The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
mixHMMR: Simultaneous model-based clustering and segmentation of heterogeneous and dynamical functional data (curves/times series) with changes in regime by a mixture of gaussian regression models with hidden Markov processes, fitted by the EM/Baum-Welch algorithm.
It was written in R Markdown, using the knitr package for production.
See help(package="flamingos")
for further details and references provided by citation("flamingos")
.
mixhmmr <- emMixHMMR(X = x, Y = Y, K, R, p, variance_type, ordered_states,
init_kmeans, n_tries, max_iter, threshold, verbose)
## EM - mixHMMR: Iteration: 1 || log-likelihood: -18975.6323298895
## EM - mixHMMR: Iteration: 2 || log-likelihood: -15198.5811534058
## EM - mixHMMR: Iteration: 3 || log-likelihood: -15118.0350455527
## EM - mixHMMR: Iteration: 4 || log-likelihood: -15086.2933826057
## EM - mixHMMR: Iteration: 5 || log-likelihood: -15084.2502053712
## EM - mixHMMR: Iteration: 6 || log-likelihood: -15083.7770153797
## EM - mixHMMR: Iteration: 7 || log-likelihood: -15083.3586992156
## EM - mixHMMR: Iteration: 8 || log-likelihood: -15082.8291034608
## EM - mixHMMR: Iteration: 9 || log-likelihood: -15082.2407744542
## EM - mixHMMR: Iteration: 10 || log-likelihood: -15081.6808462523
## EM - mixHMMR: Iteration: 11 || log-likelihood: -15081.175618676
## EM - mixHMMR: Iteration: 12 || log-likelihood: -15080.5819574865
## EM - mixHMMR: Iteration: 13 || log-likelihood: -15079.3118011276
## EM - mixHMMR: Iteration: 14 || log-likelihood: -15076.8073408977
## EM - mixHMMR: Iteration: 15 || log-likelihood: -15073.8399600893
## EM - mixHMMR: Iteration: 16 || log-likelihood: -15067.6884092484
## EM - mixHMMR: Iteration: 17 || log-likelihood: -15054.9127597414
## EM - mixHMMR: Iteration: 18 || log-likelihood: -15049.4000307536
## EM - mixHMMR: Iteration: 19 || log-likelihood: -15049.0221351022
## EM - mixHMMR: Iteration: 20 || log-likelihood: -15048.997021329
## EM - mixHMMR: Iteration: 21 || log-likelihood: -15048.9949507534
mixhmmr$summary()
## ------------------------
## Fitted mixHMMR model
## ------------------------
##
## MixHMMR model with K = 3 clusters and R = 3 regimes:
##
## log-likelihood nu AIC BIC ICL
## -15048.99 50 -15098.99 -15134.02 -15134.02
##
## Clustering table (Number of curves in each clusters):
##
## 1 2 3
## 10 10 10
##
## Mixing probabilities (cluster weights):
## 1 2 3
## 0.3333333 0.3333333 0.3333333
##
##
## --------------------
## Cluster 1 (k = 1):
##
## Regression coefficients for each regime/segment r (r=1...R):
##
## Beta(r = 1) Beta(r = 2) Beta(r = 3)
## 1 4.9512819 6.8393804 4.9076599
## X^1 0.2099508 0.2822775 0.1031626
##
## Variances:
##
## Sigma2(r = 1) Sigma2(r = 2) Sigma2(r = 3)
## 0.9576192 1.045043 0.952047
##
## --------------------
## Cluster 2 (k = 2):
##
## Regression coefficients for each regime/segment r (r=1...R):
##
## Beta(r = 1) Beta(r = 2) Beta(r = 3)
## 1 6.3552432 4.2868818 6.5327846
## X^1 -0.2865404 0.6907212 0.2429291
##
## Variances:
##
## Sigma2(r = 1) Sigma2(r = 2) Sigma2(r = 3)
## 0.9587975 0.9481068 1.01388
##
## --------------------
## Cluster 3 (k = 3):
##
## Regression coefficients for each regime/segment r (r=1...R):
##
## Beta(r = 1) Beta(r = 2) Beta(r = 3)
## 1 6.870328 5.1511267 3.9901300
## X^1 1.204150 -0.4601777 -0.0155753
##
## Variances:
##
## Sigma2(r = 1) Sigma2(r = 2) Sigma2(r = 3)
## 0.9776399 0.9895623 0.96457
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.