The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

The goal of this package is shed light on black box machine learning models.
The main props of {flashlight}:
Currently, models with numeric or binary response are supported.
# From CRAN
install.packages("flashlight")
# Development version
devtools::install_github("mayer79/flashlight")Let’s start with an iris example. For simplicity, we do not split the data into training and testing/validation sets.
library(ggplot2)
library(MetricsWeighted)
library(flashlight)
fit_lm <- lm(Sepal.Length ~ ., data = iris)
# Make explainer object
fl_lm <- flashlight(
  model = fit_lm, 
  data = iris, 
  y = "Sepal.Length", 
  label = "lm",               
  metrics = list(RMSE = rmse, `R-squared` = r_squared)
)fl_lm |> 
  light_performance() |> 
  plot(fill = "darkred") +
  labs(x = NULL, title = "Performance on training data")
fl_lm |> 
  light_performance(by = "Species") |> 
  plot(fill = "darkred") +
  ggtitle("Performance split by Species")
Error bars represent standard errors, i.e., the uncertainty of the estimated importance.
fl_lm |>
  light_importance(m_repetitions = 4) |> 
  plot(fill = "darkred") +
  labs(title = "Permutation importance", y = "Increase in RMSE")Petal.Widthfl_lm |> 
  light_ice("Sepal.Width", n_max = 200) |> 
  plot(alpha = 0.3, color = "chartreuse4") +
  labs(title = "ICE curves for 'Sepal.Width'", y = "Prediction")
fl_lm |> 
  light_ice("Sepal.Width", n_max = 200, center = "middle") |> 
  plot(alpha = 0.3, color = "chartreuse4") +
  labs(title = "c-ICE curves for 'Sepal.Width'", y = "Prediction (centered)")
fl_lm |> 
  light_profile("Sepal.Width", n_bins = 40) |> 
  plot() +
  ggtitle("PDP for 'Sepal.Width'")
fl_lm |> 
  light_profile("Sepal.Width", n_bins = 40, by = "Species") |> 
  plot() +
  ggtitle("Same grouped by 'Species'")
fl_lm |> 
  light_profile2d(c("Petal.Width", "Petal.Length")) |> 
  plot()fl_lm |> 
  light_profile("Sepal.Width", type = "ale") |> 
  plot() +
  ggtitle("ALE plot for 'Sepal.Width'")fl_lm |> 
  light_effects("Sepal.Width") |> 
  plot(use = "all") +
  ggtitle("Different types of profiles for 'Sepal.Width'")fl_lm |> 
  light_breakdown(new_obs = iris[1, ]) |> 
  plot()fl_lm |> 
  light_global_surrogate() |> 
  plot()Multiple flashlights can be combined to a multiflashlight.
library(rpart)
fit_tree <- rpart(
  Sepal.Length ~ ., 
  data = iris, 
  control = list(cp = 0, xval = 0, maxdepth = 5)
)
# Make explainer object
fl_tree <- flashlight(
  model = fit_tree, 
  data = iris, 
  y = "Sepal.Length", 
  label = "tree",               
  metrics = list(RMSE = rmse, `R-squared` = r_squared)
)
# Combine with other explainer
fls <- multiflashlight(list(fl_tree, fl_lm))
fls |> 
  light_performance() |> 
  plot(fill = "chartreuse4") +
  labs(x = "Model", title = "Performance")
fls |> 
  light_profile("Petal.Length", n_bins = 40, by = "Species") |> 
  plot() +
  ggtitle("PDP by Species")
Check out the vignette for more information and important references.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.