The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

A-quick-tour-of-mixHMMR

Introduction

mixHMMR: Simultaneous model-based clustering and segmentation of heterogeneous and dynamical functional data (curves/times series) with changes in regime by a mixture of gaussian regression models with hidden Markov processes, fitted by the EM/Baum-Welch algorithm.

It was written in R Markdown, using the knitr package for production.

See help(package="flamingos") for further details and references provided by citation("flamingos").

Load data

data("toydataset")
x <- toydataset$x
Y <- t(toydataset[,2:ncol(toydataset)])

Set up mixHMMR model parameters

K <- 3 # Number of clusters
R <- 3 # Number of regimes/states
p <- 1 # Degree of the polynomial regression
variance_type <- "heteroskedastic" # "heteroskedastic" or "homoskedastic" model

Set up EM parameters

ordered_states <- TRUE
n_tries <- 1
max_iter <- 1000
init_kmeans <- TRUE
threshold <- 1e-6
verbose <- TRUE

Estimation

mixhmmr <- emMixHMMR(X = x, Y = Y, K, R, p, variance_type, ordered_states, 
                     init_kmeans, n_tries, max_iter, threshold, verbose)
## EM - mixHMMR: Iteration: 1 || log-likelihood: -18975.6323298895
## EM - mixHMMR: Iteration: 2 || log-likelihood: -15198.5811534058
## EM - mixHMMR: Iteration: 3 || log-likelihood: -15118.0350455527
## EM - mixHMMR: Iteration: 4 || log-likelihood: -15086.2933826057
## EM - mixHMMR: Iteration: 5 || log-likelihood: -15084.2502053712
## EM - mixHMMR: Iteration: 6 || log-likelihood: -15083.7770153797
## EM - mixHMMR: Iteration: 7 || log-likelihood: -15083.3586992156
## EM - mixHMMR: Iteration: 8 || log-likelihood: -15082.8291034608
## EM - mixHMMR: Iteration: 9 || log-likelihood: -15082.2407744542
## EM - mixHMMR: Iteration: 10 || log-likelihood: -15081.6808462523
## EM - mixHMMR: Iteration: 11 || log-likelihood: -15081.175618676
## EM - mixHMMR: Iteration: 12 || log-likelihood: -15080.5819574865
## EM - mixHMMR: Iteration: 13 || log-likelihood: -15079.3118011276
## EM - mixHMMR: Iteration: 14 || log-likelihood: -15076.8073408977
## EM - mixHMMR: Iteration: 15 || log-likelihood: -15073.8399600893
## EM - mixHMMR: Iteration: 16 || log-likelihood: -15067.6884092484
## EM - mixHMMR: Iteration: 17 || log-likelihood: -15054.9127597414
## EM - mixHMMR: Iteration: 18 || log-likelihood: -15049.4000307536
## EM - mixHMMR: Iteration: 19 || log-likelihood: -15049.0221351022
## EM - mixHMMR: Iteration: 20 || log-likelihood: -15048.997021329
## EM - mixHMMR: Iteration: 21 || log-likelihood: -15048.9949507534

Summary

mixhmmr$summary()
## ------------------------
## Fitted mixHMMR model
## ------------------------
## 
## MixHMMR model with K = 3 clusters and R = 3 regimes:
## 
##  log-likelihood nu       AIC       BIC       ICL
##       -15048.99 50 -15098.99 -15134.02 -15134.02
## 
## Clustering table (Number of curves in each clusters):
## 
##  1  2  3 
## 10 10 10 
## 
## Mixing probabilities (cluster weights):
##          1         2         3
##  0.3333333 0.3333333 0.3333333
## 
## 
## --------------------
## Cluster 1 (k = 1):
## 
## Regression coefficients for each regime/segment r (r=1...R):
## 
##     Beta(r = 1) Beta(r = 2) Beta(r = 3)
## 1     4.9512819   6.8393804   4.9076599
## X^1   0.2099508   0.2822775   0.1031626
## 
## Variances:
## 
##  Sigma2(r = 1) Sigma2(r = 2) Sigma2(r = 3)
##      0.9576192      1.045043      0.952047
## 
## --------------------
## Cluster 2 (k = 2):
## 
## Regression coefficients for each regime/segment r (r=1...R):
## 
##     Beta(r = 1) Beta(r = 2) Beta(r = 3)
## 1     6.3552432   4.2868818   6.5327846
## X^1  -0.2865404   0.6907212   0.2429291
## 
## Variances:
## 
##  Sigma2(r = 1) Sigma2(r = 2) Sigma2(r = 3)
##      0.9587975     0.9481068       1.01388
## 
## --------------------
## Cluster 3 (k = 3):
## 
## Regression coefficients for each regime/segment r (r=1...R):
## 
##     Beta(r = 1) Beta(r = 2) Beta(r = 3)
## 1      6.870328   5.1511267   3.9901300
## X^1    1.204150  -0.4601777  -0.0155753
## 
## Variances:
## 
##  Sigma2(r = 1) Sigma2(r = 2) Sigma2(r = 3)
##      0.9776399     0.9895623       0.96457

Plots

mixhmmr$plot()

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.