.043 -171.562 0.000 -7.486 -7.317
lnaadt 0.912 0.005 182.453 0.000 0.902 0.921
lnlength 0.843 0.037 22.878 0.000 0.771 0.915
speed50 -0.470 0.102 -4.619 0.000 -0.669 -0.270
AADT10kplus 0.770 0.089 8.607 0.000 0.594 0.945
ln(alpha):(Intercept) -1.619 0.291 -5.568 0.000 -2.189 -1.049
ln(alpha):speed50 1.306 0.458 2.854 0.004 0.409 2.203

NB-2 Model Summary

teststats <- regCompTest(gen.nb2)
kable(teststats$statistics)
Statistic Model BaseModel
AIC 2143.7522 3049.659
BIC 2180.9494 3054.973
LR Test Statistic 917.9070 NA
LR degrees of freedom 6.0000 NA
LR p-value 0.0000 NA
McFadden’s Pseudo R^2 0.3012 NA

Checking the CURE plot:

cureplot(gen.nb2, indvar  ="lnaadt")
#> Covariate: indvar_values
#> CURE data frame was provided. Its first column, lnaadt, will be used.

Modifying the model to fit better:



gen.nb2 <- countreg(Total_crashes ~ lnaadt  + lnlength + speed50 +
                                ShouldWidth04 + AADT10kplus + 
                                I(AADT10kplus/lnaadt),
                                data = washington_roads, family = "NB2",
                                dis_param_formula_1 = ~ lnlength,  method='BFGS')

kable(summary(gen.nb2), caption = "Modified NB-2 Model Summary")
#> Call:
#>  Total_crashes ~ lnaadt + lnlength + speed50 + ShouldWidth04 +      AADT10kplus + I(AADT10kplus/lnaadt) 
#> 
#>  Method:  countreg 
#> Iterations:  56 
#> Convergence:  successful convergence  
#> Log-likelihood:  -1061.914 
#> 
#> Parameter Estimates:
#> (Using bootstrapped standard errors)
#> # A tibble: 9 × 7
#>   parameter           coeff `Std. Err.` `t-stat` `p-value` `lower CI` `upper CI`
#>   <chr>               <dbl>       <dbl>    <dbl>     <dbl>      <dbl>      <dbl>
#> 1 (Intercept)        -7.68        0.043  -180.       0         -7.76      -7.59 
#> 2 lnaadt              0.93        0.005   188.       0          0.92       0.939
#> 3 lnlength            0.853       0.038    22.6      0          0.779      0.927
#> 4 speed50            -0.4         0.091    -4.38     0         -0.579     -0.221
#> 5 ShouldWidth04       0.261       0.06      4.36     0          0.143      0.378
#> 6 AADT10kplus         5.96        0.092    64.6      0          5.78       6.14 
#> 7 I(AADT10kplus/ln… -50.1         0.938   -53.5      0        -52.0      -48.3  
#> 8 ln(alpha):(Inter…  -1.91        0.324    -5.91     0         -2.55      -1.28 
#> 9 ln(alpha):lnleng…  -0.43        0.244    -1.76     0.078     -0.908      0.048
parameter coeff Std. Err. t-stat p-value lower CI upper CI
(Intercept) -7.676 0.043 -179.752 0.000 -7.759 -7.592
lnaadt 0.930 0.005 187.633 0.000 0.920 0.939
lnlength 0.853 0.038 22.585 0.000 0.779 0.927
speed50 -0.400 0.091 -4.382 0.000 -0.579 -0.221
ShouldWidth04 0.261 0.060 4.355 0.000 0.143 0.378
AADT10kplus 5.961 0.092 64.628 0.000 5.780 6.142
I(AADT10kplus/lnaadt) -50.133 0.938 -53.454 0.000 -51.971 -48.295
ln(alpha):(Intercept) -1.913 0.324 -5.910 0.000 -2.547 -1.278
ln(alpha):lnlength -0.430 0.244 -1.764 0.078 -0.908 0.048

Modified NB-2 Model Summary

teststats <- regCompTest(gen.nb2)
kable(teststats$statistics)
Statistic Model BaseModel
AIC 2141.8278 3049.659
BIC 2189.6528 3054.973
LR Test Statistic 923.8314 NA
LR degrees of freedom 8.0000 NA
LR p-value 0.0000 NA
McFadden’s Pseudo R^2 0.3031 NA
cureplot(gen.nb2, indvar  ="lnaadt")
#> Covariate: indvar_values
#> CURE data frame was provided. Its first column, lnaadt, will be used.

Estimating another model (NB-P) - without the interaction:

gen.nbp <- countreg(Total_crashes ~ lnaadt  + lnlength + speed50 +
                                ShouldWidth04 + AADT10kplus,
                                data = washington_roads, family = "NBp",
                                dis_param_formula_1 = ~ lnlength,  method='BFGS')
kable(summary(gen.nbp), caption = "NB-P Model Summary")
#> Call:
#>  Total_crashes ~ lnaadt + lnlength + speed50 + ShouldWidth04 +      AADT10kplus 
#> 
#>  Method:  countreg 
#> Iterations:  53 
#> Convergence:  successful convergence  
#> Log-likelihood:  -1062.195 
#> 
#> Parameter Estimates:
#> (Using bootstrapped standard errors)
#> # A tibble: 9 × 7
#>   parameter           coeff `Std. Err.` `t-stat` `p-value` `lower CI` `upper CI`
#>   <chr>               <dbl>       <dbl>    <dbl>     <dbl>      <dbl>      <dbl>
#> 1 (Intercept)        -7.76        0.043 -181.        0         -7.85      -7.68 
#> 2 lnaadt              0.938       0.005  189.        0          0.928      0.948
#> 3 lnlength            0.836       0.037   22.3       0          0.763      0.91 
#> 4 speed50            -0.384       0.093   -4.13      0         -0.567     -0.202
#> 5 ShouldWidth04       0.258       0.059    4.34      0          0.141      0.374
#> 6 AADT10kplus         0.689       0.088    7.87      0          0.518      0.861
#> 7 ln(alpha):(Interc… -1.50        0.294   -5.09      0         -2.07      -0.92 
#> 8 ln(alpha):lnlength -0.167       0.245   -0.682     0.495     -0.648      0.314
#> 9 ln(p)               0.525       0.173    3.03      0.002      0.186      0.864
parameter coeff Std. Err. t-stat p-value lower CI upper CI
(Intercept) -7.764 0.043 -181.211 0.000 -7.848 -7.680
lnaadt 0.938 0.005 189.459 0.000 0.928 0.948
lnlength 0.836 0.037 22.314 0.000 0.763 0.910
speed50 -0.384 0.093 -4.130 0.000 -0.567 -0.202
ShouldWidth04 0.258 0.059 4.335 0.000 0.141 0.374
AADT10kplus 0.689 0.088 7.867 0.000 0.518 0.861
ln(alpha):(Intercept) -1.496 0.294 -5.094 0.000 -2.072 -0.920
ln(alpha):lnlength -0.167 0.245 -0.682 0.495 -0.648 0.314
ln(p) 0.525 0.173 3.033 0.002 0.186 0.864

NB-P Model Summary

teststats <- regCompTest(gen.nbp)
kable(teststats$statistics)
Statistic Model BaseModel
AIC 2142.3895 3049.659
BIC 2190.2144 3054.973
LR Test Statistic 923.2697 NA
LR degrees of freedom 8.0000 NA
LR p-value 0.0000 NA
McFadden’s Pseudo R^2 0.3029 NA

Checking the CURE plot (notice that the CURE plot is MUCH better in this case than the NB-2 without the interaction and still better than the modified NB-2):

cureplot(gen.nbp, indvar  ="lnaadt")
#> Covariate: indvar_values
#> CURE data frame was provided. Its first column, lnaadt, will be used.

Creating a table to compare the models:

regCompTable(list("Generalized NB-2"=gen.nb2, "Generalized NB-P"=gen.nbp), tableType="tibble") |> 
  kable()
Parameter Generalized NB-2 Generalized NB-P
(Intercept) -7.676 (0.043)*** -7.764 (0.043)***
lnaadt 0.93 (0.005)*** 0.938 (0.005)***
lnlength 0.853 (0.038)*** 0.836 (0.037)***
speed50 -0.4 (0.091)*** -0.384 (0.093)***
ShouldWidth04 0.261 (0.06)*** 0.258 (0.059)***
AADT10kplus 5.961 (0.092)*** 0.689 (0.088)***
I(AADT10kplus/lnaadt) -50.133 (0.938)***
ln(alpha):(Intercept) -1.913 (0.324)*** -1.496 (0.294)***
ln(alpha):lnlength -0.43 (0.244) -0.167 (0.245)
ln(p) 0.525 (0.173)**
N Obs. 1501 1501
LL -1061.914 -1062.195
AIC 2141.828 2142.389
BIC 2189.653 2190.214
Pseudo-R-Sq. 0.303 0.303

Note that the metrics for comparison are similar. While the models both have the same number of parameters, the NB-P was able to get better performance without requiring the interaction terms (which leads to strange relationships between the exposure metric and the outcome).

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.