The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
fgeo.analyze provides functions to analyze ForestGEO data.
Install the latest stable version of fgeo.analyze from CRAN with:
install.packages("fgeo.analyze", repos = these_repos)
Install the development version of fgeo.analyze with:
# install.packages("devtools")
::install_github("forestgeo/fgeo.analyze") devtools
Or install all fgeo packages in one step.
library(dplyr)
#>
#> Attaching package: 'dplyr'
#> The following objects are masked from 'package:stats':
#>
#> filter, lag
#> The following objects are masked from 'package:base':
#>
#> intersect, setdiff, setequal, union
library(fgeo.x)
library(fgeo.tool)
#>
#> Attaching package: 'fgeo.tool'
#> The following object is masked from 'package:stats':
#>
#> filter
library(fgeo.analyze)
Your data may have multiple stems per treeid and even multiple measures per stemid (if trees have buttresses).
# Trees with buttresses may have multiple measurements of a single stem.
# Main stems have highest `HOM`, then largest `DBH`.
<- tribble(
vft ~CensusID, ~TreeID, ~StemID, ~DBH, ~HOM,
1, "1", "1.1", 88, 130,
1, "1", "1.1", 10, 160, # Main stem
1, "2", "2.1", 20, 130,
1, "2", "2.2", 30, 130, # Main stem
)
Fundamentally, abundance()
counts rows. All of these
results are the same:
nrow(vft)
#> [1] 4
count(vft)
#> # A tibble: 1 × 1
#> n
#> <int>
#> 1 4
summarize(vft, n = n())
#> # A tibble: 1 × 1
#> n
#> <int>
#> 1 4
abundance(vft)
#> Warning: `treeid`: Duplicated values were detected. Do you need to pick main
#> stems?
#> # A tibble: 1 × 1
#> n
#> <int>
#> 1 4
But that result is likely not what you expect. Instead, you likely expect this:
summarize(vft, n = n_distinct(TreeID))
#> # A tibble: 1 × 1
#> n
#> <int>
#> 1 2
As shown above, you can get a correct result by combining
summarize()
and n_distinct()
(from the
dplyr package). But abundance()
includes
some useful additional features (see ?abundance()
). This
code conveys your intention more clearly, i.e. to calculate tree
abundance by counting the number of main stems:
<- pick_main_stem(vft))
(main_stems #> # A tibble: 2 × 5
#> CensusID TreeID StemID DBH HOM
#> <dbl> <chr> <chr> <dbl> <dbl>
#> 1 1 1 1.1 10 160
#> 2 1 2 2.2 30 130
abundance(main_stems)
#> # A tibble: 1 × 1
#> n
#> <int>
#> 1 2
If you have data from multiple censuses, then you can compute by census (or any other group).
<- tribble(
vft2 ~CensusID, ~TreeID, ~StemID, ~DBH, ~HOM,
1, "1", "1.1", 10, 130,
1, "1", "1.2", 20, 130, # Main stem
2, "1", "1.1", 12, 130,
2, "1", "1.2", 22, 130 # Main stem
)<- group_by(vft2, CensusID)
by_census <- pick_main_stem(by_census))
(main_stems_by_census #> # A tibble: 2 × 5
#> # Groups: CensusID [2]
#> CensusID TreeID StemID DBH HOM
#> <dbl> <chr> <chr> <dbl> <dbl>
#> 1 1 1 1.2 20 130
#> 2 2 1 1.2 22 130
abundance(main_stems_by_census)
#> # A tibble: 2 × 2
#> # Groups: CensusID [2]
#> CensusID n
#> <dbl> <int>
#> 1 1 1
#> 2 2 1
Often you will need to first subset data (e.g. by status
or DBH
) and then count.
<- filter(main_stems_by_census, DBH > 20)
over20 abundance(over20)
#> # A tibble: 1 × 2
#> # Groups: CensusID [1]
#> CensusID n
#> <dbl> <int>
#> 1 2 1
If trees have buttresses, then you may need to pick the main stemid of each stem so you do not count the same stem more than once.
<- tribble(
vft3 ~CensusID, ~TreeID, ~StemID, ~DBH, ~HOM,
1, "1", "1.1", 88, 130,
1, "1", "1.1", 10, 160, # Main stem
1, "2", "2.1", 20, 130,
1, "2", "2.2", 30, 130, # Main stem
2, "1", "1.1", 98, 130,
2, "1", "1.1", 20, 160, # Main stem
2, "2", "2.1", 30, 130,
2, "2", "2.2", 40, 130, # Main stem
)<- pick_main_stemid(vft3))
(main_stemids #> # A tibble: 6 × 5
#> CensusID TreeID StemID DBH HOM
#> <dbl> <chr> <chr> <dbl> <dbl>
#> 1 1 1 1.1 10 160
#> 2 1 2 2.1 20 130
#> 3 1 2 2.2 30 130
#> 4 2 1 1.1 20 160
#> 5 2 2 2.1 30 130
#> 6 2 2 2.2 40 130
main_stemids#> # A tibble: 6 × 5
#> CensusID TreeID StemID DBH HOM
#> <dbl> <chr> <chr> <dbl> <dbl>
#> 1 1 1 1.1 10 160
#> 2 1 2 2.1 20 130
#> 3 1 2 2.2 30 130
#> 4 2 1 1.1 20 160
#> 5 2 2 2.1 30 130
#> 6 2 2 2.2 40 130
basal_area(main_stemids)
#> Warning: `stemid`: Duplicated values were detected. Do you need to pick largest
#> `hom` values?
#> Warning: `censusid`: Multiple values were detected. Do you need to group by
#> censusid?
#> # A tibble: 1 × 1
#> basal_area
#> <dbl>
#> 1 3377.
basal_area()
also allows you to compute by groups.
<- group_by(main_stemids, CensusID)
by_census basal_area(by_census)
#> # A tibble: 2 × 2
#> # Groups: CensusID [2]
#> CensusID basal_area
#> <dbl> <dbl>
#> 1 1 1100.
#> 2 2 2278.
But if you want to compute on a subset of data, then you need to pick the data first.
<- filter(by_census, DBH >= 10, DBH <= 20)
ten_to_twenty basal_area(ten_to_twenty)
#> # A tibble: 2 × 2
#> # Groups: CensusID [2]
#> CensusID basal_area
#> <dbl> <dbl>
#> 1 1 393.
#> 2 2 314.
Example data.
<- tibble(
vft PlotName = c("luq", "luq", "luq", "luq", "luq", "luq", "luq", "luq"),
CensusID = c(1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L),
TreeID = c(1L, 1L, 2L, 2L, 1L, 1L, 2L, 2L),
StemID = c(1.1, 1.2, 2.1, 2.2, 1.1, 1.2, 2.1, 2.2),
Status = c("alive", "dead", "alive", "alive", "alive", "gone",
"dead", "dead"),
DBH = c(10L, NA, 20L, 30L, 20L, NA, NA, NA),
Genus = c("Gn", "Gn", "Gn", "Gn", "Gn", "Gn", "Gn", "Gn"),
SpeciesName = c("spp", "spp", "spp", "spp", "spp", "spp", "spp", "spp"),
ExactDate = c("2001-01-01", "2001-01-01", "2001-01-01", "2001-01-01",
"2002-01-01", "2002-01-01", "2002-01-01",
"2002-01-01"),
PlotCensusNumber = c(1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L),
Family = c("f", "f", "f", "f", "f", "f", "f", "f"),
Tag = c(1L, 1L, 2L, 2L, 1L, 1L, 2L, 2L),
HOM = c(130L, 130L, 130L, 130L, 130L, 130L, 130L, 130L)
)
vft#> # A tibble: 8 × 13
#> PlotName CensusID TreeID StemID Status DBH Genus SpeciesName ExactDate
#> <chr> <int> <int> <dbl> <chr> <int> <chr> <chr> <chr>
#> 1 luq 1 1 1.1 alive 10 Gn spp 2001-01-01
#> 2 luq 1 1 1.2 dead NA Gn spp 2001-01-01
#> 3 luq 1 2 2.1 alive 20 Gn spp 2001-01-01
#> 4 luq 1 2 2.2 alive 30 Gn spp 2001-01-01
#> 5 luq 2 1 1.1 alive 20 Gn spp 2002-01-01
#> 6 luq 2 1 1.2 gone NA Gn spp 2002-01-01
#> 7 luq 2 2 2.1 dead NA Gn spp 2002-01-01
#> 8 luq 2 2 2.2 dead NA Gn spp 2002-01-01
#> # ℹ 4 more variables: PlotCensusNumber <int>, Family <chr>, Tag <int>,
#> # HOM <int>
Abundance by year.
abundance_byyr(vft, DBH >= 10, DBH < 20)
#> # A tibble: 1 × 3
#> species family yr_2001
#> <chr> <chr> <dbl>
#> 1 Gn spp f 1
abundance_byyr(vft, DBH >= 10)
#> # A tibble: 1 × 4
#> species family yr_2001 yr_2002
#> <chr> <chr> <dbl> <dbl>
#> 1 Gn spp f 2 1
Basal area by year.
basal_area_byyr(vft, DBH >= 10)
#> # A tibble: 1 × 4
#> species family yr_2001 yr_2002
#> <chr> <chr> <dbl> <dbl>
#> 1 Gn spp f 1100. 314.
<- fgeo.x::tree5
census1 <- fgeo.x::tree6 census2
Demography functions output a list that you can convert to a more
convenient dataframe with as_tibble()
.
recruitment_ctfs(census1, census2)
#> Detected dbh ranges:
#> * `census1` = 10.9-323.
#> * `census2` = 10.5-347.
#> Using dbh `mindbh = 0` and above.
#> $N2
#> [1] 29
#>
#> $R
#> [1] 3
#>
#> $rate
#> [1] 0.02413113
#>
#> $lower
#> [1] 0.0084585
#>
#> $upper
#> [1] 0.06812388
#>
#> $time
#> [1] 4.525246
#>
#> $date1
#> [1] 18937.96
#>
#> $date2
#> [1] 20600.72
as_tibble(
recruitment_ctfs(census1, census2, quiet = TRUE)
)#> # A tibble: 1 × 8
#> N2 R rate lower upper time date1 date2
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 29 3 0.0241 0.00846 0.0681 4.53 18938. 20601.
Except if you use split2
: This argument creates a
complex data structure that as_tibble()
cannot handle.
# Errs
as_tibble(
recruitment_ctfs(
census1, census2, split1 = census1$sp,
split2 = census1$quadrat, # `as_tibble()` can't handle this
quiet = TRUE
)
)#> Warning: `split2` is deprecated.
#> * Bad: `split1 = x1, split2 = x2`
#> * Good: `split1 = interaction(x1, x2)`
#> This warning is displayed once per session.
#> Error in `as_tibble()`:
#> ! Can't deal with data created with `split2` (deprecated).
#> * Bad: `split1 = x1, split2 = x2`
#> * Good: `split1 = interaction(x1, x2)`
Instead, pass the multiple grouping variables to split
via interaction()
. This approach allows you to use any
number of grouping variables and the output always works with
as_tibble()
.
# Recommended
<- interaction(census1$sp, census1$quadrat)
by_sp_and_quadrat
as_tibble(
recruitment_ctfs(
census1, census2, split1 = by_sp_and_quadrat,
quiet = TRUE
)
)#> # A tibble: 540 × 9
#> groups N2 R rate lower upper time date1 date2
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 MATDOM.1007 1 0 0 0 0.410 4.50 18891 20535
#> 2 CASSYL.1010 1 0 0 0 0.411 4.49 18914 20555
#> 3 SLOBER.110 1 0 0 0 0.409 4.51 18897 20543
#> 4 SLOBER.1106 1 0 0 0 0.404 4.56 18849 20516
#> 5 CECSCH.1114 1 0 0 0 0.413 4.47 18948 20580
#> 6 PSYBRA.1318 1 0 0 0 0.412 4.48 19011 20646
#> 7 HIRRUG.1403 1 0 0 0 0.403 4.58 18834 20506
#> 8 CASSYL.1411 1 0 0 0 0.414 4.45 18931 20558
#> 9 SLOBER.1414 1 0 0 0 0.403 4.57 18952 20622
#> 10 GUAGUI.1419 1 0 0 0 0.406 4.54 19012 20670
#> # ℹ 530 more rows
The same applies for other demography functions.
as_tibble(
mortality_ctfs(
census1, census2, split1 = by_sp_and_quadrat,
quiet = TRUE
)
)#> # A tibble: 540 × 10
#> groups N D rate lower upper time date1 date2 dbhmean
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 MATDOM.1007 1 0 0 0 0.410 4.50 18891 20535 240
#> 2 CASSYL.1010 1 0 0 0 0.411 4.49 18914 20555 67
#> 3 SLOBER.110 1 0 0 0 0.409 4.51 18897 20543 150
#> 4 SLOBER.1106 1 0 0 0 0.404 4.56 18849 20516 50
#> 5 CECSCH.1114 1 0 0 0 0.413 4.47 18948 20580 228
#> 6 PSYBRA.1318 1 0 0 0 0.412 4.48 19011 20646 14
#> 7 HIRRUG.1403 1 0 0 0 0.403 4.58 18834 20506 12.9
#> 8 CASSYL.1411 1 0 0 0 0.414 4.45 18931 20558 13.1
#> 9 SLOBER.1414 1 0 0 0 0.403 4.57 18952 20622 16.6
#> 10 GUAGUI.1419 1 0 0 0 0.406 4.54 19012 20670 108
#> # ℹ 530 more rows
A simple way to separate the grouping variables is with
tidyr::separate()
.
<- growth_ctfs(
growth
census1, census2, split1 = by_sp_and_quadrat,
quiet = TRUE
)as_tibble(growth)
#> # A tibble: 540 × 8
#> groups rate N clim dbhmean time date1 date2
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 MATDOM.1007 0 1 NA 240 4.50 18891 20535
#> 2 CASSYL.1010 0.445 1 NA 67 4.49 18914 20555
#> 3 SLOBER.110 0.666 1 NA 150 4.51 18897 20543
#> 4 SLOBER.1106 0 1 NA 50 4.56 18849 20516
#> 5 CECSCH.1114 1.79 1 NA 228 4.47 18948 20580
#> 6 PSYBRA.1318 0.447 1 NA 14 4.48 19011 20646
#> 7 HIRRUG.1403 1.66 1 NA 12.9 4.58 18834 20506
#> 8 CASSYL.1411 NA 0 NA NA NA NA NA
#> 9 SLOBER.1414 1.40 1 NA 16.6 4.57 18952 20622
#> 10 GUAGUI.1419 NA 0 NA NA NA NA NA
#> # ℹ 530 more rows
as_tibble(growth) %>%
::separate(groups, into = c("species", "quadrats"))
tidyr#> # A tibble: 540 × 9
#> species quadrats rate N clim dbhmean time date1 date2
#> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 MATDOM 1007 0 1 NA 240 4.50 18891 20535
#> 2 CASSYL 1010 0.445 1 NA 67 4.49 18914 20555
#> 3 SLOBER 110 0.666 1 NA 150 4.51 18897 20543
#> 4 SLOBER 1106 0 1 NA 50 4.56 18849 20516
#> 5 CECSCH 1114 1.79 1 NA 228 4.47 18948 20580
#> 6 PSYBRA 1318 0.447 1 NA 14 4.48 19011 20646
#> 7 HIRRUG 1403 1.66 1 NA 12.9 4.58 18834 20506
#> 8 CASSYL 1411 NA 0 NA NA NA NA NA
#> 9 SLOBER 1414 1.40 1 NA 16.6 4.57 18952 20622
#> 10 GUAGUI 1419 NA 0 NA NA NA NA NA
#> # ℹ 530 more rows
# Pick alive trees, of 10 mm or more
<- download_data("luquillo_tree5_random")
tree <- filter(tree, status == "A", dbh >= 10)
census # Pick sufficiently abundant species
<- filter(add_count(census, sp), n > 50)
pick
# Use your habitat data or create it from elevation data
<- download_data("luquillo_elevation")
elevation <- fgeo_habitat(elevation, gridsize = 20, n = 4)
habitat
<- tt_test(pick, habitat)
tt_test_result #> Using `plotdim = c(320, 500)`. To change this value see `?tt_test()`.
#> Using `gridsize = 20`. To change this value see `?tt_test()`.
#> Warning: Is `census` a tree table (not a stem table)? See `?tt_test()`.
# A list or matrices
tt_test_result#> [[1]]
#> N.Hab.1 Gr.Hab.1 Ls.Hab.1 Eq.Hab.1 Rep.Agg.Neut.1 Obs.Quantile.1 N.Hab.2
#> CASARB 35 1313 282 5 0 0.820625 24
#> Gr.Hab.2 Ls.Hab.2 Eq.Hab.2 Rep.Agg.Neut.2 Obs.Quantile.2 N.Hab.3
#> CASARB 394 1204 2 0 0.24625 11
#> Gr.Hab.3 Ls.Hab.3 Eq.Hab.3 Rep.Agg.Neut.3 Obs.Quantile.3 N.Hab.4
#> CASARB 482 1114 4 0 0.30125 8
#> Gr.Hab.4 Ls.Hab.4 Eq.Hab.4 Rep.Agg.Neut.4 Obs.Quantile.4
#> CASARB 1217 377 6 0 0.760625
#>
#> [[2]]
#> N.Hab.1 Gr.Hab.1 Ls.Hab.1 Eq.Hab.1 Rep.Agg.Neut.1 Obs.Quantile.1 N.Hab.2
#> PREMON 94 1005 594 1 0 0.628125 97
#> Gr.Hab.2 Ls.Hab.2 Eq.Hab.2 Rep.Agg.Neut.2 Obs.Quantile.2 N.Hab.3
#> PREMON 1478 120 2 0 0.92375 39
#> Gr.Hab.3 Ls.Hab.3 Eq.Hab.3 Rep.Agg.Neut.3 Obs.Quantile.3 N.Hab.4
#> PREMON 230 1367 3 0 0.14375 15
#> Gr.Hab.4 Ls.Hab.4 Eq.Hab.4 Rep.Agg.Neut.4 Obs.Quantile.4
#> PREMON 130 1465 5 0 0.08125
#>
#> [[3]]
#> N.Hab.1 Gr.Hab.1 Ls.Hab.1 Eq.Hab.1 Rep.Agg.Neut.1 Obs.Quantile.1 N.Hab.2
#> SLOBER 21 270 1328 2 0 0.16875 25
#> Gr.Hab.2 Ls.Hab.2 Eq.Hab.2 Rep.Agg.Neut.2 Obs.Quantile.2 N.Hab.3
#> SLOBER 516 1082 2 0 0.3225 21
#> Gr.Hab.3 Ls.Hab.3 Eq.Hab.3 Rep.Agg.Neut.3 Obs.Quantile.3 N.Hab.4
#> SLOBER 1336 260 4 0 0.835 8
#> Gr.Hab.4 Ls.Hab.4 Eq.Hab.4 Rep.Agg.Neut.4 Obs.Quantile.4
#> SLOBER 1193 396 11 0 0.745625
# A dataframe
as_tibble(tt_test_result)
#> # A tibble: 12 × 8
#> habitat sp N.Hab Gr.Hab Ls.Hab Eq.Hab Rep.Agg.Neut Obs.Quantile
#> * <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 1 CASARB 35 1313 282 5 0 0.821
#> 2 2 CASARB 24 394 1204 2 0 0.246
#> 3 3 CASARB 11 482 1114 4 0 0.301
#> 4 4 CASARB 8 1217 377 6 0 0.761
#> 5 1 PREMON 94 1005 594 1 0 0.628
#> 6 2 PREMON 97 1478 120 2 0 0.924
#> 7 3 PREMON 39 230 1367 3 0 0.144
#> 8 4 PREMON 15 130 1465 5 0 0.0812
#> 9 1 SLOBER 21 270 1328 2 0 0.169
#> 10 2 SLOBER 25 516 1082 2 0 0.322
#> 11 3 SLOBER 21 1336 260 4 0 0.835
#> 12 4 SLOBER 8 1193 396 11 0 0.746
# A simple summary to help you interpret the results
summary(tt_test_result)
#> # A tibble: 12 × 3
#> sp habitat association
#> <chr> <chr> <chr>
#> 1 CASARB 1 neutral
#> 2 CASARB 2 neutral
#> 3 CASARB 3 neutral
#> 4 CASARB 4 neutral
#> 5 PREMON 1 neutral
#> 6 PREMON 2 neutral
#> 7 PREMON 3 neutral
#> 8 PREMON 4 neutral
#> 9 SLOBER 1 neutral
#> 10 SLOBER 2 neutral
#> 11 SLOBER 3 neutral
#> 12 SLOBER 4 neutral
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.